
 i

VOT 74289

THE DEVELOPMENT OF SEMANTIC META-DATABASE: AN

ONTOLOGY BASED SEMANTIC INTEGRATION OF BIOLOGICAL

DATABASES

(PEMBANGUNAN PENGKALAN DATA-META SEMANTIK : ONTOLOGI

BERASASKAN INTEGRASI SEMANTIK KEPADA PENGKALAN DATA

BIOLOGI)

RUHAIDAH BINTI SAMSUDIN

SAFAAI BIN DERIS

MUHAMAD RAZIB BIN OTHMAN

ROSLI BIN MD ILLIAS

SAFIE BIN MAT YATIM

RESEARCH VOT NO:

74289

Jabatan Kejuruteraan Perisian

Fakulti Sains Komputer Dan Sistem Maklumat

Universiti Teknologi Malaysia

2007

 ii

ABSTRACT

 Protein sequence annotation is important for the preservation and reuse of

knowledge, for content-based queries, and for the understanding of its function.

Traditional wet-lab methods are labor intensive and prone to human error.

Alternatively, existing tools are time intensive and require high investment in

computing facilities for offline usage. On the other hand, these tools are highly

dependent on internet stability and speed for online usage. Therefore, a simple and

practical computational method that is more accurate, faster, easy to configure and

use, and bears low computing cost is needed particularly for offline usage. In this

study, a Gene Ontology (GO) based protein sequence annotation tool named

extended UTMGO is developed to meet these features. The GO is selected because

of its ability to provide dynamic, precisely defined, structured, and controlled terms

that describe genes and their functions and products in any organism. Furthermore,

the GO terms are linked with gene products and their protein sequences from various

species provided by Gene Ontology Annotation (GOA). Thus, assigning highly

correlated GO terms of annotated protein sequences to partially annotated or newly

discovered protein sequences can be made. The tool comprises two intelligent

algorithms. The first algorithm combines parallel genetic algorithm with the split-

and-merge algorithm. The idea is to cluster the GO terms into number k of clusters in

order to split the monolithic GO RDF/XML file into smaller files. Thus, it enables

protein sequences and Inferred from Electronic Annotation (IEA) evidence

associations to be included in those files. The second algorithm incorporates parallel

genetic algorithm with the semantic similarity measure algorithm. The motive is to

search for a set of semantically similar GO terms from the fragmented GO

RDF/XML files to a given query. In addition, its basic version which is a GO

browser based on semantic similarity search is also introduced to overcome the

weaknesses of conventional approach: the keyword matching.

 iii

ABSTRAK

 Penganotasian jujukan protein adalah penting untuk pemeliharaan dan

penggunaan semula pengetahuan, pertanyaan berasaskan-kandungan dan pemahaman

terhadap fungsinya. Kaedah makmal-basah tradisional adalah intensif buruh dan

terdedah kepada ralat manusia. Sebagai alternatif, alatan sedia ada adalah intensif

masa dan memerlukan pelaburan kemudahan pengkomputeran yang tinggi untuk

penggunaan luar talian. Selain itu, ia sangat bergantung kepada kestabilan dan

kelajuan internet untuk penggunaan dalam talian. Maka, kaedah komputasi yang

mudah dan praktikal yang lebih tepat, pantas, mudah dikonfigurasi dan diguna serta

dengan kos pengkomputeran yang murah diperlukan terutamanya untuk penggunaan

luar talian. Dalam pengajian ini, alatan penganotasian jujukan protein berasaskan

Ontologi Gen (GO) iaitu UTMGO lanjutan dibangunkan untuk memenuhi ciri-ciri

tersebut. GO dipilih kerana keupayaannya menyediakan istilah yang dinamik,

takrifan tepat, berstruktur dan terkawal yang menerangkan gen dan fungsi serta

produknya dalam sebarang organisma. Tambahan pula, istilah GO dihubungkan

dengan produk gen dan jujukan proteinnya daripada pelbagai spesies yang

disediakan oleh Anotasi Ontologi Gen (GOA). Dengan itu, penentuan istilah GO

bagi jujukan protein yang amat tinggi hubung kaitnya kepada jujukan protein yang

telah separa dianotasi atau baru ditemui boleh dibuat. Alatan ini mengandungi dua

algoritma pintar. Algoritma pertama menggabungkan algoritma genetik selari dengan

algoritma pisah-dan-cantum. Tujuannya ialah untuk mengelompokkan istilah GO

kepada sejumlah k kelompok bagi memisahkan fail GO RDF/XML yang besar

kepada fail-fail yang kecil. Dengan itu, jujukan protein dan perhubungan bukti

Disimpul daripada Anotasi Elektronik (IEA) boleh ditambah ke dalam fail-fail

tersebut. Algoritma kedua menggabungkan algoritma genetik selari dengan algoritma

sukatan keserupaan semantik. Tujuannya ialah untuk mencari satu set istilah GO

yang semantiknya serupa dengan pertanyaan yang ditentukan daripada fail-fail GO

RDF/XML yang kecil. Selain itu, versi asasnya iaitu pelayar GO yang berasaskan

kepada carian keserupaan semantik juga diperkenalkan untuk mengatasi masalah

pendekatan konvensional: padanan kata kunci.

 iv

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 ABSTRACT ii

 ABSTRAK iii

 TABLE OF CONTENTS iv

 LIST OF TABLES vii

 LIST OF FIGURES ix

 LIST OF ABBREVIATIONS xi

1 INTRODUCTION 1

 1.1 Overview 1

 1.2 Current Methods for Protein Sequence Annotation 2

 1.3 Challenges of Protein Sequence Annotation 3

 1.4 Statement of the Problem 4

 1.5 Objective of the Study 6

 1.6 Scope and Significant of the Study 6

 1.7 Organization of the Thesis 7

2 LITERATURE REVIEW 9

 2.1 Introduction 9

 2.2 Protein Sequence Annotation 10

 2.3 The Gene Ontology 15

 2.4 Automatic Clustering Algorithms 20

 2.5 Semantic Similarity Searching Algorithms 25

 2.6 Protein Sequence Annotation Tools 26

 2.7 Trends and Tendencies 28

 v

 2.8 Summary 29

3 RESEARCH METHODOLOGY 30

 3.1 Introduction 30

 3.2 Framework of the Study 31

 3.3 Data Sources 33

 3.4 Instrumentation and Results Analysis 34

 3.5 Summary 35

4 THE GENETIC SPLIT-MERGE ALGORITHM FOR 36

 SPLITTING THE MONOLITHIC GENE ONTOLOGY

 RDF/XML FILE

 4.1 Introduction 36

 4.2 Related Work 38

 4.3 The Genetic Split-Merge Algorithm 40

 4.3.1 Chromosome Representation 40

 4.3.2 Crossover and Mutation Operators 41

 4.3.3 Split and Merge Functions 42

 4.3.4 Fitness Function 45

 4.3.5 Parallelization Process 46

 4.4 Testing Preparation and Evaluation Measures 46

 4.5 Results and Discussion 48

 4.6 Summary 54

5 THE GENETIC SIMILARITY ALGORITHM FOR 55

 SEARCHING THE GENE ONTOLOGY TERMS

 5.1 Introduction 55

 5.2 Related Work 57

 5.3 The Semantic Similarity Measure Algorithm 60

 5.3.1 Information Content Approach 61

 5.3.2 Conceptual Distance Approach 62

 5.3.3 The Hybrid Approach 63

 5.4 The Genetic Similarity Algorithm 63

 5.4.1 Preprocessing 64

 vi

 5.4.2 Chromosome Representation 66

 5.4.3 Crossover and Mutation Operators 69

 5.4.4 Fitness Function 69

 5.4.5 Parallelization Process 71

 5.5 The basic UTMGO 72

 5.6 Testing Preparation and Evaluation Measures 75

 5.7 Results and Discussion 76

 5.8 Summary 82

6 extended UTMGO: A GENE ONTOLOGY-BASED 83

 PROTEIN SEQUENCE ANNOTATION TOOL

 6.1 Introduction 83

 6.2 Related Work 86

 6.3 The extended UTMGO 87

 6.4 Testing Preparation and Evaluation Measures 91

 6.5 Results and Discussion 91

 6.6 Summary 93

7 CONCLUSION 95

 7.1 Concluding Remarks 95

 7.2 Contributions 98

 7.3 Future Works and Constraints 99

 7.4 Summary 100

LIST OF RELATED PUBLICATIONS 101

REFERENCES 103

 vii

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Size of the GO data 19

4.1 Parameters of the genetic split-merge algorithm 48

4.2 The effects of different number of processors used 49

 on the performance of the genetic split-merge

 algorithm

4.3 Comparison of different fitness functions 50

4.4 Comparison of different clustering algorithms 50

4.5 Comparison of different automatic clustering 52

 algorithms

5.1 Parameters of the genetic similarity algorithm 76

5.2 Comparison of genetic similarity algorithm with 77

 different semantic similarity measures

5.3 An example of comparison of different semantic 78

 similarity measures

5.4 The effects of different combinations of parameters 79

 α and β on the values of the recall (r), precision (p),

 and maximum value of fitness function (f)

5.5 The effects of different number of processors used 79

 on the performance of the genetic similarity

 algorithm

5.6 Comparison of performance between basic 80

 UTMGO and other keyword-based and semantic

 similarity-based GO browsers

5.7 An example of comparison between basic UTMGO 81

 and other keyword-based and semantic similarity-

 viii

 based GO browsers

6.1 Comparison of performance between extended 93

 UTMGO and other GO-based protein sequence

 annotation tools

6.2 An example of comparison between extended 94

 UTMGO and other GO-based protein sequence

 annotation tools

 ix

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 The protein sequence illustration 11

2.2 Three different ways of inferring protein function 12

 from the protein sequence

2.3 Phases of protein sequence annotation in the 14

 UniProt

2.4 The GO sub-ontologies 17

2.5 The properties of the GO term 18

3.1 The framework of the study 31

4.1 The genetic split-merge algorithm 41

4.2 An example of chromosome representation 42

4.3 The parallelization flow of the genetic split-merge 47

 algorithm

4.4 Cluster utilization of different clustering algorithms 51

4.5 Cluster utilization of different automatic clustering 52

 algorithms

4.6 An example of part of a smaller GO RDF/XML file 53

5.1 The semantic similarity measure algorithm 60

5.2 The genetic similarity algorithm 64

5.3 An example of preprocessing 65

5.4 An example of generating initial population 67

5.5 An example of mapping of a GO graph into a 68

 chromosome

5.6 An example of the best chromosome produced by 70

 mutation and crossover operators

5.7 The parallelization flow of the genetic similarity 73

 x

 algorithm

5.8 A screenshot of the basic UTMGO 74

6.1 The flowchart of the extended UTMGO 86

6.2 A screenshot of the extended UTMGO with a GO 89

 term entered by the user (Option 1)

6.3 A screenshot of the extended UTMGO without a 90

 GO term entered by the user (Option 2)

 xi

LIST OF ABBREVIATIONS

BIC - Bayesian Information Criterion

BLAST - Basic Local Alignment Search Tool

BLOSUM - Blocks Substitution Matrix

CDS - Coding Sequence

CFG - Comparing Factor Group

DAG - Directed Acyclic Graph

DBI - Davies-Bouldin index

DDBJ - Deoxyribonucleic acid Data Bank of Japan

DNA - Deoxyribonucleic acid

EBI - European Bioinformatics Institute

EMBL - European Molecular Biology Laboratory

EST - Expressed Sequence Tag

ExPASy - Expert Protein Analysis System

EXProt - Experimentally Verified Protein Functions

FASTA - Fast Alignment

GO - Gene Ontology

GOA - Gene Ontology Annotation

GPP - Graph Partitioning Problem

IC - Inferred from Curator

IEA - Inferred from Electronic Annotation

IMP - Inferred from Mutant Phenotype

JSP - Java Server Pages

MGI - Mouse Genome Informatics

NCBI - National Center for Biotechnology Information

NHGRI - National Human Genome Research Institute

OBO - Open Biomedical Ontologies

 xii

PAM - Point Accepted Mutations

PANDIT - Protein and Associated Nucleotide Domains with Inferred

Trees

PC - Personal Computer

PDB - Protein Data Bank

PIR - Protein Information Resource

PRF - Protein Research Foundation

QOC - Quality of Clustering

RCA - Inferred from Reviewed Computational Analysis

RDBMS - Relational Database Management Systems

RefSeq - Reference Sequence

SFG - Selecting Factor Group

SGD - Saccharomyces Genome Database

SIB - Swiss Institute of Bioinformatics

Swiss-Prot - Swiss Protein

TAIR - The Arabidopsis Information Resource

TCDB - Transporter Classification Database

TrEMBL - Translated European Molecular Biology Laboratory

UniParc - Universal Protein Resource Archive

UniProt - Universal Protein Resource

UniProtKB - Universal Protein Resource Knowledgebase

UniRef - Universal Protein Resource Reference Clusters

US NLM - United States National Library of Medicine

USDA - United States Department of Agriculture

VLSI - Very Large Scale of Integration

WWW - World Wide Web

CHAPTER 1

INTRODUCTION

1.1 Overview

Bioinformatics is the application of computer technology to store, organize,

and analyze the vast amount of biological data which is available in the form of

sequences and structures of proteins (the building blocks of organisms) and nucleic

acids (the information carrier). The biological information of nucleic acids is

available as sequences while the data of proteins is available as sequences and

structures. The protein sequence is a chain of amino acids that represents the primary

structure of a protein. It plays a central role to determine the structure, homology,

and function of a protein. Annotation of a protein sequence is important for the

preservation and reuse of knowledge and for content-based queries. Annotation is a

process of associating additional information with a particular point in a piece of

information. The protein sequence annotation is done either manually by several

expert biologists, automatically using bioinformatics tools like Basic Local

Alignment Search Tool (BLAST), or both combinations. By supplementing

additional information to a protein sequence, it increases the value of the resource for

users and can be regarded to be highly reliable. Recently, the Gene Ontology (GO;

http://www.geneontology.org/) has been widely used in protein sequence annotation.

This is due to characteristics of the GO that the data is continuously evolved and

refined, the structure is simple and relatively easy to understand and use, direct input

 2

from the biological community, and active curation to sustain the quality and

integrity of data. The GO is a collection of nearly 23 thousand terms to describe gene

and gene product attributes in any organism. The terms are structured, controlled

vocabularies and organized as a Directed Acyclic Graph (DAG) in three aspects:

cellular component, biological process, and molecular function.

1.2 Current Methods for Protein Sequence Annotation

Instead of traditional wet-lab methods that are manually done by the

biologists, the computational methods for automated protein sequence annotation can

be divided into four main categories as follows:

(i) Sequence-similarity-based method depends on the determination of a

local or global similarity between the not-yet annotated protein

sequence and protein sequences with known annotation. This method

uses sequence similarity search algorithms such as Smith-Waterman

and Needleman-Wunsch algorithms.

(ii) Controlled-vocabulary-based method employs the most widely used

biological ontology, the GO along with its annotation databases to

annotate protein sequence.

(iii) Literature-based method relies on natural language processing and

text mining techniques to extract information from the biomedical

literature as evidence to annotate protein sequence.

(iv) Rule-based method annotates protein sequence based on condition

and existence of certain rules. The rules are created according to

information extracted from the secondary databases such as protein

families, domains, and functional sites databases.

Recently, the GO is an emerging ontology that is gaining momentum for the

purpose of genome, expressed sequence tag (EST), and protein annotations. The

advantages of using the GO for protein sequence annotation are:

 3

(i) The GO data is dynamic and constantly evolves according to the

current state of biological knowledge advances.

(ii) The GO data is publicly available and can be downloaded at any time

on the World Wide Web (WWW) in various formats that can be

understandable and processable by human and machine alike.

(iii) The common GO terms shared by gene and protein sequences in

multiple organisms in different databases can facilitate uniform

queries across them.

(iv) The association of GO terms with nearly 2.5 million gene products

that are supported by citation and evidence can affirm its reliability

for future evaluation and use.

1.3 Challenges of Protein Sequence Annotation

Application of the GO terms to annotate protein sequences is not easy,

especially for species not yet inserted in public biological databases. Furthermore, for

bioscientists with little computational knowledge or limited facilities it is a hard task

to annotate those protein sequences. This is due to the fact that generally the existing

GO-based protein sequence annotation tools are:

(i) Dependent on BLAST which is computationally intensive and

requires high-cost and high-specification hardware since sequence

alignment is performed to all protein sequences but not to protein

sequences only that indicate higher similarity.

(ii) Dependent on Relational Database Management Systems (RDBMS)

which require the user to setup the RDBMS software and to import

the data or sources into the RDBMS format.

(iii) Partially based on the GO data which requires the user to download

the Gene Ontology Annotation (GOA) data or protein sequence data

sets from several sources.

 4

Furthermore, the traditional wet-lab methods are labor intensive and prone to

human error. On the other hand, sequence-similarity-based tools like BLAST that are

used by most of the computational methods as described in Section 1.2 are time

intensive and require high investment in computing facilities such as cluster server or

grid computing if being used locally. Moreover, for remote users, these tools are

subject to internet stability and speed to access the tools and to get the results online.

1.4 Statement of the Problem

 The macro (application) problem that is tried to be solved in this study can be

described as follows:

“Given a protein sequence, it is a challenging task to develop a new GO-

based method to annotate protein sequences that does not depend on BLAST

and RDBMS and is fully based on the GO data. At the same time it is capable

of producing better results and requires a reasonable amount of running time

with low computing cost specifically for offline usage”.

In order to develop the new GO-based method to annotate protein sequences,

the following factors need to be considered:

(i) The first factor relates to the process of splitting the monolithic GO

RDF/XML file into smaller files. The aims are to avoid dependency

on RDBMS format, to fully use the GO data by adding the GOA data

and the protein sequence data sets into the files since they are

excluded in the original GO RDF/XML file, and to make it easier to

be accessed and processed.

(ii) The second factor relates to the process of searching the smaller and

fragmented GO RDF/XML files. The aim is to find a group of GO

terms with higher term similarity score to a GO term which is

foreseen to have higher relationship with the query protein sequence.

 5

(iii) The third factor relates to the process of verifying the results obtained

from the second factor by computing sequence alignment score

between the query protein sequence and all sequences attached to the

predicted GO terms. The aim is to ensure that sequence alignment is

not carried out to all protein sequences but only to protein sequences

with higher outguessed similarity. Hence, it will require low cost and

minimum hardware specification and less amount of processing time.

The factors as described above lead to more technical and theoretical

problems. These micro (research) problems are related to automatic clustering and

semantic similarity searching. Automatic clustering is an unsupervised learning

problem that tries to divide a set of elements into a number k of clusters. Thus,

elements in the same cluster are as similar as possible and elements in different

clusters are as dissimilar as possible. Determining the number k of clusters is done by

the algorithm and it can be regarded as a hard algorithmic problem. To cluster the

GO terms into the number k of clusters in order to split the monolithic GO

RDF/XML file, the following questions need to be answered:

(i) What is the most suitable clustering algorithm that provides optimal

solution and offers reasonable amount of processing time?

(ii) What is the precise criterion for identifying the number k of clusters

and for measuring the goodness of those clusters?

On the other hand, semantic similarity searching relates to the problem of

determining semantic relatedness between terms either by virtue of their likeness

(bank-trust company), synonymy (car-automobile), meronymy (computer-keyboard),

antonymy (rich-poor), functional relationship (marker pen-white board), or frequent

association (orang utan-Borneo). For semantically similar GO terms, the terms are

related according to “association”: a table storing information that is shared among

the GO terms. Particularly, this table provides an annotation record that is basically a

link between a gene product and a GO term provided by the GOA. To search the GO

terms, the following questions need to be answered:

(i) What is the most suitable search algorithm that provides optimal

solution and offers reasonable amount of processing time?

(ii) What is the precise criterion for this biology-related search for

 6

measuring the semantic similarity between the GO terms?

1.5 Objective of the Study

The goal of this study is to develop a computational method to annotate

protein sequences using information in the GO. Therefore, this study has several

objectives to achieve as follows:

(i) To study and design a GO-based method that uses intelligent

techniques and the GO in order to annotate protein sequences.

(ii) To develop an automatic clustering algorithm using the genetic split-

merge algorithm in order to split the monolithic GO RDF/XML file.

(iii) To develop a similarity search algorithm using the genetic similarity

algorithm in order to find a group of semantically similar GO terms.

(iv) To develop a tool as a proof-of-concept study that applied both

algorithms mentioned above in order to highlight the capabilities of

the proposed GO-based method.

1.6 Scope and Significance of the Study

Protein sequence annotation is important for the preservation and reuse of

knowledge and for content-based queries. Traditional wet-lab methods are labor

intensive and prone to human error. Alternatively, sequence-similarity-based tools

are time intensive and require high investment in computing facilities for offline

usage. On the other hand, these tools are highly dependent on internet stability and

speed for online usage. Therefore, a simple and practical computational method that

is more accurate, faster, easy to configure and use, and bears low computing cost is

 7

needed particularly for offline usage. In this study, a GO-based protein sequence

annotation tool named extended UTMGO is developed to meet these features. The

tool employs two primary intelligent algorithms. The first algorithm named genetic

split-merge algorithm is used to split the monolithic GO RDF/XML file. The genetic

split-merge algorithm applies the parallel genetic algorithm and the split-and-merge

algorithm. The split-and-merge algorithm is implemented to improve infeasible

clusters in order to efficiently estimate the number k of clusters. The second

algorithm named genetic similarity algorithm is used to search for semantically

similar GO terms from the fragmented GO RDF/XML files. The genetic similarity

algorithm applies the parallel genetic algorithm and the semantic similarity measure

algorithm. The semantic similarity measure algorithm is implemented due to its

ability to improve the precision and recall of information retrieval by identifying the

relation between GO terms. This is acquired by computing the distance or the

amount of information those GO terms share in common. Both algorithms use the

parallel genetic algorithm because of its capability of being adaptive, efficient,

robust, and a global search method that is suitable to address a situation where the

search space is large. Moreover, the parallel genetic algorithm optimizes its fitness

function by utilizing the genetic operators to find an optimal solution. It can also be

executed on a low-cost Personal Computer (PC) cluster using message passing

interface libraries that are open source and easy to install.

1.7 Organization of the Thesis

 This thesis is organized into 7 chapters. A brief description of the contents of

each chapter is given as follows:

(i) Chapter 1 describes the problems, objective, scope, and significance

of the study.

(ii) Chapter 2 reviews main subjects used in the thesis that include protein

sequence annotation, the GO, algorithms for automatic clustering of

 8

GO RDF/XML file and semantic similarity searching of GO terms,

and related tools for protein sequence annotation.

(iii) Chapter 3 describes the operational framework adopted to achieve the

objective of the study including the results analysis, instrumentations,

and data sources used in the thesis.

(iv) Chapter 4 describes a solution of splitting the monolithic GO

RDF/XML file using the genetic split-merge algorithm. The genetic

split-merge algorithm combines the parallel genetic algorithm and the

split-merge algorithm. The parallel genetic algorithm finds the best

combination of node-cluster and the split-merge algorithm identifies

the best number k of clusters kbest.

(v) Chapter 5 describes a solution of finding a group of semantically

similar GO terms using the genetic similarity algorithm. The genetic

similarity algorithm combines the parallel genetic algorithm and the

semantic similarity measure algorithm. The semantic similarity

measure algorithm computes the degree of relationship between the

GO terms and the parallel genetic algorithm generates a solution

comprising a group of semantically similar GO terms. A GO browser

named basic UTMGO is introduced to show the applicability of the

genetic similarity algorithm.

(vi) Chapter 6 describes a solution of annotating anonymous protein

sequence using a GO-based protein sequence annotation tool named

extended UTMGO. The extended UTMGO comprises two intelligent

algorithms: the genetic split-merge algorithm and the genetic

similarity algorithm.

(vii) Chapter 7 draws general conclusions about achieved results and

presents the contributions and future works of the study.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Through bioinformatics, a scientist can use a genomic DNA

(Deoxyribonucleic acid) sequence to: predict which part of the DNA sequence is a

gene; compare the gene sequence to other known genes to predict a function; convert

the DNA sequence into the protein sequence to predict a function; compare the

sequences to study evolutionary relationships; analyze the protein sequence to

predict when, how, and where it might function; and generate a 3-D model of the

predicted protein. Bioinformatics has shown that protein sequence information from

simpler organisms such as microbes can be used to understand protein sequences in

complex organisms such as animals and plants. Using the relationships and

predictions generated by bioinformatics, scientists can better understand how an

organism functions, from simple to complex. However, to annotate a protein

sequence, meaning that interpreting the features of the protein sequence and adding

additional information to the protein sequence using computational tools and

combined with biological knowledge, is not an easy task. Even though, controlled

vocabulary such as GO has imposed itself as a standard for proteome annotation and

function prediction of proteins. This chapter begins with explanation about protein

sequence annotation (Section 2.2). Following that, this chapter describes the GO

(Section 2.3) followed by a review of the automatic clustering algorithms (Section

 10

2.4) and the semantic similarity searching algorithms (Section 2.5) that relates to the

objectives of the study. A review of the protein sequence annotation tools is given in

Section 2.6. Finally, the chapter concludes with findings of the literature review.

2.2 Protein Sequence Annotation

A protein sequence is a chain of amino acids that represents the primary

structure of a protein as shown in Figure 2.1. The protein sequence plays a central

role to determine the structure, homology, and function of a protein as depicted in

Figure 2.2.

 The database of protein sequences can be considered as primary database. It

serves as a source for the construction of secondary databases that contain the results

of analysis of the protein sequences in the primary databases. The secondary

databases are related to protein families, domains, and functional sites. Examples of

secondary databases are:

(i) PROSITE (http://www.expasy.ch/prosite/) is a database of protein

families, domains, and functional sites. The PROSITE is provided by

the Expert Protein Analysis System (ExPASy) proteomics server of

the Swiss Institute of Bioinformatics (SIB).

(ii) Pfam (http://www.sanger.ac.uk/Pfam/) comprises many common

protein families and domains. It is a database managed by the

Wellcome Trust Sanger Institute.

(iii) Protein and Associated Nucleotide Domains with Inferred Trees

(PANDIT; http://www.ebi.ac.uk/goldman-srv/pandit/) is a protein

families database developed and maintained by the European

Bioinformatics Institute (EBI).

Recently, many works have used the protein sequence databases as main resource to

predict protein-protein interactions [1], metabolic pathway [2], and protein

subcellular localization [3].

>TAIR|gene:2828322 symbol:AT2G07727.1 species:3702

C

B
"Arabidopsis thaliana" Ncbi:NP_178804
MTIRNQRFSLLKQPISSTLNQHLVDYPTPSNLSYWWGFGPLAGICLVIQI
VTGVFLAMHYTPHVDLAFNSVEHIMRDVEGGWLLRYMHANGASMFLIVVY
LHIFRGLYHASYSSPREFVWCLGVVIFLLMIVTAFIGYVLPWGQMSFWGA
TVITSLASAIPVVGDTIVTWLWGGFSVDNATLNRFFSLHHLLPFILVGAS
LLHLAALHQYGSNNPLGVHSEMDKIAFYPYFYVKDLVGWVAFAIFFSIWI
FYAPNVLGHPDNYIPANPMSTPPHIVPEWYFLPIHAILRSIPDKAGGVAA
IAPVFICLLALPFFKSMYVRSSSFRPIHQGMFWLLLADCLLLGWIGCQPV
EAPFVTIGQISPLVFFLFFAITPILGRVGRGIPNSYTDETDHT

A Primary protein structure
is sequence of a chain of amino
acids.

Secondary protein structure
occurs when the sequence of
amino acids are linked by
hydrogen bonds.

Tertiary protein structure
occurs when certain attractions
are present between alpha
helices and pleated sheets.

Quaternary protein structure
is a protein consisting of more
than one amino acid chain.

Amino
Acids

Pleated
sheet

Alpha
helix

Pleated
sheet

Alpha
helix

Amino
Acid

Amino
Acids

Primary protein structure
is sequence of a chain of
amino acids.

Figure 2.1: The protein sequence illustration: (A) The protein primary structure (source: the National Human Genome Research Institute

(NHGRI)); (B) The protein sequence of AT2G07727.1 (Gene:2828322) in FASTA format (source: TAIR); (C) The four levels of protein

structure (source: NHGRI). 11

12

Protein structure

Wet-lab

Protein homology

Protein function Protein sequence

Computational protein
homology detection

Computational protein
structure prediction

Figure 2.2: Three different ways of inferring protein function from the protein

sequence.

The protein sequence databases are divided into two categories: the protein

sequence repositories and the annotated protein sequence databases. The discussions

of protein sequence databases have been presented by Whitfield et al. [4],

Brooksbank et al. [5], and Apweiler et al. [6]. The protein sequence repositories are

highly redundant and with little or no additional information to aid further analysis of

the records. Among protein sequence repositories are National Center for

Biotechnology Information (NCBI) Entrez Protein (http://www.ncbi.nlm.nih.gov/

entrez/query.fcgi?db=Protein) and Reference Sequence (RefSeq; http://www.ncbi.

nlm.nih.gov/RefSeq/). On the other hand, the annotated protein sequence databases

provide non-redundant set of protein sequences by consolidating all reports for a

given protein sequence into one unique record. The annotation is done either

manually by several expert biologists, automatically using bioinformatics tools like

BLAST, or both combinations. By supplementing additional information to a protein

sequence, it increases the value of the resource for users and can be regarded to be

highly reliable. The most comprehensive annotated protein sequence database is

Universal Protein Resource (UniProt; http://www.ebi.uniprot.org/). The UniProt

merges the information contained in UniProtKB/Swiss-Prot (Swiss Protein;

http://www.ebi.ac.uk/swissprot/), UniProtKB/TrEMBL (Translated European

Molecular Biology Laboratory; http://www.ebi.ac.uk/trembl/), and Protein

Information Resource (PIR; http://pir.georgetown.edu/). The aim is to provide a

 13

central resource on protein sequences and functional annotation. The UniProt

consists of three main components:

(i) UniProt Knowledgebase (UniProtKB) provides extensive cross-

references, functional and feature annotations, and literature-based

evidence attribution for easy analysis and cross-database search. It

comprises the manually annotated UniProtKB/Swiss-Prot section and

the automatically annotated UniProtKB/TrEMBL section.

(ii) UniProt Reference Clusters (UniRef) offers speed similarity searches

through sequence space compression by combining closely correlated

sequences into a single record.

(iii) UniProt Archive (UniParc) stores all publicly available protein

sequences, including their history and links to the source databases.

The UniProt is maintained collaboratively by the SIB and the EBI. Other annotated

protein sequence databases are Experimentally Verified Protein Functions (EXProt;

http://www.cmbi.kun.nl/EXProt/), Protein Research Foundation (PRF;

http://www.prf.or.jp/en/), and Transporter Classification Database (TCDB;

http://www.tcdb.org/).

The most systematic protein sequence annotation is carried out by the

UniProt. The protein sequences in the UniProt undergo three major phases of

annotation as shown in Figure 2.3. The process starts when the wet-lab researchers

submit their nucleotide sequence to the European Molecular Biology Laboratory

(EMBL). A similarity analysis including search for protein domains and the coding

sequence (CDS) expected should be determined by the wet-lab researcher. Secondly,

the CDS is translated into protein sequence. The protein sequence is then annotated

automatically and stored in the UniProtKB/TrEMBL. The automated annotation is

performed using automatically generated rules as in Spearmint [7] or manually

curated rules based on protein families, including PIRSF classification-based name

rules and site rules [8], HAMAP family rules [9], and RuleBase rules [10]. The

UniProtKB/TrEMBL also received nucleotide sequences from GenBank

(http://www.ncbi.nlm.nih.gov/Genbank/) and DNA Data Bank of Japan (DDBJ;

http://www.ddbj.nig.ac.jp/) and protein sequences extracted from the literature or

directly sent to the UniProtKB/Swiss-Prot. Thirdly, protein sequences in the

UniProtKB/TrEMBL are selected for full manual annotation and consolidation into

 14

the UniProtKB/Swiss-Prot. The manual annotation is done by biologists and is based

on literature curation and sequence analysis. The manual annotation procedures were

described in detail by Apweiler et al. [11]. Further explanation of the annotation

processes in the UniProt can be found in [12], [13].

Phase 1: Nucleotide
sequence submission

Phase 2: Automated
annotation

Phase 3: Manual
annotation

UniProtKB/
TrEMBL

UniProtKB/
Swiss-Prot

Wet-lab

Dry-lab

Figure 2.3: Phases of protein sequence annotation in the UniProt.

Lately numerous methods have been proposed for automated protein

sequence annotation. These methods can essentially be divided into four main

categories as follows:

(i) Sequence-similarity-based method depends on the determination of a

local or global similarity between the not-yet annotated protein

sequence and protein sequences with known annotation. This method

uses sequence similarity search algorithms such as Smith-Waterman

and Needleman-Wunsch algorithms. Examples of works have been

carried out by Snyder et al. [14] and Koski et al. [15].

(ii) Controlled-vocabulary-based method employs the most widely used

biological ontology, the GO along with its annotation databases to

annotate protein sequence such as studies done by Jones et al. [16]

and Prlic et al. [17].

(iii) Literature-based method relies on natural language processing and

text mining techniques to extract information from the biomedical

 15

literature as evidence to annotate protein sequence. Some recent

studies have been conducted by Yuan et al. [18] and Chiang and Yu

[19].

(iv) Rule-based method annotates protein sequence based on condition

and existence of certain rules. The rules are created according to

information extracted from the secondary databases. This method has

been applied by Sigrist et al. [20] and Yu [21].

2.3 The Gene Ontology

The GO project started in 1998 by collaboration between three model

organism databases: FlyBase (http://flybase.bio.indiana.edu/), Saccharomyces

Genome Database (SGD; http://www.yeastgenome.org/), and Mouse Genome

Informatics (MGI; http://www.informatics.jax.org/). Currently, databases

participated in the GO project covers model organisms like Arabidopsis thaliana,

Caenorhabditis elegans, Danio rerio, Dictyostelium discoideum, Oryza, Rattus

norvegicus, and several protozoan parasites including Leishmania major,

Plasmodium falciparum, and Trypanosoma brucei. The GO project is developed and

maintained by the GO Consortium. The GO Consortium is currently formed by 16

entities such as EBI, University of Cambridge, University of California Berkeley,

The Jackson Laboratory, Stanford University, and Princeton University. The GO is

one of the ontologies that take part in the Open Biomedical Ontologies (OBO;

http://obo.sourceforge.net/). The OBO is an umbrella project providing well-

structured controlled vocabularies that are freely available and can be used across

different biological and medical domains.

The goal of the GO project is to construct a well defined and standardized

vocabulary for describing the roles of genes and gene products in any organism, even

if the cell is evolving and their roles in the cells are changing. The purposes of

producing the controlled vocabularies are to manage different names for the same

 16

concepts existing in various species, to support cross-species comparison and cross-

databases search, and to assist annotation of vast amounts of biological data held in

genome and protein databases. The main concept used in the development of the GO

is ontology. The ontology is an explicit description of a domain. The ontology is

created to define common vocabulary and to share common understanding of the

meaning of any vocabulary used. The ontology has been developed in many fields

such as chemical process engineering [22], ecoinformatics [23], and multimedia [24].

The ontology has also been implemented to solve various problems related to

semantic web search [25], verification of conceptual models [26], and database

integration [27].

The GO comprises three sub-ontologies as shown in Figure 2.4. The cellular

component describes locations that refer to the place in the cell where a gene product

is active like “cytoplasm” (GO:0005737). The biological process describes biological

goals contributed by the gene or gene product such as “cell cycle” (GO:0007049).

Finally, the molecular function describes activity of a gene product at the molecular

level, an example includes “protein kinase activator activity” (GO:0030295). The

vocabulary of the GO is called term. Each GO term is related to its parent either via:

an “is-a” relationship like “intracellular part” (GO:0044424) is a “cell part”

(GO:0044464); or a “part-of” relationship such as “intracellular part” (GO:0044424)

is part of “intracellular” (GO:0005622). The properties of the GO term are depicted

in Figure 2.5. Each gene product associated to the GO term is supported by an

evidence code and a specific reference. For example, an association between gene

product “easily shock” (eas; FBgn0000536) and GO term “mechanosensory

behavior” (GO:0007638) is supported by an evidence code of Inferred from Mutant

Phenotype (IMP) and a literature reference PMID:7932299 from PubMed

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed). The evidence codes

and its description can be found at http://www.geneontology.org/GO.evidence.shtml.

The association of gene products to the GO terms is provided by GOA

(http://www.ebi.ac.uk/GOA/). The GOA had successfully annotated proteins in the

UniProtKB from a variety of species to the GO terms [28].

 17

GO term

Gene product

biological
process

(GO:0008150)
cellular

component
(GO:0005575)

molecular
function

(GO:0003674)

all

cell
(GO:0005623)

cell part
(GO:0044464)

intracellular
(GO:0005622)

intracellular
part

 (GO:0044424)

cytoplasm
(GO:0005737)

cellular
process

(GO:0009987)

cellular
physiological

process
(GO:0050872)

physiological
process

(GO:0007582)

cell cycle
(GO:0007049)

enzyme regulator
activity

(GO:0030234)

enzyme
activator
activity

(GO:0008047)

kinase
regulator
activity

(GO:0019207)

kinase
activator
activity

(GO:0019209)

protein kinase
regulator
activity

(GO:0019887)

protein kinase
activator activity
(GO:0030295)

RIKEN cDNA 1190002H23 gene
(1190002H23Rik; MGI:1913464)

“is-a” relationship

“part-of” relationship

association

Figure 2.4: The GO sub-ontologies

Figure 2.5: The properties of the GO term. For example, the “mechanosensory behavior” (GO:0007638) and part of its gene product association.

(1) Name : mechanosensory behavior
(2) Accession number : GO:0007638
(3) Ontology category : biological process
(4) Synonyms : exact: behavioral response to mechanical stimulus
 exact: behavioural response to mechanical

stimulus
 exact: mechanosensory behaviour
(5) Definition : Behavior that is dependent upon the sensation of a

mechanical stimulus. [source: GOC:go_curators]
(6) Comment : None
(7) Term lineage :
 all : all
 (is-a) GO:0008150 : biological_process
 (is-a) GO:0050896 : response to stimulus
 (is-a) GO:0007610 : behavior
 (is-a) GO:0007638 : mechanosensory behavior
 (is-a) GO:0009628 : response to abiotic stimulus
 (is-a) GO:0009612 : response to mechanical stimulus
 (is-a) GO:0007638 : mechanosensory behavior
 (is-a) GO:0009605 : response to external stimulus
 (is-a) GO:0009612 : response to mechanical stimulus
 (is-a) GO:0007638 : mechanosensory behavior
(8) Database (external) references :
 SP_KW
 KW-0213 Dejerine-Sottas syndrome

(9) Gene product associations :

No. Name/Symbol Information Evidence Reference Assigned by
1 bas gene from Drosophila IMP PMID:7932299 FlyBase
 bang-sensitive melanogaster
2 bss gene from Drosophila IMP PMID:7932299 FlyBase
 bang senseless melanogaster
3 E(sda)A gene from Drosophila IMP PMID:12454073 FlyBase
 melanogaster
4 E(sda)D gene from Drosophila IMP PMID:12454073 FlyBase
 melanogaster
5 E(sda)F gene from Drosophila IMP PMID:12454073 FlyBase
 melanogaster
6 E(sda)J gene from Drosophila IMP PMID:12454073 FlyBase
 melanogaster
7 E(sda)O gene from Drosophila IMP PMID:12454073 FlyBase
 melanogaster
8 e(sei) gene from Drosophila IMP PMID:2440763 FlyBase
 enhancer of melanogaster
 seizure
9 eas gene from Drosophila IMP PMID:7932299 FlyBase
 easily shocked melanogaster
10 Etv1 gene from Mus IMP PMID:10850491 MGI
 ets variant musculus
 gene 1
11 Etv1_predicted gene from Rattus ISS RGD:1580654 RGD
 est variant norvegicus
 gene 1
 (predicted)

18

19

The size of the GO data (as of January 2007) is shown in Table 2.1. The GO

data is stored in the following database categories:

(i) termdb is a database that contains information on the GO terms and

relationships only.

(ii) assocdb is a database which subsumes data in the termdb and addition

with associations between the GO terms and gene products.

(iii) seqdb is a database containing protein sequences that associate with

gene products and all data in the assocdb.

(iv) seqdblite is a database which is same as seqdb, except all Inferred

from Electronic Annotation (IEA) evidence associations have been

taken out.

The GO data is in OBO, OWL, RDF/XML, and MySQL formats. The OBO and

OWL formats are available just on the termdb. The MySQL format can be

downloaded on all database categories. Meanwhile, the RDF/XML format comes

without protein sequences and IEA evidence associations.

Table 2.1: Size of the GO data.

Item No. of records
GO terms 22,954
Definitions of GO terms 22,086
Synonyms for GO terms 20,797
Relationships between GO terms 35,006
All paths in GO graph 1,970,267
External database identifier entities 5,833,963
Links from GO terms to other databases 92,670
Gene products 2,498,910
Synonyms for gene products 330,752
Link between gene product and GO term 10,380,867
Gene product counts per GO term 550,392
Evidence type and reference for an association
between gene product and GO term 11,866,795

External database links for an association between
gene product and GO term 11,436,198

Protein sequences 2,310,180
Link between gene product and protein sequence 2,315,391
External database links for a protein sequence 21,761,312
Species 268,435

 20

The GO has been used in many applications including gene expression

studies [29], proteomics studies [30], comparative genomics [31], and data and text

mining [32]. This is due to characteristics of the GO that the data is continuously

evolved and refined, the structure is simple and relatively easy to understand and use,

direct input from the biological community, and active curation to sustain the quality

and integrity of data. Detail discussion about GO can be found in [33]–[39].

2.4 Automatic Clustering Algorithms

Automatic clustering is a process of dividing a set of elements into unknown

clusters, where the best number k of clusters is determined by the clustering

algorithm. That is, elements within each cluster should be highly similar to each

other than to elements in any other cluster. Finding the k automatically is a hard

algorithmic problem. The automatic clustering problem can be defined as follows:

“Let X = {X1, X2, …, Xn} be a set of n element. These elements are clustered

into non-overlapping clusters C = {C1, C2, …, Ck}, where C is called a

cluster, k is the unknown number of clusters, Ci ∩ Cj = Ø for i ≠ j, C1 ∪ C2 ∪

… ∪ Ck = X, Ci ⊆ X, and Ci ≠ Ø.”

The clustering problem is omnipresent in many fields of science and

engineering. It has been solved by various techniques such as k-means [40], genetic

algorithm [41], self-organizing map [42], fuzzy c-means [43], and particle swarm

optimization [44]. Survey of clustering techniques can be found in [45]–[47].

Recently, the increasing amount of data has made the number k of clusters difficult to

guess, and the value supplied by the user based on prior knowledge, presumptions,

and practical experiences is often inaccurate. Therefore, reasonable ways of

identifying the number k of clusters automatically is required to avoid trial-and-error

work. Lately, several techniques have been proposed to determine the number k of

clusters. Most of the techniques are wrapped around k-means or genetic algorithm.

Split and/or merge rules are the most famous wrapper methods to increase or

 21

decrease the number k of clusters while the algorithm continues. Among these

techniques are:

(i) X-means [48]; in this the splitting decision is performed by computing

the Bayesian Information Criterion (BIC) until the upper bound of k is

attained.

(ii) G-means [49]; it starts with small number of k-means centers and

raises the number of centers using Gaussian distribution.

(iii) CLUSTERING [50]; it is an automatic clustering based on heuristic

strategy that uses the nearest neighbor to group those data that are

situated close to one and another. Then, genetic algorithm is used to

group the smaller clusters into larger ones.

(iv) S+G [51]; it is also a two stage method, which in the beginning uses a

self-organizing feature map to determine the number k of clusters and

then employs a genetic algorithm based clustering to find the final

solution.

In the GO context, the GO terms are structured as DAG. Let GO graph G =

{V, E}, where V is a set of nodes that represent the GO terms and E is a set of

directed edges that represent relationships between the GO terms. Partitioning the

GO graph in order to cluster the GO terms can be considered as a Graph Partitioning

Problem (GPP). The aim of GPP is to cut a vertex set V into k disjoint and non-empty

subsets such that the number of edges connecting nodes in different subsets is

minimized and the number of edges connecting the nodes in the same subsets is

maximized. GPP is a fundamental combinatorial optimization problem that has

numerous practical applications in many areas including design of Very Large Scale

of Integration (VLSI) circuits [52], mesh partitioning in parallel processing [53],

image segmentation in computer vision [54], and gene expression analysis in

bioinformatics [55]. An extensive study of Kerninghan-Lin algorithm, simulated

annealing, tabu search, watermarking, and normalized cut have been carried out by

[56]–[59], [54] respectively to solve the GPP. Review of the GPP techniques can be

found in [60], [61]. Several studies using genetic algorithm for the GPP have also

been done by:

(i) Bui and Moon [62] introduced a schema of preprocessing phase

before the initialization of population to ameliorate the quality of the

 22

chromosome. The different classes of graphs: random graph, random

geometric graph, random regular graph, and caterpillar graph

consisting of 134 to 5,252 nodes, were tested with the algorithm.

(ii) Kaveh and Bondarabady [63] implemented genetic algorithm for

finite element decomposition of 1,640 to 6,720 elements. Sequences

of coarsening and uncoarsening process are performed to transform

the large scale graph G0 into a smaller size graph Gn and vice versa

such that a suitable size of graph can be partitioned by genetic

algorithm.

(iii) Kohmoto et al. [64] has incorporated simulated annealing into genetic

algorithm to generate feasible solutions. The algorithm is then applied

to undirected graph with 124 to 250 nodes.

For the ontology clustering, very little effort has been done in this area.

Stuckenschmidt and Klein [65] have proposed a method for automatic clustering of

large ontologies based on the structure of the class hierarchy. The method consists of

three steps:

(i) In the first step, a dependency graph is created from ontology source

file using PROLOG-based tool that reads OWL and RDF schema

files. It then displays the dependency graph using networks analysis

tool Pajek.

(ii) In the second step, the strength of the dependencies between the

concepts in the dependency graph is determined by computing the

propositional strength network.

(iii) In the third step, an island algorithm is used to determine the modules

existing in the dependency graph.

 23

2.5 Semantic Similarity Searching Algorithms

Ontology is a description of concepts in a domain and the relationships

between the concepts. Ontology can be represented as a directed graph. The ontology

graph comprises the concepts including the descriptions as nodes and semantic

relationships as edges. Recently, there has been growing development of ontology in

the bioinformatics field such as Sequence Ontology [66], Cell Ontology [67],

Chemical Ontology [68], Multiple Alignment Ontology [69], Biodynamic Ontology

[70], and Protein-Interactions Ontology [71]. However, the “ontology searching”,

which refers to the activity of retrieving concepts in the ontology graph, is not

accurately performed by the traditional search engines that are based on keywords.

These search engines neglect the semantic relationships between the search concepts

and only consider those concepts as character strings. Thence, a mechanism to

measure the similarity between concepts in the ontology graph is required to reduce

dependency of specialists of a certain domain to input relevant concepts as search

words.

There are numerous search techniques that are frequently and extensively

used in computer science, engineering, mathematics, and other fields such as:

(i) Tabu search is a local search technique. It uses a local or

neighborhood search procedure to repetitively move from a solution x

to a solution x' in the neighborhood of x, until termination criterion is

satisfied. Examples of application include flow shop problem [72] and

facility location problem [73].

(ii) Simulated annealing is a global optimization technique that is based

on probabilistic methods. It traverses the search space by producing

neighboring solutions of the current solution. The simulated annealing

has been applied in flexible manufacturing system [74] and

heterogeneous distributed system [75].

(iii) Genetic algorithms are a global search heuristics. These algorithms

work by seeking potential solutions and evaluating them. The best

solutions are modified to form a new population. This operation is

repeated until no better solutions are generated. The genetic

 24

algorithms have solved various problems such as nurse rerostering

problem [76] and personnel assignment problem [77].

(iv) Ant colony optimization is a population-based technique that tries

numerous solution options at each step of the algorithm. The ant

colony optimization is inspired by the behavior of ants in discovering

routes from the colony to food. It has been applied in water

distribution system [78] and solved the nonlinear resource allocation

problem [79].

Other techniques include particle swarm optimization [80], hill climbing [81], and

cross-entropy method [82]. A detailed comparison among these techniques can be

found in [83]–[85].

In the case of semantic similarity search, researchers have used different

measures to identify similarity between two concepts being compared. Lately,

several new semantic similarity measures have been introduced such as:

(i) Edge-similarity measure [86] is applied to varying image illumination

and contrast.

(ii) Quantitative tract similarity measure [87] is based on the shape and

length of the two tracts being analyzed to improve image

segmentation reproducibility.

(iii) Trainable similarity measure [88] applied the matching-pursuit

approach for road-sign classification.

(iv) Clip-based similarity measure [89] is based on two bipartite graph

matching algorithms (maximum matching and optimal matching) for

video retrieval and video summarization.

(v) Spectral similarity measures [90] consist of four spectral measures

(spectral angel measure, Euclidean distance measure, spectral

correlation measure, and spectral information divergence) for the

analysis of hyperspectral imagery.

Other semantic similarity measures are: Chen et al. [91] has proposed fuzzy

similarity measure for distorted fingerprints matching; and Lee and Crawford [92]

and Moghaddam et al. [93] have created Bayesian similarity measure for image

segmentation and image matching respectively. Evaluation of different semantic

similarity measures have been done by Skerl et al. [94] for rigid registration of

 25

medical images and Núñez et al. [95] on improving case-based reasoning for

environmental decision support systems.

On the other hand, for the GO, semantic similarity search is required in order

to search for semantically similar GO terms and to reduce dependency on the

specialists. Thence, it avoids the users from investing lots of time browsing the GO

terms. However, this approach involves computing the amount of information the

GO terms share in common and/or calculating the depth and the local network

density of the GO term. This scenario becomes complicated since the GO terms are

structured as a DAG and searching the GO graph is an NP-complete problem. By

contrast, the existing GO browsers to support basic needs for scientists to search the

GO terms are still using conventional approach which is based on keyword matching.

Thus, for a scientist to find a group of GO terms that have semantically similar

properties is time consuming and a hard task. A list of tools for searching and

browsing the GO terms can be found at http://www.geneontology.org/GO.tools.

browsers.shtml. All these tools are free to academics, among them are:

(i) CGAP GO Browser is developed by The Cancer Genome Anatomy

Project. It allows the user to browse the GO terms using the hierarchy

view and find the known human and mouse genes assigned to each

term. This tool can be used at http://cgap.nci.nih.gov/Genes/

GOBrowser/.

(ii) GOFish is created using Java applet by the Roth Laboratory at the

Harvard University. It uses term name or accession number as an

input and then performs keyword matching. This tool allows the user

to construct arbitrary Boolean queries using GO terms, and ranks gene

products that satisfy the queries. The GOFish can be found at

http://llama.med.harvard.edu/software.html.

(iii) Ontology Lookup Service is provided by the EBI. It is based on

partial keyword search. As the users types into the search box, they

will see recommended terms that match what are being entered in the

list box. This tool was developed to merge all publicly available

biomedical ontologies into a single database. It can be viewed at

http://www.ebi.ac.uk/ontology-lookup/.

 26

Other browsers are AmiGO (http://godatabase.org/), EP GO Browser

(http://ep.ebi.ac.uk/EP/GO/), QuickGO Browser (http://www.ebi.ac.uk/ego/),

GenNav Browser (http://mor.nlm.nih.gov/perl/gennav.pl), and MGI GO Browser

(http://www.informatics.jax.org/searches/GO_form.shtml).

2.6 Protein Sequence Annotation Tools

Bioinformatics is the application of computer technology to store, retrieve,

analyze, simulate, or predict the composition or the structure of biomolecules. It

involves the development of algorithms and statistical techniques, databases, and

tools. The bioinformatics tools should be developed using open source and web

technologies. Therefore, these tools can be distributed freely and used extensively by

the bioscientists. However, an excellent tool should be easy to be setup and used, can

be run on low-cost hardware, and requires a short execution time.

Recently, a number of bioinformatics tools have been developed for protein

sequence annotation based on the GO. These tools are:

(i) Blast2GO employs BLAST to find homologous sequences to Fast

Alignment (FASTA) formatted input protein sequences. The

Blast2GO extracts the GO terms for each found hit by mapping to

existing annotation associations. An annotation rule finally assigns

GO terms to the query protein sequence. This tool can be accessed at

http://bioinfo.ivia.es/blast2go/. It is maintained by the Centro de

Genómica at the Instituto Valenciano de Investigaciones Agrarias.

(ii) GoAnna can be applied for protein sequence annotation using a

sequence similarity search. This tool accepts a list of protein

sequences in FASTA format. The GoAnna conducts BLAST search

against AgBase databases or GO annotated databases like

UniProtKB/Swiss-Prot and UniProtKB/TrEMBL. This tool is

developed by the Mississippi State University and can be used at

 27

http://agbase.msstate.edu/GOAnna.html.

(iii) HT-GO-FAT provides the bioscientists with a high-throughput

mapping of unknown protein sequence to GO annotation. It uses

BLAST for sequence similarity search. The HT-GO-FAT can be

downloaded from http://liru.ars.usda.gov/mainbioinformatics.html.

This tool is developed by the Livestock Issues Research Unit at the

United States Department of Agriculture (USDA) Agricultural

Research Service.

(iv) InGOt is capable to assign up-to-date GO terms to a given protein

sequence. The InGOt claims to have more sequences than any public

resource and assignments harvested from the broadest possible GO-

linked resources. It is proprietary software by Inpharmatica Ltd. A

free two week trial of this tool can be downloaded at

http://www.inpharmatica.co.uk/ingot/.

Other GO-based protein sequence annotation tools are: GOPET is addressable via

http://genius.embnet.dkfz-heidelberg.de/menu/biounit/open-husar/, and it has been

developed by the German Cancer Research Center; GOtcha (http://www.compbio.

dundee.ac.uk/gotcha/gotcha.php) by the Barton Group at the University of Dundee;

GoFigure (http://udgenome.ags.udel.edu/gofigure/) is under the UDGenome project

by the University of Delaware; GOblet (http://goblet.molgen.mpg.de/) is introduced

by the Max Planck Institute for Molecular Genetics; and lastly JAFA

(http://jafa.burnham.org/) is maintained by the Burnham Institute for Medical

Research.

In parallel, several works using computational intelligence techniques for

protein sequence annotation have also been done by:

(i) Kirac et al. [96] introduced a data mining technique that calculates the

probabilistic relationships between the GO annotations of proteins on

protein-protein interaction data. Then, it assigns highly associated GO

terms of annotated proteins to the target protein sequence.

(ii) Ray and Craven [97] built a system to annotate a given protein

sequence with codes from the GO using the text of an article from the

biomedical literature as evidence. This system relies on statistical

techniques namely the n-gram models and the Naïve Bayes models.

 28

(iii) Ponomarenko et al. [98] shows how protein sequence annotation can

be improved and corrected if protein structures are available. They

used the combinatorial extension algorithm to compare the structure.

Then, it widens the protein annotation provided by the GOA to further

annotate the protein sequences in the Protein Data Bank (PDB;

http://www.rcsb.org/pdb/).

There are also varieties of protein sequence annotation tools that have been

developed without depending on the GO data such as FeatureMap3D

(http://www.cbs.dtu.dk/services/FeatureMap3D/), KOBAS (http://kobas.cbi.pku.edu.

cn/), MineBlast (http://leger2.gbf.de/cgi-bin/MineBlast.pl), ProtoBee (http://www.

protobee.cs.huji.ac.il/), and ProFAT (http://cluster-1.mpi-cbg.de/profat/).

2.7 Trends and Tendencies

Protein sequences are stored in a database called primary database. The

primary database provides a source for the prediction of structure, homology, and

function of a protein. The primary databases are divided into protein sequence

repositories such as NCBI Entrez Protein and RefSeq and annotated protein sequence

databases such as UniProt and EXProt. The annotated protein sequence databases

provide non-redundant set of protein sequences with additional information

compared to the protein sequence repositories. The most systematic protein sequence

annotation is done by the UniProt which involves three major phases: similarity

analysis of the submitted nucleotide sequence, translation into protein sequence and

automated annotation, and manual annotation for verification. Currently for

automated annotation, four methods have been identified: sequence-similarity [14],

controlled-vocabulary [16], literature [18], and rule [20] -based methods. Lately, the

controlled-vocabulary-based method using GO has been widely applied to annotate

protein sequences. This is because the GO data constantly evolves and it is publicly

available, well defined and a consistent biological terminology, and associated with a

large number of gene products that are supported by citation and evidence.

 29

In the case of splitting the monolithic GO RDF/XML file, the process can be

regarded as GPP. Several works done by [62]–[64] have shown that the GPP can be

efficiently solved by genetic algorithm. Furthermore, algorithms such as

CLUSTERING [50] and S+G [51] have shown that genetic algorithm can be

combined with other algorithms to find the number k of clusters automatically.

However, applications of genetic algorithm to split the monolithic GO RDF/XML

file is not easy since very little work has been done in ontology clustering as

references. Another focus of this study is to perform semantic similarity searching on

the GO terms. Currently, most of the GO browsers such as AmiGO and GOFish are

based on keyword matching. On the other hand, existing searching algorithms such

as genetic algorithm are not capable of executing the task alone. Therefore, a suitable

semantic similarity measure for ontology searching is required to combine with the

genetic algorithm. However, most of the existing semantic similarity measures [86]–

[95] are specifically designed for image segmentation and image matching. Lastly,

although most of the protein sequence annotation tools such as GoAnna and HT-GO-

FAT are publicly available via the internet, yet they depend on BLAST to perform

sequence similarity that requires high computing power and high implementation

cost especially for offline usage. Therefore, a simple and practical tool that is easy to

be configured with low computing cost needs to be developed.

2.8 Summary

This chapter gives broad review of basic concepts of the protein sequence,

protein sequence databases, and processes involved in the protein sequence

annotation for better understanding of the nature of the problems, together with

explanation about GO including its properties, characteristics, and applications. This

chapter also presents related algorithms for clustering, automatic clustering, GPP,

and ontology clustering including algorithms for searching, semantic similarity

searching, and protein sequence annotation. Reviews of GO browsers and protein

sequence annotation tools are also presented in this chapter.

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction

One of the advantages of the GO terms is that it can cope with synonyms and

can describe biological function. Furthermore, the GO terms are linked with

approximately 10.38 million associations, 2.50 million different gene products, and

with the largest set covering around 2.31 million protein sequences from 0.27 million

species. Thence, specific protein sets can easily be compared with respect to

common functional features [30], [99], protein databases such as MiGenes [100] and

PA-GOSUB [101] can be explored through complicated queries, and large-scale

protein database can simply be annotated [28], [102] based on the GO terms.

However, direct use of the GO terms to annotate protein sequences is not easy,

especially from small sequencing projects or for species not commonly represented

in biological databases. Furthermore, for small group of scientists with little

computational background or without appropriate facilities it is a tedious task to

annotate those protein sequences. Therefore, in Section 3.2, we present the

framework of the study that discusses the development of the extended UTMGO

including its basic version for browsing the GO terms. The framework also discusses

the intelligent algorithms of the extended UTMGO: the genetic split-merge algorithm

and the genetic similarity algorithm that are used to split the monolithic GO

RDF/XML file and to search a group of semantically similar GO terms respectively.

 31

The data sets used as well as the instrumentation and analysis of the results of the

algorithms and tools are also discussed in Sections 3.3 and 3.4 respectively.

3.2 Framework of the Study

The framework of the study involved three main phases namely the ontology

clustering phase, the ontology searching phase, and the bioinformatics tool

development phase as depicted in Figure 3.1.

Monolithic GO
RDF/XML file

Phase 1: Ontology clustering
using genetic split-merge algorithm

Phase 2: Ontology searching
using genetic similarity algorithm

GO RDF/XML
file 1

GO RDF/XML
file 2

GO RDF/XML
file n

Phase 3: Bioinformatics tool development

Developing GO
browser named
basic UTMGO

Developing protein
sequence annotation tool
named extended UTMGO

Figure 3.1: The framework of the study.

In the ontology clustering phase, the genetic split-merge algorithm is formed

to cluster the GO terms. The aim is to split the monolithic GO RDF/XML file into a

 32

number of smaller files. The genetic split-merge algorithm is a combination of

parallel genetic algorithm and split-and-merge algorithm. The detail about genetic

split-merge algorithm is discussed in Chapter 4. The genetic split-merge algorithm

can be summarized as follows:

(i) Initialization of a population of chromosomes where alleles for each

chromosome show the cluster number and loci represent the GO terms

accession number.

(ii) Evaluate the fitness of each chromosome.

(iii) Select chromosomes for reproduction using the roulette wheel

selection scheme.

(iv) Apply partial match crossover and swap mutation operators.

(v) Replace the least fit chromosomes in the existing population by the

newly generated offspring.

(vi) Repeat steps (ii)–(v) until the stopping criteria are met.

The inputs for the genetic split-merge algorithm are the GO graph and the minimum

number k of clusters specified by the user. This algorithm returns the best

chromosome representing a k number of good clusters. The genetic split-merge

algorithm is capable of automatically identifying the number k of clusters, producing

balanced clusters in terms of number of elements in each cluster, requires reasonable

amount of processing time, and generates good clusters.

In the ontology searching phase, the genetic similarity algorithm is developed

to perform semantic similarity search. The idea is to find a group of semantically

similar GO terms for a given query GO term. The genetic similarity algorithm

incorporates semantic similarity measure algorithm in the parallel genetic algorithm.

A comprehensive discussion of the genetic similarity algorithm is done in Chapter 5.

The genetic similarity algorithm can be summarized as the following steps:

(i) Perform preprocessing using the semantic similarity measure

algorithm.

(ii) Initialization of a population of chromosomes where alleles for each

chromosome show either the GO terms are retrieved or not retrieved

and loci represent the GO terms accession number.

(iii) Evaluate the fitness of each chromosome.

(iv) Select chromosomes for reproduction using the roulette wheel

 33

selection scheme.

(v) Apply two-point crossover and swap mutation operators.

(vi) Replace the least fit chromosomes in the existing population by the

newly generated offspring.

(vii) Repeat steps (iii)–(vi) until the stopping criteria are met.

The inputs for the genetic similarity algorithm are the GO graph and the query GO

term. This algorithm returns the best chromosome representing a group of GO terms

that are semantically similar to the query GO term. The genetic similarity algorithm

is susceptible of returning the GO terms whose names do not have keywords similar

to the name of the query GO term has. Furthermore, it is able to avoid producing

many GO terms with low term similarity score and can be executed in a short time.

In the bioinformatics tool development phase, the basic UTMGO is

developed using web technology. The main goal of this tool is to act as a new way to

search the GO terms. The basic UTMGO has shown its capability to determine the

semantically similar GO terms as compared to other keyword-based GO browsers.

This is due to the effectiveness of the genetic split-merge algorithm and the genetic

similarity algorithm. The potential of this tool has been broadened to annotate protein

sequences. The tool named extended UTMGO is able to return a set of GO terms

together with their associated protein sequences that have higher sequence alignment

score to the query protein sequence. This feature allows bioscientists to annotate

protein sequences by only using the GO terms and its properties. Thus, it prevents

dependency on BLAST, RDBMS, various sources of data, and high-cost and high-

specification hardware unlike other protein sequence annotation tools. The basic and

extended UTMGO are described in Chapter 5 and 6 respectively.

3.3 Data Sources

The GO data used in this study is in RDF/XML format which can be

downloaded from http://archive.godatabase.org/. The data is compressed in a GZIP

 34

file named go_YYYYMM-assocdb.rdf-xml.gz. In Chapter 4, all GO data in the

RDF/XML format is used to test the genetic split-merge algorithm. However, to

include protein sequences and IEA evidence associations into the smaller GO

RDF/XML files, these data are taken from the MySQL format. The GO data in the

MySQL format is stored in a file named go_YYYYMM-seqdb-tables.tar.gz. In

Chapter 5, the basic UTMGO and the genetic similarity algorithm use 250 GO terms

as the query GO terms. These terms are selected randomly which comprise 8% from

cellular components, 56% from biological processes, and 36% from molecular

functions. In the meantime, to assess the performance of the extended UTMGO for

annotating protein sequences, 50 protein sequences are selected randomly as the

query protein sequence from each species as follows:

(i) Oryza sativa ssp japonica from the Gramene database

(http://www.gramene.org/Oryza_sativa/index.html).

(ii) Homo sapiens is obtained from the Ensembl database

(http://www.ensembl.org/Homo_sapiens/index.html).

(iii) Saccharomyces cerevisiae from the SGD database.

(iv) Arabidopsis thaliana is downloaded from the TAIR database (The

Arabidopsis Information Resource; http://www.arabidopsis.org/).

3.4 Instrumentation and Results Analysis

All experiments are run on a 25-node low-cost PC cluster with 2.8GHz

Pentium IV of processor, 512MB of memory, and 100Mbps of network speed. The

low-cost PC cluster is based on island (coarse-grained) model and it is implemented

using MPICH2 libraries (http://www-unix.mcs.anl.gov/mpi/mpich/). The operating

system used is Fedora Core 5. The genetic algorithm adopted in this study is an

enhancement of the GAlib C++ libraries (http://lancet.mit.edu/ga/). The interface for

the basic and extended UTMGO are developed using Java Server Pages (JSP) scripts.

 35

In Chapter 4, four comparisons are presented to evaluate the performance of

the genetic split-merge algorithm. The comparison includes results analysis of

different number of processors of the low-cost PC cluster used to run the genetic

split-merge algorithm, different fitness functions of the genetic split-merge

algorithm, and comparison between genetic split-merge algorithm and other

clustering and automatic clustering algorithms. In Chapter 5, the results of the

genetic similarity algorithm are analyzed with different semantic similarity measure

and different combinations of parameters α and β for depth and local network density

factors respectively. Whereas, different semantic similarity and keyword-based GO

browsers are used to analyze the results of the basic UTMGO. The results analysis of

different number of processors of the low-cost PC cluster used to run the basic

UTMGO and the genetic similarity algorithm as its intelligent engine are also

presented in Chapter 5. Lastly, in Chapter 6, the results of the extended UTMGO

have been analyzed with other GO-based protein sequence annotation tools. The

expert and the system that are related to Equation 5.15 and 5.16, discussed in Section

5.6 and 6.4, refer to a biologist who has knowledge of the GO and protein sequence

annotations and the basic and the extended UTMGO, respectively. The results in this

study have been validated by the GO Consortium. Some publications of the study

have also been included in the GO bibliography (http://www.geneontology.org/cgi-

bin/biblio.cgi).

3.5 Summary

 The framework of this study has been presented in this chapter to solve the

macro (application) and micro (research) problems. However, in the following

chapters, we are going to present more details of the techniques for splitting the

monolithic GO RDF/XML file, followed by techniques for finding a group of

semantically similar GO terms, and then developing the basic and extended

UTMGO.

CHAPTER 4

THE GENETIC SPLIT-MERGE ALGORITHM

FOR SPLITTING THE MONOLITHIC GENE ONTOLOGY RDF/XML FILE

4.1 Introduction

The GO is a collection of dynamic and standardized biological terms used to

annotate gene products in any organism. These biological terms are rich with

information such as definition, synonyms, external database references, association

with annotated gene products and their protein sequences that are provided by the

GOA, and relationships with other terms. The GO data is available in RDF/XML,

OBO/XML, OWL, and MySQL formats. The GO RDF/XML is created to allow the

GO data to be shared and reused across the WWW in a way that it can be interpreted

and processed by human and machine alike. The advantage is that, especially for

bioscientists, it obviates the need for manually importing the GO data into relational

database format every time it is updated. Thus, it prevents them from setting up the

database software. The GO RDF/XML has been used by numerous bioinformatics

tools such as WEGO [103], a tool for plotting GO annotation results; ErmineJ [104],

a tool for the functional analysis of gene sets in microarray gene expression data;

DynGO [105], a tool to search for a GO term and its association using batch and

semantic retrieval; and COBrA [106], a browser and editor for GO and OBO

ontologies that allows the user to make links between terms in those ontologies.

 37

Due to large amount of the GO data as shown in Table 2.1, protein sequences

and IEA evidence associations are not included in the GO RDF/XML file by the GO

Consortium. But still the astronomical size and massive nature of this single flat file

(current size is 472 MB) has caused the GO RDF/XML difficult to be maintained,

published, validated, and processed. An alternative way to make the GO RDF/XML

more complete, coherent, and easy to browse is to split it into multiple files. Thus, it

enables protein sequences and IEA evidence associations to be included in the

smaller GO RDF/XML files.

Splitting the GO RDF/XML file requires the GO terms to be grouped into a

number k of clusters. Since the GO terms are structured as DAG, let GO graph be G

= {V, E} that consists of two main elements: V is a set of nodes that represent the GO

terms and E is a set of edges that represent relationships between the GO terms.

Partitioning the GO graph is a combinatorial problem and can be regarded as a GPP.

The intention of GPP is to divide a vertex set V into k disjoint and non-empty subsets

in order to produce partitions that have higher degree of interaction between nodes in

the same partition and have lower degree of interaction between nodes in different

partitions. The task of partitioning the large GO graph that contains more than 22

thousand nodes and almost 2.0 million paths is characterized as bearing very high

computational complexity. Moreover, identifying the number k of clusters is a hard

algorithmic problem since it is difficult to guess, and it requires a trial-and-error

work.

This chapter is organized as follows. Section 4.2 gives related work on

clustering, automatic clustering, and GPP. Section 4.3 explains the proposed

algorithm to split the monolithic GO RDF/XML file. Section 4.4 describes the

testing environment and evaluation measures used in this chapter. Section 4.5

presents experimental results and discussion. Finally, the chapter summary is

provided in Section 4.6.

 38

4.2 Related Work

A large number of clustering algorithms have been proposed in the past

decade. Among the successfully implemented clustering algorithms are fuzzy logic,

e.g. fuzzy clustering by local approximation of membership [107] and fuzzy c-means

[108] for clustering DNA microarray data; support vector machines, e.g. clustering

support vector machines [109] for protein local structure prediction and support

vector clustering [110] for marketing segmentation; k-means, e.g. k-means range

algorithm [111] for personalized data clustering in e-commerce and greedy k-means

algorithm [112] for global gene trajectory clustering; and evolutionary algorithms,

e.g. hybrid-evolutionary-programming algorithms [113] for microbial growth studies

and genetic clustering [114] for clustering gene expression data. Other clustering

algorithms include hierarchical clustering [115], Bayesian clustering [116], profile

hidden Markov model [117], and self-organizing map [118]. There are also hybrid

clustering algorithms such as rough fuzzy c-means [119], rough k-means [120], and

evolutionary fuzzy c-means [121]. Comparison of clustering algorithms can be found

in [122]–[125].

For automatic clustering, several new algorithms have been developed

recently. Evolutionary clustering [126] employs merge and split mutation operators

to dynamically change the number k of clusters that is represented by the length of

the chromosome during the evolutionary process. This algorithm is specifically

developed to cluster gene expression microarray data. Laszlo and Mukherjee [127]

introduces genetic algorithm for evolving centers in the k-means. They exploit the

emersion of chromosomes with varying number of genes to simultaneously search

for a range of good clusters around the specified k. The algorithm has been tested

using benchmark data sets of traveling salesman problem. Hybrid niching genetic

algorithm [128] applies Selecting Factor Group (SFG) and Comparing Factor Group

(CFG). The SFG is used to encourage mating between chromosomes. Meanwhile,

the purpose of the CFG is to balance competition during substitution between

chromosomes with the same number of clusters and chromosomes with different

number of clusters. Three real data sets of iris, breast cancer, and subcellcycle are

used in the experiments.

 39

In another part, GPP has been studied by several researchers for different

sizes of graph. Aykanat et al. [129] has formulated adaptive object space

decomposition problem as a GPP. A tool named RM-MeTiS is developed to partition

the graph. This tool consists of three phases: multilevel coarsening, initial

remapping, and multilevel refinement. The largest graph consists of 109,744 nodes

and the experiments are conducted on a 28-node PC cluster. Duarte et al. [130] has

modeled image segmentation as a GPP. The GPP is resolved by a variant of

normalized cut using hierarchical social metaheuristic. The experiments involve the

largest graph with 11,155 nodes and 1,817,351 edges. Mitchell and Mancoridis [131]

has invented Bunch as a tool for modularization of software systems. This tool uses

search techniques and treats the clustering process as a GPP. It has been tested to the

largest graph with almost 10,000 nodes and 100,000 edges.

In genetic algorithm based clustering, a population with ps number of

chromosomes is randomly generated with every chromosome representing a solution.

The goodness of each chromosome is evaluated by a fitness function. Salim and

Mohemad [132] has introduced mean inter-cluster molecular dissimilarity measure to

calculate the fitness function as follows:

1 1
SM 2() 1

n n

ij
i j

T
f x

n
= == −
∑∑

, (4.1)

where represents the Tanimoto coefficient between cluster centroids and n is the

number of centroids. In the meantime, Garai and Chaudhuri [133] defines the fitness

function of a chromosome as follows:

ijT

GC inter intra
1 1

() () ()
k k

i i
i i

f x D C D C
= =

= −∑ ∑ B× , (4.2)

where represents intra-distance in cluster Cintra ()iD C i, represents inter-

distance of cluster C

inter ()iD C

i, and B represents the size of dataset.

 40

4.3 The Genetic Split-Merge Algorithm

 A genetic split-merge algorithm that combines parallel genetic algorithm with

split-and-merge algorithm is proposed to cluster the GO terms. The aim is to split the

monolithic GO RDF/XML file into a number of smaller files. The parallel genetic

algorithm is used because of its capability of being adaptive, efficient, robust, and a

global search method that is suitable to address a situation where the search space is

large. Moreover, parallel genetic algorithm optimizes its fitness function by utilizing

the genetic operators to find an optimal solution. It can also be executed on a low-

cost PC cluster using message passing interface libraries that are open source and

easy to install. The split-and-merge algorithm is implemented to improve infeasible

clusters in order to efficiently estimate the number k of clusters. Generally, the

genetic split-merge algorithm works by decomposing the GO terms into a number of

clusters and then automatically combines these clusters in several iterations until the

best number k of clusters is found. The genetic split-merge algorithm uses cohesion-

and-coupling metric to measure the goodness of the generated clusters. The genetic

split-merge algorithm is expected to be capable of automatically identifying the

number k of clusters, producing balanced clusters in terms of number of elements in

each cluster, requires reasonable amount of processing time, and generates good

clusters. The overview of the genetic split-merge algorithm is shown in Figure 4.1.

4.3.1 Chromosome Representation

 The GO graph is represented by a chromosome using 1D array of integers.

The chromosome is built in a way where gene represents the cluster number, loci

represents the node number, and the chromosome length represents the number of

nodes in the GO graph. This encoding scheme allows any size of graph to be easily

represented by the chromosome, increases the convergence velocity of the genetic

split-merge algorithm, and makes the gene values to be simply assigned and

 41

interpreted. An example of chromosome representation of GO graph with 12 nodes

and 3 clusters is shown in Figure 4.2.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Genetic-Split-Merge-Algorithm (G, kmin);
Input: G = {V, E} (a Gene Ontology graph) and kmin (a minimum number k
of clusters)
Output: C = (C1, C2, …, Ck) (a clustering)
begin
 t := 0;
 initialize ; // note that where and ()Pop t 1() { , , }t t

psPop t x x= … ()Pop t
tx are the population and chromosome for generation

t respectively and ps is the size of population
 evaluate ; ()Pop t
 while not termination-condition do
 t := t + 1;
 select from ()Pop t (1Pop t)− ;
 alter by crossover and mutation operators; ()Pop t
 alter by split and merge functions; ()Pop t
 evaluate ; ()Pop t
 end-while
end

Figure 4.1: The genetic split-merge algorithm.

4.3.2 Crossover and Mutation Operators

 Two classical and most often-used genetic operators, the crossover and the

mutation operators, are employed during the reproduction phase. These operators are

chosen since they work effectively with a chromosome that uses 1D array of integers

and a fitness function that is based on the cohesion-and-coupling metric. The

crossover operator performs a probabilistic process to create new offsprings by

combining features of their parents. The mutation operator also performs a

probabilistic process to modify one or more genes of each new offspring produced

from the crossover process. The reason for using these operators in the genetic split-

 42

merge algorithm is to generate new population with higher total fitness in each

generation.

12

1

2 3

4 5 6

7 8 9

10 11

C1

C2
C3

1 2 1 2 1 1 2
node
number

cluster
number

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] loci

3 3 233 genes

Figure 4.2: An example of chromosome representation.

4.3.3 Split and Merge Functions

 By adopting the split-and-merge algorithm, the k value in the chromosomes is

refined and fixed. After every reproduction by the genetic operators, each new

offspring goes through alteration process by the split function S(x) and then by the

merge function M(x). The transformation is based on a cluster-by-cluster basis by

making modification in a single chromosome (S(x), M(x): x → x′), which is then

evaluated by the fitness function fO(x′) (refer to Equation 4.8). Through these

 43

functions, chromosomes with best number k of clusters and high fitness are recreated

in each generation. Hence, it indirectly eliminates the process of producing solution

with unsuitable number k of clusters and accelerates the pace for convergence.

The main objective of the split function S(x) is to decompose each cluster in

chromosome x into reasonable fragmented clusters. This function works by creating

clone chromosomes 1
cx … c

nx from the chromosome x ∈ . For each cluster

C

()Pop t

1…Cp in the clone chromosome xc, the cluster Cp is divided into two clusters

and . The chromosome x is replaced by the best clone chromosome x

1pC

2pC c that

satisfies the following criteria:

(i) The Quality of Clustering (QOC) of the clusters and in the

clone chromosome x

1pC
2pC

c is higher than the QOC of the cluster Cp in the

chromosome x.

(ii) The dependency index γ (refer to Equation 4.7) of the clusters and

 in the clone chromosome x

1pC

2pC c must be greater than the dependency

index threshold for small cluster Imin.

The QOC of the clusters and in the clone chromosome x
1pC

2pC c is

computed as follows:
2 2

1 1

1 2

,

,
, 1. (,)

2 2 3

p p k

i i
i p i p jc

p px QOC C C
k

jα β
= = == −

−

∑ ∑
, (4.3)

where αi is the cohesion of the cluster i (refer to Equation 4.9) and βi,j is the coupling

between clusters i and j (refer to Equation 4.10). The QOC of the cluster Cp in the

chromosome x is calculated with the following equation:
,

,
, 1. ()

1

p k

i j
i p j

p px QOC C
k

β
α = == −

−

∑
. (4.4)

The merge function M(x) is carried out for combining the isolated clusters by

repairing genes in the chromosome x when necessary. The objective is to guarantee

that all the chromosomes repaired by the split function S(x) are genuinely fit to be

 44

feasible and near optimal solution. The merge function M(x) is invoked to combine

clusters Cp and Cq in the chromosome x ∈ . If the trial consolidation fulfills

the following conditions, then the clusters C

()Pop t

p and Cq are permanently merged:

(i) The QOC of the merged clusters Cp and Cq is higher than the QOC of

the cluster Cp alone.

(ii) The dependency index γ of the merged clusters Cp and Cq must be less

than the dependency index threshold for large cluster Imax.

The QOC of the cluster Cp in the chromosome x is computed by Equation 4.5

as shown below:
,

,
, 1. ()

2

p k

i j
i p j

p px QOC C
k

β
α = == −

−

∑
. (4.5)

The QOC of the merged clusters Cp and Cq in the chromosome x is calculated as

follows:
, ,

, ,
, 1 , 1. (,)

2 2 3

p k q k

i j i j
p q i p j i q j

p qx QOC C C
k

β β
α α = = = =

+
+

= −
−

∑ ∑
. (4.6)

After undergoing the split and merge processes, any illegal chromosome is

adjusted and then evaluated by the fitness function fO(x). The illegal chromosome

contains one or more clusters which are empty. For example, given k = 4, the

chromosome x = (4 1 1 4 1 4 4 4 1) is illegal because cluster number two and three

are empty. In some cases the split and merge processes can cause clusters to further

split or merge due to strong internal dependencies. This phenomenon creates

unbalanced clusters and reflects the aim of creating modular GO RDF/XML files that

are easy to be maintained, published, validated, and processed. Therefore,

dependency index γ is introduced to stabilize the split-and-merge algorithm and to

forbid it from producing micro or giant clusters during splitting or merging process.

The dependency index γi of the cluster i is given by:

1
1

i
i k

j
j

N k

N
γ

=

−
=

−∑
, (4.7)

where Ni is the number of nodes in the cluster i and Nj is the total number of nodes in

 45

the GO graph. The target value for dependency index γi of the cluster i is 0. The

maximum value is 1 which represents the worst case where most of the nodes form a

large cluster. Meanwhile, negative value indicates pathological clusters with

undersized number of nodes.

4.3.4 Fitness Function

 The fitness function fO(x) to partition the GO graph is based on the cohesion-

and-coupling metric and is defined as follows:

2
,

, 11 1

O

2

1

()
1(1)

() 2

()
1

kk k

i ji i
i ji i

k

i
i

i

kk kk k
f x

k
k

βα γ γ

γ γ
α

== =

=

⎧
−⎪

⎪ − − ∀
−⎪

⎪= ⎨
⎪
⎪ −
⎪ − =⎪⎩

∑∑ ∑

∑

>

)

. (4.8)

The value of the fitness function fO(x) vary between [-1…1]. A good quality

chromosome has a high value of fitness function fO(x). The cohesion αi of the cluster

i is calculated by:

(1
2

i
i

i iN N
µα =
−

, (4.9)

where Ni is the number of nodes in the cluster i and µi is the number of its internal

edges. The coupling βi,j between clusters i and j is given by:

0
, iji j

i j

i j

i j
N N
εβ

=⎧
⎪= ⎨ ≠⎪
⎩

, (4.10)

where Ni and Nj are number of nodes in the clusters i and j respectively and εij is the

number of edges from cluster i to cluster j.

 46

4.3.5 Parallelization Process

Partitioning the GO graph is computationally intensive. This is due to the fact

that the GO graph has a large number of nodes and paths. Furthermore, to obtain a

good solution, it requires a multitude of chromosomes and many generations of

population. This scenario becomes deteriorated when population for each generation

is required to go through the reproduction process and the split and merge functions.

To solve this problem, the genetic split-merge algorithm is paralleled by exploiting

the advantages of island (coarse-grained) model [134]–[136]. It is implemented on a

low-cost PC cluster using message passing interface libraries. The parallelization

process of the genetic split-merge algorithm is shown in Figure 4.3.

4.4 Testing Preparation and Evaluation Measures

The GO data used in this chapter is in RDF/XML format as released in

January 2007 (refer to Table 2.1). The data is compressed in a GZIP file named

go_200701-assocdb.rdf-xml.gz. The data is updated monthly and can be downloaded

from http://archive.godatabase.org/. The data comes without protein sequences and

IEA evidence associations. Therefore, to include both of them into the fragmented

GO RDF/XML files these data are taken from the MySQL format. The GO data in

MySQL format is stored in a file named go_200701-seqdb-tables.tar.gz. The genetic

split-merge algorithm and other algorithms that have been used for comparison are

run on a 25-node low-cost PC cluster with 2.8GHz Pentium IV of processor, 512MB

of memory, and 100Mbps of network speed. The operating system used is Fedora

Core 5. The low-cost PC cluster is implemented using MPICH2 libraries [137]. The

genetic algorithm used in this chapter is an enhancement of the existing GAlib C++

libraries created by Wall [138]. The parameters used to run the genetic split-merge

algorithm are shown in Table 4.1.

 47

 Create initial population

Divide population into subpopulations

Distribute subpopulations to processors

Subpopulation
1

Subpopulation
2

Subpopulation
n

Processor
1

Processor
2

Processor
n

Perform parallelization computation

1. Create new subpopulation.
2. Alter subpopulation by crossover and mutation operators.
3. Alter subpopulation by split and merge functions.
4. Evaluate subpopulation.
5. Exchange best chromosomes between subpopulations.

Figure 4.3: The parallelization flow of the genetic split-merge algorithm.

To evaluate the goodness of the clustering produced by the genetic split-

merge algorithm, two validity measures are used: the Davies-Bouldin index (DBI)

measure and the F-measure. The DBI measure is defined as follows:

intra intra

1 inter

() ()max
(,)

DBI

k

i ji

d i d j
d i j
k

≠=

⎧ ⎫+
⎨ ⎬
⎩=

∑
⎭ , (4.11)

where dintra is the average distance of all patterns in cluster i to their cluster center ci

and dinter is the distance of cluster centers ci and cj. Since the clustering objective is to

maximize inter-cluster distance and to minimize intra-cluster distance, a good

clustering therefore should have a small value of DBI. The DBI measure has been

studied by [139]–[141]. On the other hand, the F-measure combines the precision

and recall measures adopted from information retrieval. The F-measure is calculated

as follows:

 48

2PRF
P R

=
+

, (4.12)

where P ij

i

N
N

= , R ij

j

N
N

= , Nij is the number of elements with cluster label i within

cluster j, Ni is the number of elements with cluster label i, and Nj is the number of

elements of cluster j. The F-measure values are in the interval [0, 1], and the larger

value indicates better clustering quality. The F-measure has been used by Ma et al.

[126], Cui et al. [142], and Watts and Porter [143] to validate the clustering results.

Table 4.1: Parameters of the genetic split-merge algorithm.

Item Parameter
Size of population 100
Number of generations 400
Crossover probability 0.8
Mutation probability 0.01
Length of chromosome 22,954
Replacement percentage 0.5
Type of crossover Partial match crossover
Type of mutation Swap mutation
Type of genetic algorithm Steady-state genetic algorithm
Scaling Sigma truncation scaling
Fitness function Maximizing preferences
Number of clone chromosomes 5
Dependency index threshold for small cluster 0.1
Dependency index threshold for large cluster 0.3
Number of subpopulations 25
Isolation time 10 generations
Number of emigrants 1
Type of replacement Bad by best
Type of migration Stepping stone

4.5 Results and Discussion

In order to justify the need for executing the genetic split-merge algorithm on

a low-cost PC cluster, the effect of using different number of processors in the low-

 49

cost PC cluster is analyzed. The effect on the following factors is studied: number of

generations to converge gbest, number of clusters found kfound, CPU time (in seconds),

maximum value of fitness function max{fO(x)}, DBI, and F-measure. Results in

Table 4.2 show that a cluster of 25 processors is the ideal solution to handle the

computational problem. Six factors, particularly the CPU time, were highly affected

if more number of processors were removed. Otherwise, additional processors only

slightly affected those factors.

Table 4.2: The effects of different number of processors used on the performance of

the genetic split-merge algorithm.

Number of processors Item 5 10 15 20 25 30
gbest 580 470 430 320 250 250
kfound 5 5 5 5 5 5
CPU time 12,652.7 2,472.8 996.0 353.5 32.4 31.9
max{fO(x)} 0.1051 0.1168 0.1237 0.1305 0.1353 0.1356
DBI 1.75 1.68 1.63 1.58 1.52 1.50
F-measure 0.74 0.81 0.85 0.88 0.92 0.93

 To assess the performance of our fitness function fO(x), its results are

compared with fitness functions introduced by Salim and Mohemad fSM(x) [132] and

Garai and Chaudhuri fGC(x) [133]. The dependency index γ is added to both fitness

functions as well as to our fitness function fO(x) and different minimum number k of

clusters kmin are used. The results in Table 4.3 show that the earliest number of

generations to converge gbest is obtained by our fitness function fO(x) which appeared

as early as after 250 generations. The results also show that if the minimum number k

of clusters kmin is greater than the best number k of clusters kbest, then the number k of

clusters found kfound is bound to it. Furthermore, the results show that our fitness

function fO(x) provides the best value of CPU time (in seconds), DBI, and F-measure

which are 32.4 seconds, 1.52, and 0.92 respectively.

Table 4.3: Comparison of different fitness functions.

fO(x) fSM(x) fGC(x)
kmin gbest kfound

CPU
time DBI F-

measure gbest kfound
CPU
time DBI F-

measure gbest kfound
CPU
time DBI F-

measure
1 310 5 38.4 1.57 0.79 480 5 287.0 1.64 0.83 640 5 71.3 1.67 0.66
2 300 5 36.8 1.55 0.81 430 5 266.8 1.61 0.78 610 5 64.4 1.64 0.70
3 290 5 33.5 1.58 0.85 390 5 242.1 1.60 0.71 590 5 62.5 1.65 0.67
4 260 5 32.9 1.54 0.80 370 5 203.9 1.62 0.67 530 5 59.9 1.63 0.71
5 250 5 32.4 1.52 0.92 330 5 194.9 1.60 0.74 430 5 58.9 1.59 0.69
6 270 6 33.0 1.65 0.67 340 6 229.7 1.71 0.61 470 6 62.7 1.79 0.41
7 280 7 33.6 1.64 0.66 380 7 280.2 1.69 0.58 510 7 63.5 1.78 0.38
8 310 8 37.6 1.63 0.64 450 8 308.1 1.68 0.56 560 8 81.7 1.75 0.37
9 320 9 38.3 1.60 0.62 480 9 340.2 1.66 0.51 620 9 87.9 1.71 0.34
10 330 10 41.8 1.59 0.58 530 10 357.0 1.64 0.44 670 10 109.8 1.70 0.28

Table 4.4: Comparison of different clustering algorithms.

Genetic split-merge algorithm k-means Fuzzy c-means Support vector clustering k or
kmin CPU time DBI F-measure CPU time DBI F-measure CPU time DBI F-measure CPU time DBI F-measure

5 32.4 1.52 0.92 74.9 1.61 0.72 72.1 1.53 0.76 40.9 1.55 0.86
6 33.0 1.65 0.67 79.0 1.78 0.66 74.7 1.75 0.67 41.3 1.74 0.74
7 33.6 1.64 0.66 83.5 1.74 0.62 76.2 1.70 0.64 42.0 1.68 0.67
8 37.6 1.63 0.64 86.7 1.73 0.57 80.1 1.69 0.60 44.7 1.65 0.62
9 38.3 1.60 0.62 88.5 1.70 0.50 86.2 1.62 0.53 53.1 1.64 0.59
10 41.8 1.59 0.58 94.9 1.65 0.44 87.6 1.60 0.51 53.9 1.61 0.56

 50

51

In this chapter, three most popular clustering algorithms are examined and

compared with the genetic split-merge algorithm as shown in Table 4.4. As it is clear

from the table, k=5 returns the best DBI and F-measure values for k-means, fuzzy c-

means, and support vector clustering which are (1.61, 0.72), (1.53, 0.76), and (1.55,

0.86) respectively. The results indirectly prove that the kfound=5 returned by the

genetic split-merge algorithm is the best number k of clusters kbest. On the other hand,

the best CPU time (in seconds), DBI, and F-measure are obtained by the genetic

split-merge algorithm when k=5 is examined. The clustering utilization as depicted in

Figure 4.4 shows that the dependency index γ plays an important role in creating

balanced clusters.

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

1 2 3 4 5

Clusters

No
. o

f G
O

 te
rm

s

Genetic split-merge algorithm

k-means

Fuzzy c-means

Support vector clustering

Figure 4.4: Cluster utilization of different clustering algorithms.

 The comparison between the genetic split-merge algorithm and other

automatic clustering algorithms such as evolutionary clustering [126], Laszlo and

Mukherjee’s algorithm [127], and hybrid niching genetic algorithm [128] is shown in

Table 4.5. The results show that the genetic split-merge algorithm provides the best

F-measure (0.92) and obtains the earliest number of generations to converge gbest

(250 generations), the hybrid niching genetic algorithm offered the best DBI (1.49),

and the best CPU time (in seconds) is 31.2 seconds that is taken by the evolutionary

clustering. Further, kfound=5 is returned as the best number k of clusters kbest by all the

 52

four algorithms. Figure 4.5 illustrates how the other automatic clustering algorithms

are unable to produce balanced clusters compared to the genetic split-merge

algorithm.

Table 4.5: Comparison of different automatic clustering algorithms.

 gbest kfound CPU time DBI F-measure
Genetic split-merge algorithm 250 5 32.4 1.52 0.92
Evolutionary clustering 300 5 31.2 1.85 0.89
Laszlo and Mukherjee’s
algorithm 430 5 35.9 2.22 0.74

Hybrid niching genetic
algorithm 320 5 40.9 1.49 0.78

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

1 2 3 4 5

Clusters

No
. o

f G
O

 te
rm

s

Genetic split-merge algorithm

Evolutionary clustering

Laszlo and Mukherjee's algorithm

Hybrid niching genetic algorithm

Figure 4.5: Cluster utilization of different automatic clustering algorithms.

An example of part of a smaller Gene Ontology RDF/XML file that has been

split by the genetic split-merge algorithm is shown in Figure 4.6. The example shows

how a Gene Ontology term “tRNA processing” (GO:0008033) includes “RNA

processing” (GO:0006396) from the cluster C2 (line 6) and “tRNA metabolic

process” (GO:0006399) from the cluster C3 (line 7). The figure also shows the

inclusion of an IEA evidence association with the gene product “BC4V2_0_00030”

(DDB0218427) from the dictyBase database (line 8–31) and its protein sequence

 53

(line 20–28). The example shows that by splitting the monolithic GO RDF/XML file,

the smaller GO RDF/XML files can be easily maintained and become exhaustive.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

<go:term rdf:about="http://localhost/go/cluster1#GO:0008033">
 <go:accession>GO:0008033</go:accession>
 <go:name>tRNA processing</go:name>
 <go:definition>The process by which a pre-tRNA molecule is converted to a

mature tRNA, ready for addition of an aminoacyl group.</go:definition>
 <go:is_a rdf:resource="&cluster2; http://localhost/go/cluster2#GO:0006396">
 <go:is_a rdf:resource="&cluster3; http://localhost/go/cluster3#GO:0006399">
 <go:association rdf:parseType="Resource">
 <go:evidence evidence_code="IEA">
 <go:dbxref rdf:parseType="Resource">
 <go:database_symbol>DDB_REF</go:database_symbol>
 <go:reference>10157</go:reference>
 </go:dbxref>
 </go:evidence>
 <go:gene_product rdf:parseType="Resource">
 <go:name>BC4V2_0_00030</go:name>
 <go:dbxref rdf:parseType="Resource">
 <go:database_symbol>DDB</go:database_symbol>
 <go:reference>DDB0218427</go:reference>
 <go:sequence>MSPRYKIIYEYIGKSFTGFQRLKYPVVKLPVQQVL
 EDSLEKIHGYKIPIVGSSRTDHGVSAVGQVSHFDVKTRTSKSGI
 EMPLLSPEELTMAINYNVGKEYLKSIRIIKTEIVDDKFHCRFNA
 TSRTYLYRVMANCGRKQIPLELLDRVYLVGPILNLDEMRKAS
 EMFIGTHDFSSFRSAKCSSTRPIRSISHIKIYDLPLPDIFQYNPSFQ
 NISRSNTNYPIGDGEKNLDKKNTGLQYFGIEIKARAFLHNQVRI
 MVASLIKVGEGEISIQQLEEIKDKKDRGAAPPTASPEPLTLLTV
 SYDDPKVNPSTFQQQQQQQQQQQQQQQQQQQQQQQQQQQQ
 QQS</go:sequence>
 </go:dbxref>
 </go:gene_product>
 </go:association>
 <!-- more associations -->
</go:term>
<!-- more Gene Ontology terms -->

Figure 4.6: An example of part of a smaller GO RDF/XML file.

The experimental results have shown that, unlike any other clustering

algorithm such as k-means, fuzzy c-means, and support vector clustering, the

proposed algorithm with the split-and-merge strategy can automatically find the best

number k of clusters kbest. Compared to other automatic clustering algorithms such as

 54

evolutionary clustering [126], Laszlo and Mukherjee’s algorithm [127], and hybrid

niching genetic algorithm [128], the genetic split-merge algorithm is capable of

producing balanced clusters. The experimental results have shown that the genetic

split-merge algorithm requires reasonable amount of execution time and the

generated clusters have better DBI and F-measure values compared to the existing

clustering and automatic clustering algorithms. Furthermore, the users are allowed to

set the minimum number k of clusters kmin they wish to maintain.

4.6 Summary

The GO RDF/XML is created to allow the GO data to be shared and reused

across the WWW in a way that it can be interpreted and processed by human and

machine alike. The GO RDF/XML has been used by numerous bioinformatics tools

for analyzing the GO annotation results, analysis of microarray gene expression data,

and searching and browsing the GO. However, the increase in size of the GO data

has caused the GO RDF/XML difficult to be maintained, published, validated, and

processed. One of the solutions is splitting the GO RDF/XML into smaller files.

Splitting the monolithic GO RDF/XML file requires the GO terms to be grouped into

a number k of clusters. Clustering the GO terms is a difficult combinatorial problem

and can be modeled as a GPP since they are structured as a DAG. Additionally,

deciding the number k of clusters to use is not easily perceived and is a hard

algorithmic problem. In this chapter, a genetic split-merge algorithm that combines

parallel genetic algorithm with split-and-merge algorithm is proposed to handle these

problems. The genetic split-merge algorithm uses cohesion-and-coupling metric to

measure the goodness of the generated clusters. The performance of the genetic split-

merge algorithm has been compared and an example of a smaller GO RDF/XML file

is given to show the effectiveness of the genetic split-merge algorithm.

CHAPTER 5

THE GENETIC SIMILARITY ALGORITHM

FOR SEARCHING THE GENE ONTOLOGY TERMS

5.1 Introduction

The GO is a collection of nearly 23 thousand terms for providing consistent

terms to describe gene and gene product attributes in any organism found in

heterogeneous databases. The GO terms are structured, controlled vocabularies

organized as a DAG in three aspects: cellular component, biological process, and

molecular function. Let GO be a graph G = {V, E}, where V is a set of nodes

representing the GO terms and E is a set of pairs of nodes representing relationships

between the GO terms. The GO terms can have more than one parent, as well as

multiple children. The GO terms are connected by two relationships: the “is-a”

relationship, e.g. “chromatin binding” (GO:0003682) and “structure-specific DNA

binding” (GO:0043566) are parents of “chromatin DNA binding” (GO:0031490);

and the “part-of” relationship, e.g. “cytoplasmic part” (GO:0044444) is part of

“cytoplasm” (GO:0005737). The GO have been utilized in bioinformatics research

and has numerous practical applications including prediction of protein-protein

interaction networks [30], protein classification [144], prediction of protease types

[145], and functional interpretation of microarray data [146].

 56

However, the existing GO browsers that support basic needs of bioscientists

for searching the GO terms still use a conventional approach based on keyword

matching. Thus, for bioscientists, finding a group of semantically similar GO terms is

time consuming and a tedious task. For example, the keyword matching is not

capable of computing the relationship between “intracellular organelle”

(GO:0043229) and “cytoplasm” (GO:0005737) even though they share the same

parent “intracellular part” (GO:0044424) because their names do not exactly or

approximately match. Therefore, a GO browser named basic UTMGO is introduced

in this chapter to overcome the weaknesses of the existing GO browsers. The basic

UTMGO uses a genetic similarity algorithm that incorporates the parallel genetic

algorithm and the semantic similarity measure algorithm. The parallel genetic

algorithm is used to generate a solution consisting of a group of semantically similar

GO terms that best match to the query GO term, and to accelerate the search in the

large GO graph. The search space of the GO graph, g(k), is astronomical and varies

between:
(1) (1)

22 () 3
k k k k

g k
− −

≤ ≤ 2 , (5.1)

where k is the number of nodes in the GO graph. Currently the GO graph consists of

22,954 nodes, so the search space of the GO graph is between 2263,431,581 and

3263,431,581. A parallel genetic algorithm optimizes its fitness function by utilizing the

genetic operators to find an optimal solution. It can also be executed on a low-cost

PC cluster using message passing interface libraries that are open source and easy to

install. The semantic similarity measure algorithm is added into the parallel genetic

algorithm to measure the similitude strength between the GO terms during the

creation of initial population and calculation of fitness value. The semantic similarity

measure algorithm used is a combination of information content (node-based) and

conceptual distance (edge-based). The information content is used to get the amount

of information the GO terms share in common, whereas the conceptual distance is

applied to know the depth and the local network density of the GO terms.

The remainder of the chapter consists of related work in semantic similarity

measure and genetic algorithm and existing tools for searching the GO terms

(Section 5.2), technical description of the semantic similarity measure algorithm

(Section 5.3), detailed explanation of the proposed genetic similarity algorithm

 57

(Section 5.4), step-by-step explanation of the basic UTMGO (Section 5.5),

description of the testing environment and evaluation measures used in this chapter

(Section 5.6), the results and discussion of experiments (Section 5.7), and followed

by the summary (Section 5.8).

5.2 Related Work

Semantic similarity measures play an important role in information retrieval

and natural language processing. Example applications include characterization of

human regulatory pathways [147], linguistic modeling [148], computer-assisted

inter-observer consensus [149], and semantic feature ratings [150]. The choice of

semantic similarity measure has the ability to improve the recall and precision of

information retrieval by identifying the relation between concepts. This is done by

calculating the distance or the amount of information in common between the two

concepts being analyzed. Most of the popular measures are based on taxonomic or

ontological structure [151–154]. These measures have been analyzed by Budanitsky

and Hirst [155], and the evaluation of WordNet (http://wordnet.princeton.edu/) based

semantic similarity measures in their study shows that the Jiang and Conrath

semantic similarity measure [153] provides the best results. The Jiang and Conrath

semantic similarity measure is a combined approach that inherits the conceptual

distance approach enhanced with the information content approach. The basic

calculation of the Jiang and Conrath semantic similarity measure is expressed as:

1 2 1 2 1 2(,) () () 2 (,)dist c c IC c IC c sim c c= + − × , (5.2)

where () log ()IC c P c= − , , c is some concept being

studied, P(c) is the probability of encountering an instance of concept c, and S(c

1 2
1 2 (,)

(,) max { ()}
c S c c

sim c c IC c
∈

=

1, c2)

is the set of concepts that subsume both c1 and c2.

 Lord et al. [156] has studied the Resnik [154] semantic similarity measure on

the GO. They have only considered the GO annotations in Swiss-PROT and the “is-

 58

a” relationship. Their work has been extended by Popescu et al. [157]. In the

meantime, Sevilla et al. [158] has compared different semantic similarity measures

proposed by Lin [152], Jiang and Conrath, and Resnik. They conclude that the

Resnik semantic similarity measure outperforms the other semantic similarity

measures. However, their comparisons are based on the gene products rather than the

GO terms, and they used the subsets of the GO terms and annotations. Therefore, in

this study we use the Jiang and Conrath semantic similarity measure to compute the

semantic similarity between pairs of GO terms rather than between pairs of gene

products, and we use all the GO terms and annotations provided by the GO

Consortium including the “part-of” relationships. The Jiang and Conrath semantic

similarity measure is selected since both notions of the shared information content

and the conceptual distance of the GO terms in the GO graph are considered as

discussed in Section 5.1.

A genetic algorithm is selected because its capabilities as a machine learning

technique have been recognized in the information retrieval field. This is due to its

capability of being adaptive, efficient, robust, and a global search method that is

suitable to address a situation where the search space is large. The properties of the

genetic algorithm are as follows: a chromosome (a string of symbols called genes) to

represent a solution, an allele to represent the value of the gene (it is usually a binary

bit {0, 1}, an integer, or a real number), loci to represent the positions of the genes in

the chromosome, a population to represent a set of chromosomes, a fitness function

to evaluate each chromosome, a set of genetic operators to generate a new

population, and a selection method to select fitter chromosomes for the next

generation. The genetic algorithm starts with an initialization step in which an initial

population is generated at random. Then it evolves with the following steps in each

generation: evaluation of fitness function (the value of each chromosome in the

population is calculated according to the fitness function), selection (multiple

chromosomes are stochastically selected from the current population based on their

fitness to form a new population), and a genetic operation (modification is performed

to a newly generated population). These steps are repeated until either a maximum

number of generations have been produced or a satisfactory fitness level has been

reached for the population. Some reviews of genetic algorithms can be found in

[159–161]. Implementations of the genetic algorithm in information retrieval are

 59

normally related to web search [162], gene selection [163], spatial information

retrieval [164], and document retrieval [165].

For searching the GO terms, most of the present GO browsers respond to user

queries by retrieving relevant GO terms based on keyword matching. A list of tools

for searching and browsing the GO terms can be found at

http://www.geneontology.org/GO.tools.browsers.shtml. Among the popular GO

browsers are:

(i) AmiGO is a GO browser developed by the GO Consortium. The

keyword-based search is executed either by “exact” or “contains”

match over the GO term accession number, name, or synonyms. This

tool also allows a user to use a gene product or a protein sequence as a

search input.

(ii) GenNav is a GO browser that uses string matching method namely

“exact” or “approximate” match that responds to a given GO term or

gene product. GenNav is maintained by the United States National

Library of Medicine (US NLM).

(iii) QuickGO is a GO browser that allows a user to retrieve the GO terms

by “exact” or “wildcard” search for the GO term accession number,

name, synonyms, definitions, or comments. This web-based GO

browser can be found at the website of the EBI.

(iv) TAIR Keyword Browser is a GO browser that uses the GO term

accession number or name as an input and then performs either

“contains”, “start with”, “end with”, or “exact” match. This tool is

developed by TAIR.

Moreover, DynGO [105] and FuSSiMeG [166] are recently developed GO browsers

that perform the semantic similarity search over the GO terms. However, the DynGO

has only focused on the information content and has overlooked the role of

conceptual distance in finding the significant GO terms. Whereas, the FuSSiMeG is

not capable of returning more than one GO term for each query.

 60

5.3 The Semantic Similarity Measure Algorithm

The semantic similarity measure algorithm, as shown in Figure 5.1, takes as

input a set of subgraphs of the GO graph and the query GO term. It returns a set of

subgraphs of the GO graph with assigned term similarity score for each node in the

subgraphs. The term similarity score is used for generation of the initial population

and evaluation of the fitness function. The semantic similarity measure algorithm

described in this section is adopted from the Jiang and Conrath. It is simplified, and a

direct explanation of how the GO is applied to their semantic similarity measure is

given.

1
2
3
4
5
6
7
8
9
10

11

12

13

14
15
16
17

Semantic-Similarity-Measure-Algorithm (G, q);
Input: (a set of subgraphs of the GO graph) and q
(a query GO term)

1 2{ , , , }mG G G G= …

Output: (a set of subgraphs of the GO graph with
assigned term similarity score)

' ' ' '
1 2{ , , , }mG G G G= …

begin
 for i := 1 to m do // where m is the number of subgraphs
 for j := 1 to n do // where n is the number of nodes in the

subgraph iG
 calculate the information content ()i

jIC c ; // where i
ic G∈

 calculate the depth ()i
jD c ;

 calculate the local network density ()i
jE c ;

 calculate the semantic distance (,)i
jdist q c ;

 calculate the term similarity score (,)i
jsim q c ;

 end-for
 end-for
end

Figure 5.1: The semantic similarity measure algorithm.

 61

5.3.1 Information Content Approach

The information content is computed according to the association: a source

that presents information shared among the GO terms. The association is a table that

stores annotations which provide links between GO terms and gene products that are

supported by evidence codes and literature references. For example, gene product

“rpl23-A” (Chloroplast 50S ribosomal protein L23, GR:P12097), an Oryza sativa

species from Gramene (http://www.gramene.org) database, is shared among GO

terms like “plastid” (GO:0009536), a cellular component that is supported by an

evidence code of Inferred from Curator (IC) and a literature reference

PMID:12520024; “RNA binding” (GO:0003723), a molecular function, is supported

by an evidence code of inferred from Reviewed Computational Analysis (RCA) and

literature reference GR.REF:8030; and “translation” (GO:0006412), a biological

process, is supported by an evidence code of RCA and literature reference

GR.REF:8030. These links are used to calculate the term similarity score between

these three GO terms even though they are not directly connected by the “is-a” or

“part-of” relationships, are from different categories, and do not have similar

keywords. The information content of the GO term IC(c) is represented as follows:

() log(())IC c P c= − , (5.3)

where P(c) is the probability of occurrence of a GO term c in the association. The

probability is measured using maximum likelihood estimation as given below:

()() freq cP c
N

= , (5.4)

where N is the total number of occurrences in the association and freq(c) is the

number of times that the GO term c and all its descendants occur in the association.

The frequency of the GO term c is defined as follows:

()
() ()

i

i
c descendants c

freq c occur c
∈

= ∑ , (5.5)

where descendants(c) is a function that returns a set of GO terms that are the

descendants of the GO term c. Note that if a GO term c1 is an ancestor of a GO term

c2, then freq(c1) ≥ freq(c2) since the GO term c1 subsumes the GO term c2 and all its

descendants. Therefore, P(c) is larger when the GO term c is nearer to the root term

c0, and IC(c1) ≤ IC(c2).

 62

5.3.2 Conceptual Distance Approach

The conceptual distance of a GO term is calculated based on the depth and

the local network density factors. The depth is referred to as the distance of the GO

term in the hierarchy of the GO graph. The local network density is related to the

number of children that span out from the GO term. The depth of the GO term D(c)

is given as follows:

() 1()
()

d cD c
d c

α
⎛ ⎞+

= ⎜
⎝ ⎠

⎟ , (5.6)

where d(c) is the level of the GO term c in the GO graph. The depth of the root term

c0 is 1, and it increases as the altitude of the GO term decreases in the hierarchy. The

parameter α controls the degree of how much the depth factor contributes to

Equation 5.6, and α ≥ 0.

The local network density of the GO term E(c) is given by the following

equation:

() (1)
()
EE c

e c
β β

⎛ ⎞
= − × +⎜
⎝ ⎠

⎟ , (5.7)

where e(c) is the number of edges that begin from the GO term c and E is the

number of edges divided by the number of GO terms in the GO graph. The parameter

β controls the degree of how much the local network density factor contributes to

Equation 5.7, and 0 ≤ β ≤ 1. The effect of multiple inheritances is not considered in

Equation 5.7 since they have been considered during calculation of the information

content as mentioned in Equation 5.5. Furthermore, the term similarity score between

GO terms cm and cn is calculated according to the shortest path that links both of the

GO terms via their nearest shared ancestor as formulated in Equation 5.8 and 5.9.

Note that the parameters α and β become less important when α approaches 0

and β approaches 1, since D(c) and E(c) will reach 1 respectively. Furthermore,

Equation 5.6 and 5.7 are equal when α = 0 and β = 1.

 63

5.3.3 The Hybrid Approach

The hybrid approach is derived from the notion of the conceptual distance,

and by incorporating the information content as a decision factor. Given a sequence

of GO terms c1, …, cn representing the path from GO term c1 to cn with length n. The

hybrid approach computes the semantic distance between GO terms c1 and cn by the

following formula:

(
1

1
0

(,) () () () ()
n

n i i i
i

dist c c D c E c IC c IC c
−

+
=

= × × −∑)1 i

1

, (5.8)

where dist(c1, cn) is the summation of edge weights along the shortest path that links

c1 with cn. Thence, the semantic distance between GO terms cm and cn is quantified

as given below:

1(,) (,) (,)m n m ndist c c dist c v dist c v= + , (5.9)

where GO term c1 is the nearest shared ancestor of GO terms cm and cn. As the

semantic distance is founded on the difference between the information content, the

normalization of the semantic distance is given by:

(,)(,) min{1, }
max{ ()}

m n
norm m n

dist c cdist c c
IC c

= . (5.10)

Therefore, the term similarity score between GO terms cm and cn is measured

by converting the semantic distance as follows:

(,) 1 (,)m n norm m nsim c c dist c c= − . (5.11)

Note that 0 ≤ sim(cm, cn) ≤ 1 because 0 ≤ distnorm(cm, cn) ≤ 1.

5.4 The Genetic Similarity Algorithm

An overview of the genetic similarity algorithm is shown in Figure 5.2. The

genetic similarity algorithm takes the GO graph and a query GO term as an input.

 64

The best chromosome representing a set of GO terms that have higher term similarity

score to the query GO term is returned by the genetic similarity algorithm. The

genetic similarity algorithm uses the semantic similarity measure algorithm to

calculate the term similarity score which is the semantic similarity measure between

each GO term and the query GO term.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Genetic-Similarity-Algorithm (G, q);
Input: G (a GO graph) and q (a query GO term)
Output: bestx (the best chromosome representing a set of GO terms that
have higher term similarity score to the query GO term)
begin
 preprocessing by semantic similarity measure algorithm;
 : 0t = ;
 initialize ; // note that where

and

()Pop t 1() { , , }t t
psPop t x x= … ()Pop t

tx are the population and chromosome for
generation t respectively and ps is the size of
population

 evaluate ; ()Pop t
 while not termination-condition do
 ; : 1t t= +
 select from ()Pop t (1)Pop t − ;
 alter by crossover and mutation operators; ()Pop t
 evaluate ; ()Pop t
 end-while
end

Figure 5.2: The genetic similarity algorithm.

5.4.1 Preprocessing

The first step of the genetic similarity algorithm is the calculation of the term

similarity score between each node in the subgraphs of the GO graph and the query

GO term. The GO graph is partitioned into several subgraphs in order to make

calculation of the term similarity score and generation of the initial population easier

and faster. The preprocessing step is done by the semantic similarity measure

 65

algorithm to improve the quality of the chromosome. This is done by setting the

positions of nodes in the chromosome before the initialization step. Thus, the first

chromosome created contains the nodes with the highest term similarity score in each

subgraph. The second chromosome contains the second best and so on, as shown in

example in Figure 5.3 for a GO graph with 4 subgraphs and 20 nodes in which “4” is

the query GO term. Note that the GO term accession number is mapped to the node

number according to the identification in the “term” table.

Step 3: Sort the nodes in each subgraph according to their
term similarity score.

 Subgraph 1 Subgraph 2 Subgraph 3 Subgraph 4
Rank 1 13 (0.66) 4 (1.00) 12 (0.80) 15 (0.45)
Rank 2 9 (0.33) 11 (0.73) 7 (0.76) 5 (0.41)
Rank 3 1 (0.29) 17 (0.51) 18 (0.42) 8 (0.27)
Rank 4 3 (0.13) 14 (0.28) 2 (0.38) 19 (0.20)
Rank 5 20 (0.05) 6 (0.23) 16 (0.19)
Rank 6 10 (0.16)

Step 1: Given a GO graph with 4 subgraphs and 20 nodes.
Subgraph 1 Subgraph 2 Subgraph 3 Subgraph 4

1 4 2 5
3 6 7 8
9 10 12 15
13 11 16 19
20 14 18
 17

Step 2: Calculate the term similarity score between each
node in the subgraphs and the query GO term “4”.

Subgraph 1 Subgraph 2 Subgraph 3 Subgraph 4
1 (0.29) 4 (1.00) 2 (0.38) 5 (0.41)
3 (0.13) 6 (0.23) 7 (0.76) 8 (0.27)
9 (0.33) 10 (0.16) 12 (0.80) 15 (0.45)
13 (0.66) 11 (0.73) 16 (0.19) 19 (0.20)
20 (0.05) 14 (0.28) 18 (0.42)

 17 (0.51)

Given a query
GO term “4”

Figure 5.3: An example of preprocessing.

 66

5.4.2 Chromosome Representation

Based on the results returned by the semantic similarity measure algorithm,

the initial population is generated according to the following representations:

population size is the size of the subgraph with the highest node compared to other

subgraphs; chromosome length is the number of nodes in the GO graph; loci

represent the node number; a gene specifies whether a node in the pool of nodes is

represented by a chromosome or not; and an allele is formed by two binary elements

either 0 or 1, where 1 shows presence (retrieved) and 0 shows absence (not retrieved)

of a node in a chromosome.

A chromosome is created by taking a node from each subgraph beginning

with the ones with higher term similarity score, as shown in example in Figure 5.4. If

the cardinality of a subgraph is smaller than the number of chromosomes to be

produced, then that subgraph will not be present in each chromosome. An example of

mapping of a GO graph into a chromosome is shown in Figure 5.5. This

representation is crucial to ensure that the large GO graph can be presented with a

simple and straightforward representation; the processing time taken to converge can

be shortened since the chromosome is represented using 1D binary string; and the

evolution of the genetic similarity algorithm is started with an initial population such

that t1(xi) ≥ t1(xj), where t1(x) is the sum of the term similarity score of the nodes in a

chromosome x, ∀i,j ∈ {1, 2, …, ps}, ps is the size of population, and i < j.

 Subgraph 1 Subgraph 2

Subgraph 3 Subgraph 4
Rank 1 13 (0.66) 4 (1.00) 12 (0.80) 15 (0.45)
Rank 2 9 (0.33) 11 (0.73) 7 (0.76) 5 (0.41)
Rank 3 1 (0.29) 17 (0.51) 18 (0.42) 8 (0.27)
Rank 4 3 (0.13) 14 (0.28) 2 (0.38) 19 (0.20)
Rank 5 20 (0.05) 6 (0.23) 16 (0.19)
Rank 6 10 (0.16)

Subgraphs and
initial population
mapping.

 1 2 3 4 5 6

7 8 9 10 11 12 13 14 15 16 17 18 19 20
Chromosome 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0
Chromosome 2 0 0 0 0 1 0

1 0 1 0 1 0 0 0 0 0 0 0 0 0

Chromosome 3 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1 1 0 0
Chromosome 4 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
Chromosome 5 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 1

Chromosome 6 0 0 0 0 0 0

Figure 5.4: An example of generating initial population. Note that subgraphs “1” and “3” are not present in chromosome “6” and subgraph “4” is

not present in chromosome “5” and “6” since their cardinality is smaller than the size of population.

0 0 0 1 0 0 0 0 0 0 0 0 0 0

 67

Chromosome 1
GO graph

node number

presence (1) or
absence (0) flag

loci

genes 0 0 0 1 0 0 0 0 0 0 0 1

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

1 0 1 0 0 0 0 0

[13] [14] [15] [16] [17] [18] [19] [20]

Subgraph 3Subgraph 2

Subgraph 4

16

1

2

13

17 5

6

7

15

3

1011

9

20

4

14

18

12

8

19

Subgraph 1

Figure 5.5: An example of mapping of a GO graph into a chromosome. The mapping of nodes “13”, “4”, “12”, and “15” with the highest term

similarity score from subgraphs “1”, “2”, “3”, and “4” respectively into chromosome “1”. 68

69

5.4.3 Crossover and Mutation Operators

In order to keep the genetic similarity algorithm as generic as possible, it uses

normal crossover and mutation operators. These operators are chosen since they are

formed effectively with a simple 1D binary string representation and with a fitness

function that uses the semantic similarity measure. At each generation, the genetic

similarity algorithm implements the fitness function as criteria to evaluate the

goodness of each chromosome of the current population to create a new set of

artificial creatures (a new population). Thence, the fitness value of the best

chromosome in each generation can be maximized, as shown in example in Figure

5.6.

The above objective is attained by the crossover and mutation operators that

try to improve the total fitness value of the current population by fixing the old ones.

Through the crossover operator, the chromosomes reproduced in the new mating

pool are matched randomly and afterward each couple of chromosomes, say xa and

xb, undergoes a cross change. Then, the mutation operator plays a secondary role to

forbid an irrecoverable loss of potentially useful information which occasionally

crossover can cause. This operator conducts a random alteration of the allelic value

of a chromosome.

5.4.4 Fitness Function

The fitness function used focuses on maximizing the preferences for term

similarity score. The decision is inspired by the demand of searching for a set of GO

terms with higher term similarity score that perfectly match the query GO term. The

fitness function f(x) for chromosome x is shown below:

1() () ()2f x t x t xχ δ= × + × , (5.12)

f(x)
1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 value
Generation 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 145.77
Generation 10 0 0 0

0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 202.71
Generation 20 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 202.71
Generation 30 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 202.71

Generation 40 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 336.54
Generation 50 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 336.54

 Generation 60 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0

0 0 0 0 0 337.34
Generation 70 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0

337.34
Generation 80 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 337.34
Generation 90 0 1 0 1 1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 504.72
Generation 100 0 1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1,005.19

Figure 5.6: An example of the best chromosome produced by mutation and crossover operators. Note that the evolution stopped after a

convergence occurred at 100 generations, the fitness value of the best chromosome is 1,005.19, and the best chromosome returns {“2”,“4”, “5”,

“6”, “7”, “8”, “9”, “11”, “13”, “18”} as a set of GO terms that semantically similar to the query GO term “4””.

70

71

where χ and δ are control parameters so that the contributions given by factors t1(x)

and t2(x) are harmonious. The value of the fitness function is stated as a positive

value that is higher for the best chromosome.

The fitness function comprises two factors. The first factor is the sum of the

term similarity score of the nodes in chromosome x, and is given as follows:

1() ()
i

i
u x

t x score u
∈

= ∑ , (5.13)

where score(ui) is the term similarity score between the query GO term and nodes

that are present in chromosome x. This factor considers the positive effect of having

as many nodes with high term similarity score as possibly present in a chromosome.

Nonetheless, a chromosome with many nodes with low score could create a fitness

value higher than another one with a few good nodes. To avoid this consequence, the

dimension index t2(x) is introduced as follows:

2 ()
(()) 1

kt x
abs cnt x ID

=
− +

, (5.14)

where k is the number of nodes in the GO graph, cnt(x) is the number of nodes

present in chromosome x, and ideal dimension ID is the number of matched GO

terms that are preferred to be returned to the user. Note that 0 < t2(x) ≤ k since if the

number of nodes present in chromosome x is exactly equal to the ideal dimension,

then maximum k is reached. Otherwise, it is rapidly lessened when the number of

nodes present in chromosome x is smaller or greater than the ideal dimension.

5.4.5 Parallelization Process

The major computational challenge of searching a group of semantically

similar GO terms is the size of the search space of the GO graph because the GO

graph has almost 23 thousand nodes and almost 2.0 million paths. Moreover, to

obtain a good solution, it requires a multitude of chromosomes, many generations of

population, and it undergoes several iterations of the genetic operation by crossover

 72

and mutation operators. To overcome these matters, the genetic similarity algorithm

is parallelized by exploiting the advantages of the island (coarse-grained) model

[134–136] as shown in Figure 5.7. It is implemented on a low-cost PC cluster using

message passing interface libraries. The core process of the parallelization is to

divide the population into equal size subpopulations. Hereafter, each subpopulation

is assigned to a processor where it evolves independently. During the process, a

group of best chromosomes called emigrants are transferred to replace a group of

worst chromosomes among the subpopulations. This migration process is performed

periodically at certain cycles of generations called isolation time. The rationale for

implementing the island model is to reduce the execution time by decreasing the

communication overhead involved in the exchange of chromosomes between

processors, and to improve the quality of the solutions reached by increasing

population sizes without increasing the time complexity.

5.5 The basic UTMGO

In order to show the practicality of this study, we present the basic UTMGO,

a tool that uses genetic similarity algorithm to find a group of semantically similar

GO terms. A screenshot of the basic UTMGO is shown in Figure 5.8 wherein “DNA

binding” (GO:0003677) is used as an example of the query GO term. A brief

explanation of the processing behind the basic UTMGO is as follows:

(i) Public GO data in MySQL and RDF/XML formats are downloaded

from the GO website.

(ii) The single humongous GO RDF/XML file is split into smaller files

(refer to Chapter 4).

(iii) Corresponding gene products together with protein sequences and

evidence associations with the GO terms, either based on IEA or non-

IEA evidence code, from the GO MySQL database are inserted into

the fragmented GO RDF/XML files.

(iv) The basic UTMGO requires the user to enter a GO term and the

 73

number of matched GO terms to be returned Nt.

(v) The semantic similarity searching is performed by the genetic

similarity algorithm. The results return Nt GO terms with higher term

similarity score to the query GO term. The information displayed to

the user is the GO terms accession number, followed by a short

description of the GO term, its category (either cellular component

(C), molecular function (F), or biological process (P)), and the term

similarity score.

Create initial population

Divide population into subpopulations

Distribute subpopulations to processors

Subpopulation
1

Subpopulation
2

Subpopulation
n

Processor
1

Processor
2

Processor
n

Perform parallel computation on each processor

1. Create new subpopulation.
2. Alter subpopulation by crossover and mutation operators.
3. Evaluate subpopulation.
4. Exchange best chromosomes between subpopulations.

Preprocessing by semantic similarity
measure algorithm

Figure 5.7: The parallelization flow of the genetic similarity algorithm.

Figure 5.8: A screenshot of the basic UTMGO.

74

75

5.6 Testing Preparation and Evaluation Measures

The testing is executed using a low-cost PC cluster that consists of 25

Pentium IV 2.8GHz processors with 512MB memory and 100Mbps network speed.

The genetic similarity algorithm is compiled using GNU GCC compiler under Fedora

Core 5 operating system. The low-cost PC cluster is implemented using MPICH2

libraries [137] developed by the Argonne National Laboratory. The genetic similarity

algorithm is implemented by enhancing the GAlib C++ libraries [138].

In this chapter, the GO data released in January 2007, as shown in Table 2.1,

is explored in the experiments. The full GO graph that consists of 22,954 GO terms

(1,977 cellular components, 12,903 biological processes, and 8,074 molecular

functions) is input to the genetic similarity algorithm and it becomes the

chromosome length. The parameters set for the genetic similarity algorithm are

depicted in Table 5.1. A total of 250 GO terms in which 20 GO terms from cellular

components, 140 GO terms from biological processes, and 90 GO terms from

molecular functions were selected randomly as the query GO terms to evaluate the

performance of the basic UTMGO and its genetic similarity algorithm.

The effectiveness of the basic UTMGO is validated using standard

information retrieval measures: recall and precision. Recall is the ratio of the number

of relevant GO terms retrieved to the total number of relevant GO terms in the GO

database. Precision is the number of relevant GO terms retrieved to the total of

irrelevant and relevant GO terms retrieved. These are formulated as:

100
()

aRecall
a b

= ×
+

 and (5.15)

100
()

aPrecision
a c

= ×
+

, (5.16)

where a is the number of relevant GO terms retrieved (i.e., the system and the expert

agree with the matches), b is the number of relevant GO terms not retrieved (i.e., the

system disagrees with the matches but the expert agrees), c is the number of

irrelevant GO terms retrieved (i.e., the expert disagrees with the matches but the

 76

system agrees), and d is the number of irrelevant GO terms not retrieved (i.e., the

system and the expert disagrees with the matches).

Table 5.1: Parameters of the genetic similarity algorithm.

Parameter Value
Size of population 500
Number of generations 1,000
Crossover probability 0.6
Mutation probability 0.05
Length of chromosome 22,954
Replacement percentage 0.5
Type of crossover Two-point crossover
Type of mutation Swap mutation
Type of genetic algorithm Steady-state genetic algorithm
Scaling Sigma truncation scaling
Fitness function Maximizing preferences
Isolation time 10 generations
Number of subpopulations 25
Number of emigrants 1
Type of replacement Bad by best
Type of migration Stepping stone
Parameter α for depth factor 0.5
Parameter β for local network density factor 0.3
Parameter χ for fitness function 1
Parameter δ for fitness function 0.05
Ideal dimension for dimension index 20

5.7 Results and Discussion

Different semantic similarity measures proposed by Lin (simL) [152],

Leacock and Chodorow (simLC) [151], and Resnik (simR) [154] are used to assess the

performance of our semantic similarity measure (simO) that has been built according

to the Jiang and Conrath semantic similarity measure [153]. The average results of

the 250 query GO terms, as shown in Table 5.2, show that simO provides the best

values of recall, precision, and maximum value of fitness function, i.e., 70.35%,

 77

83.80%, and 1,034.02 respectively. However, the earliest number of generations to

converge is obtained by simLC which converged as early as after 470 generations.

Again, the best processing time (0.10 seconds) is obtained by simLC. Table 5.3 shows

an example of comparison of different semantic similarity measures in which each

GO term is matched with “organelle inner membrane” (GO:0019866): the term

similarity score is given in percentage. GO terms such as “infected host cell surface

knob” (GO:0020030), “host cell nucleus” (GO:0042025), and “membrane-bound

organelle” (GO:0043227) are detected by simO whereas these are not detected by the

other semantic similarity measures. Furthermore, the term similarity score for simO is

higher than the other semantic similarity measures.

Table 5.2: Comparison of genetic similarity algorithm with different semantic

similarity measures.

Item simO simL simLC simR
gbest 540 610 470 490
CPU time 0.13 0.16 0.10 0.11
max{f(x)} 1,034.02 945.58 889.08 827.10
Recall 70.35 66.43 64.71 62.50
Precision 83.80 78.19 74.92 69.93

To examine the sensitivity of parameters α and β, different combinations of

parameters α and β are analyzed. Based on the average results of the 250 query GO

terms, the results from Table 5.4 confirm that the combination of α = 0.5 and β = 0.3,

used in this study as shown in Table 5.1, outperform other combinations. In the

meantime, in order to justify the need for executing the genetic similarity algorithm

on a low-cost PC cluster, the effect of using different numbers of processors in the

low-cost PC cluster is analyzed. The effects on the following factors are studied:

processing time, number of generations to converge, maximum value of fitness

function, recall, and precision. The average results of the 250 query GO terms,

shown in Table 5.5, show that a cluster of 25 processors is the ideal solution to

handle the computational problem. Five factors, particularly the processing time,

were highly affected if more processors were removed. Otherwise, additional

processors only slightly affected those factors.

Table 5.3: An example of comparison of different semantic similarity measures.

GO term accession number GO term name simO simL simLC simR
GO:0005652 nuclear lamina 5.7 4.0 3.4 2.3
GO:0005787 signal peptidase complex 5.8 4.1 3.6 2.3
GO:0009528 plastid inner membrane 16.1 7.7 6.5 4.3
GO:0009529 plastid intermembrane space 1.6 1.1 0.9 0.5
GO:0009536 plastid 9.1 5.8 2.7 0.5
GO:0016023 cytoplasmic membrane-bound vesicle 6.5 4.3 2.1 0.5
GO:0017090 meprin A complex 5.8 3.0 2.6 2.3
GO:0019815 B cell receptor complex 6.5 3.3 3.0 2.9
GO:0019866 organelle inner membrane 100.0 100.0 100.0 89.0
GO:0019867 outer membrane 7.8 7.5 6.0 4.9
GO:0020006 parasitophorous vacuolar membrane network 4.0 2.3 1.9 1.7
GO:0020007 apical complex 2.2 2.0 1.7 1.1
GO:0020016 flagellar pocket 2.2 1.9 1.0 0.5
GO:0020030 infected host cell surface knob 2.8 0.0 0.0 0.0
GO:0020031 polar ring of apical complex 1.8 1.4 1.3 1.1
GO:0030134 ER to Golgi transport vesicle 3.9 2.8 1.4 0.5
GO:0030386 ferredoxin:thioredoxin reductase complex 1.6 1.1 0.9 0.5
GO:0031090 organelle membrane 12.4 10.1 8.6 3.0
GO:0031300 intrinsic to organelle membrane 8.8 5.5 4.8 3.0
GO:0031471 ethanolamine degradation polyhedral organelle 1.6 1.2 0.9 0.5
GO:0042025 host cell nucleus 5.1 0.0 0.0 0.0
GO:0042601 endospore-forming forespore 1.8 1.6 1.5 1.1
GO:0042995 cell projection 6.4 5.0 4.2 1.1
GO:0043227 membrane-bound organelle 12.7 0.0 0.0 0.0
GO:0043231 intracellular membrane-bound organelle 13.8 8.2 4.0 0.5

 78

79

Table 5.4: The effects of different combinations of parameters α and β on the values

of the recall (r), precision (p), and maximum value of fitness function (f).

Parameter β for local network density factor Parameter α
for depth

factor β = 1.0 β = 0.7 β = 0.5 β = 0.3 β = 0.0

α = 2.0
r = 67.97
p = 81.42
f = 796.70

r = 68.19
p = 81.64
f = 818.35

r = 68.63
p = 82.08
f = 862.61

r = 68.85
p = 82.30
f = 884.79

r = 67.37
p = 80.82
f = 736.53

α = 1.5
r = 68.88
p = 82.33
f = 887.32

r = 69.79
p = 83.24
f = 978.32

r = 69.80
p = 83.25
f = 979.31

r = 70.16
p = 83.61
f = 1,015.50

r = 68.03
p = 81.48
f = 802.84

α = 1.0
r = 69.14
p = 82.58
f = 912.77

r = 69.81
p = 83.26
f = 980.03

r = 69.94
p = 83.39
f = 993.91

r = 70.27
p = 83.72
f = 1,026.49

r = 68.40
p = 81.85
f = 839.83

α = 0.5
r = 69.35
p = 82.80
f = 934.13

r = 69.93
p = 83.38
f = 992.78

r = 70.04
p = 83.49
f = 1,003.12

r = 70.35
p = 83.80
f = 1,034.02

r = 68.66
p = 82.11
f = 865.45

α = 0.0
r = 67.02
p = 80.47
f = 701.46

r = 67.65
p = 81.10
f = 764.67

r = 67.76
p = 81.21
f = 775.71

r = 68.68
p = 82.13
f = 867.52

r = 66.94
p = 80.39
f = 693.96

Table 5.5: The effects of different number of processors used on the performance of

the genetic similarity algorithm.

Number of processors Item 5 10 15 20 25 30
gbest 690 660 610 580 540 540
CPU time 2,372.37 1,053.85 374.96 68.07 0.13 0.12
max{f(x)} 717.05 781.18 836.51 898.62 1,034.02 1,034.09
Recall 67.26 67.72 68.40 69.53 70.35 70.39
Precision 80.22 81.08 81.69 82.55 83.80 83.86

To prove the capability of the basic UTMGO that uses the genetic similarity

algorithm as its intelligent engine, its output is compared with other GO browsers.

The comparison is done with keyword-based GO browsers such as AmiGO

(developed by the GO Consortium), GenNav (developed by the US NLM), QuickGO

(developed by the EBI), and TAIR Keyword Browser (developed by the TAIR), and

also with semantic similarity-based GO browsers such as DynGO [105] and

FuSSiMeG [166]. The performance is shown in Table 5.6 for the average results of

the 250 query GO terms. Hence, the basic UTMGO showed better recall and

precision, but the AmiGO gives the best processing time (0.11 seconds) which is

 80

0.02 seconds faster than the basic UTMGO. Nevertheless, the AmiGO provides the

lowest recall (54.96%) and its precision is 21.96% lower than the basic UTMGO.

The results also show that the semantic similarity-based GO browsers outmatched

the keyword-based GO browsers in terms of recall and precision. An example of a

query that is based on “DNA binding” (GO:0003677) as the input GO term is shown

in Table 5.7 (for the first 10 returned GO terms). Our semantic similarity measure is

used to calculate the term similarity score: the value is given in percentage. The

results from Table 5.7 show that all GO terms with term similarity score equal or

higher than “DNA replication origin binding” (GO:0003688, 8.6%) are returned and

descendingly sorted by the basic UTMGO. The results generated by the semantic

similarity-based GO browsers are attractive because they return GO terms that do not

comprise keywords associated with the query GO term. For example, “transcription

factor activity” (GO:0003700), “endonuclease activity” (GO:0004519), and “protein

kinase activity” (GO:0004672) are returned by the basic UTMGO, DynGO, and

FuSSiMeG respectively.

Table 5.6: Comparison of performance between basic UTMGO and other keyword-

based and semantic similarity-based GO browsers.

GO Browser Recall Precision CPU time
basic UTMGO 70.35 83.80 0.13
DynGO 67.88 75.04 0.19
FuSSiMeG 70.26 79.41 0.23
AmiGO 54.96 61.84 0.11
GenNav 56.78 60.92 0.16
QuickGO 57.39 60.43 0.22
TAIR Keyword Browser 56.08 61.12 0.15

Table 5.7: An example of comparison between basic UTMGO and other keyword-based and semantic similarity-based GO browsers.

basic UTMGO DynGO FuSSiMeG AmiGO
Rank GO term

accession number SSMO
GO term

accession number SSMO
GO term

accession number SSMO
GO term

accession number SSMO

1 GO:0003677 100.0 GO:0003677 100.0 GO:0003677 100.0 GO:0003680 5.4
2 GO:0003676 52.1 GO:0005524 13.2 GO:0003676 52.1 GO:0050692 1.9
3 GO:0003723 24.6 GO:0005515 13.0 GO:0004672 7.4 GO:0003677 100.0
4 GO:0005524 13.2 GO:0003688 8.6 GO:0003697 11.1 GO:0051880 2.5
5 GO:0005515 13.0 GO:0008534 3.0 GO:0008270 10.3 GO:0003681 4.2
6 GO:0003700 13.0 GO:0003691 3.7 GO:0005515 13.0 GO:0019237 4.6
7 GO:0003684 11.4 GO:0031490 3.6 GO:0019237 4.6 GO:0031490 3.6
8 GO:0003697 11.1 GO:0003681 4.2 GO:0003908 3.3 GO:0003684 11.4
9 GO:0008270 10.3 GO:0050692 1.9 GO:0042162 6.0 GO:0003690 8.6
10 GO:0003688 8.6 GO:0004519 5.7 GO:0003682 5.8 GO:0003691 3.7

basic UTMGO GenNav QuickGO TAIR Keyword Browser
Rank GO term

accession number SSMO
GO term

accession number SSMO
GO term

accession number SSMO
GO term

accession number SSMO

1 GO:0003677 100.0 GO:0003680 5.4 GO:0003677 100.0 GO:0003680 5.4
2 GO:0003676 52.1 GO:0003681 4.2 GO:0006260 3.4 GO:0003677 100.0
3 GO:0003723 24.6 GO:0019237 4.6 GO:0051880 2.5 GO:0003681 4.2
4 GO:0005524 13.2 GO:0031490 3.6 GO:0003899 5.3 GO:0003684 11.4
5 GO:0005515 13.0 GO:0003684 11.4 GO:0003887 5.0 GO:0003690 8.6
6 GO:0003700 13.0 GO:0050692 1.9 GO:0050692 1.9 GO:0003691 3.7
7 GO:0003684 11.4 GO:0003677 100.0 GO:0003908 3.3 GO:0003692 4.6
8 GO:0003697 11.1 GO:0003690 8.6 GO:0003964 6.6 GO:0003695 3.1
9 GO:0008270 10.3 GO:0003691 3.7 GO:0008534 3.0 GO:0000182 4.9
10 GO:0003688 8.6 GO:0051880 2.5 GO:0003886 3.0 GO:0003696 5.2

 81

82

The search results have indicated that the basic UTMGO is able to find a

group of semantically similar GO terms with higher recall and precision and

reasonable processing time as compared to other semantic similarity-based GO

browsers such as DynGO [105] and FuSSiMeG [166]. Furthermore, as compared to

other keyword-based GO browsers such as AmiGO (http://godatabase.org/), GenNav

(http://mor.nlm.nih.gov/perl/gennav.pl), QuickGO (http://www.ebi.ac.uk/ego/), and

TAIR Keyword Browser (http://www.arabidopsis.org/servlets/Search?action=

new_search&type=keyword), the basic UTMGO is capable of finding GO terms that

do not contain the keyword specified by the user and with higher recall and

precision.

5.8 Summary

A genetic similarity algorithm is introduced in this chapter to find a group of

semantically similar GO terms. The genetic similarity algorithm combines semantic

similarity measure algorithm with parallel genetic algorithm. The semantic similarity

measure algorithm is used to compute the similitude strength between the GO terms.

Then, the parallel genetic algorithm is employed to perform batch retrieval and to

accelerate the search in large search space of the GO graph. The genetic similarity

algorithm is implemented in the GO browser named basic UTMGO to overcome the

weaknesses of the existing GO browsers which use a conventional approach based

on keyword matching. The computational results and comparison with other related

GO browsers are presented to show the effectiveness of the genetic similarity

algorithm and the basic UTMGO.

CHAPTER 6

extended UTMGO: A GENE ONTOLOGY-BASED

PROTEIN SEQUENCE ANNOTATION TOOL

6.1 Introduction

As outlined by the EBI, annotation of an anonymous protein sequence should

be inferred from annotations of the nucleotide sequences, analogies with already

understood proteins, plus references to patterns and motifs as characteristics of

particular protein functions. Annotation of anonymous protein sequences is

important for the preservation and reuse of knowledge and for content-based queries.

The traditional wet-lab methods are labor intensive and prone to human error. On the

other hand, the sequence-similarity-based tools like BLAST are time intensive and

require high investment in computing facilities such as cluster server or grid

computing if being used locally. Furthermore, for remote users, these tools are

subject to internet stability and speed to access the tools and to get the results online.

Therefore, a simple and practical method that is capable of producing better results

and requires a reasonable amount of running time with low computing cost

specifically for offline usage is needed.

In the last few years, the GO terms have been widely used to annotate various

protein sets such as in NOPdb [167], a database of nucleolar proteome; SCOPPI

[168], a database of protein domain-domain interactions; DRTF [169], a database of

 84

rice transcription factor; and MolMovDB [170], a database of macromolecular

motions. In addition, GO terms have been successfully implemented in large-scale

protein annotation projects involving SWISS-PROT, TrEMBL, and InterPro

databases [102]. The GO is a project to provide a rich and comprehensive unified

vocabulary to describe genes and their functions and products. Currently the GO

comprises more than 22 thousand terms and is updated every 30 minutes, which tally

with the growth activities in the bioinformatics field. The advantages of using the

GO are as follows: the GO data is dynamic and constantly evolves according to the

advances in current state of biological knowledge; the GO data is publicly available

and can be downloaded at any time from the WWW in MySQL, RDF/XML,

OBO/XML, and OWL formats that can be understandable and processable by human

and machine alike; the common GO terms shared by gene and protein sequences in

multiple organisms in different databases can facilitate uniform queries across them;

and the association of GO terms with nearly 2.5 million gene products supported by

the evidence and citation can affirm its reliability for future evaluation and use. The

link between the GO terms and gene products is provided by the GOA. In the GOA

project, electronic mappings and manual curation are used to assign the GO terms to

all proteomes existing in the UniProt, Ensembl, and other organism databases. It

covers 2.3 million protein sequences from 0.26 million species.

However, application of the GO terms to annotate anonymous protein

sequences is not easy, especially for species not yet inserted in public biological

databases. Furthermore, for bioscientists with little computational knowledge or

limited facilities it is a hard task to annotate those anonymous protein sequences. The

difficulties arise because generally the existing GO-based tools are (1) dependent on

BLAST which is computationally intensive and requires high-cost and high-

specification hardware since sequence alignment is performed to all protein

sequences but not only to protein sequences that indicate higher similarity, (2)

dependent on RDBMS which require the user to setup the RDBMS software and to

import the data or sources into the RDBMS format, and (3) partially based on the GO

data which requires the user to download the GOA data or protein sequence data sets

from several sources.

 85

Therefore, in this chapter, a new way of applying the GO terms to annotate

anonymous protein sequences is introduced. The GO-based method consists of three

main components. In the first component, the single monolithic GO RDF/XML file

is split into smaller files. It is carried out to avoid dependency on RDBMS format, to

provide all-in-one source by adding protein sequences and IEA evidence associations

into the files since they are not included in the original GO RD/XML file, and to

make the GO data easily accessible and processable. In the second component, the

main focus of this chapter, semantic similarity search is performed over the smaller

GO RDF/XML files. The target is to find a group of semantically similar GO terms

with higher term similarity score to a GO term which is foreseen to have higher

relationship with the query protein sequence. Lastly, the results obtained from the

second component are verified by computing sequence alignment score between the

query protein sequence and all protein sequences attached to those GO terms. With

this GO-based method, sequence alignment is carried out only to protein sequences

with higher outguessed similarity. Hence, demand for high computational facilities

and execution time can be reduced. A GO-based tool named extended UTMGO is

developed to demonstrate the GO-based method. The extended UTMGO employs a

GO browser named basic UTMGO (refer to Chapter 5) for implementing the second

component. The JAligner engine (http://jaligner.sourceforge.net/) that uses the

Smith-Waterman algorithm has been integrated and modified to perform the

sequence alignment and to comply with the extended UTMGO. The flow of the

extended UTMGO can be summarized as shown in Figure 6.1.

The rest of this chapter is organized as follows. Section 6.2 presents existing

tools for annotating anonymous protein sequences. Section 6.3 gives the step-by-step

description of the extended UTMGO. Section 6.4 explains the testing environment

and evaluation measures used to validate the extended UTMGO. Section 6.5 presents

experimental results and discussion and is followed by summary in Section 6.6.

 86

Input:
Anonymous

protein sequence

The basic UTMGO for searching
a group of semantically similar
GO terms. The GO terms are
returned together with their

associated protein sequences.

The JAligner engine to verify the
results returned by the basic

UTMGO. The verification is done
by computing and then analyzing

the sequence alignment score
between the query anonymous

protein sequence and all protein
sequences attached to the returned

GO terms.

Output:
Predicted GO terms
that can be used for

annotation of the
query anonymous
protein sequence

All-in-one source that includes
protein sequences and IEA and non-
IEA evidence associations. Note that,
the original single GO RDF/XML file
comes without protein sequences and

IEA evidence associations.

Database:
A set of smaller
GO RDF/XML

files

End

Start

Figure 6.1: The flowchart of the extended UTMGO.

6.2 Related Work

Several tools have been developed in recent years to annotate anonymous

protein sequences in accordance with the GO terms. The generally used tools

include:

(i) GoFigure [171] is a tool that accepts an unknown DNA or protein

sequence as an input and then uses BLAST to predict the GO terms by

identifying homologous sequences in the GO annotated databases.

 87

(ii) GOtcha [172] is a tool that provides a prediction of a set of GO terms

for a given query sequence (DNA or protein). BLAST is used to get

the initial score of each GO term and the scores are calibrated against

term-specific probability (P-score) to give higher accuracy.

(iii) GOPET [173] is an automated annotation tool for assigning the GO

terms to cDNA or protein query sequences. It uses BLAST to perform

homology searches against GO-mapped protein databases, and

support vector machines for the prediction and the assignment of

confidence values.

(iv) JAFA [174] is a meta-server that uses several function prediction

programs such as GoFigure, GOtcha, GOblet [175], Phydbac [176],

and InterProScan [177]. It accepts a protein sequence and returns the

predicted GO terms with prediction score that is based on the ratio of

agreeing servers.

However, as mentioned earlier in the previous section, for offline usage, these tools

are difficult to configure and use, especially by bioscientists. The tools also require

an expensive high performance computing environment. Whereas, for online usage,

they depend on internet stability and speed.

6.3 The extended UTMGO

The operation of the extended UTMGO is divided into two cases: with

(Option 1) or without (Option 2) a GO term entered by the user as shown in Figure

6.2 and 6.3 respectively. An example of the query anonymous protein sequence used

to demonstrate the extended UTMGO is as follows:

MVRGKTQMKRIENPTSRQVTFSKRRNGLLKKAFELSVLCDAEVALIV

FSPRGKLYEFASASTQKTIERYRTYTKENIGNKTVQQDIEQVKADADG

LAKKLEALETYKRKLLGEKLDECSIEELHSLEVKLERSLISIRGRKTKL

LEEQVAKLREKEMKLRKDNEELREKCKNQPPLSAPLTVRAEDENPDR

NINTTNDNMDVETELFIGLPGRSRSSGGAAEDSQAMPHS

 88

This protein sequence belongs to “MADS50” (MADS-box transcription factor 50,

GR:Q9XJ60), an Oryza sativa species obtained from the Gramene database. The

extended UTMGO, as shown in Figure 6.1, consists of the following steps:

(i) Get an anonymous protein sequence, the number of GO terms to be

returned Nt, a term similarity threshold, the number of protein

sequences associated with each GO term to be returned Ns, and

optionally a GO term from the user.

(ii) If the GO term is null, then go to step (iii), otherwise, go to step (vi).

(iii) Get the input from the user for appropriate species, matrix type either

Blocks Substitution Matrix (BLOSUM) or Point Accepted Mutations

(PAM), and open and extend gap penalties to restrict the search.

(iv) Perform the sequence similarity search for the query anonymous

protein sequence from step (i). The search is carried out for protein

sequences from the fragmented GO RDF/XML files that are related to

the molecular function terms. The output is a protein sequence with

the highest sequence alignment score. The JAligner engine is used to

perform the sequence similarity search.

(v) Select a molecular function term with the highest association with the

protein sequence obtained in step (iv) for the next step. If there is

more than one term, the user has to make the selection.

(vi) Submit the GO term either from step (i) or step (v) to the basic

UTMGO and then perform semantic similarity search.

(vii) Return Nt GO terms with the term similarity score higher than the

term similarity threshold, as set in step (i), together with protein

sequences associated with them.

(viii) Calculate sequence alignment score between the query anonymous

protein sequence and all protein sequences for each GO term obtained

from the previous step using the JAligner engine. The information

displayed to the user is the same as in the basic UTMGO: the GO

term accession number and its short description, category, and term

similarity score. Additional information given is arithmetic mean,

standard deviation, and the largest value of the sequence alignment

score of Ns number of protein sequences with higher sequence

alignment score that is attached to the GO term.

Figure 6.2: A screenshot of the extended UTMGO with a GO term entered by the user (Option 1). 89

Figure 6.3: A screenshot of the extended UTMGO without a GO term entered by the user (Option 2). 90

 91

6.4 Testing Preparation and Evaluation Measures

The GO data released in January 2007 as shown in Table 2.1 is used to test

the extended UTMGO. The computer used is a low-cost PC cluster, HP d530 with 25

processors. The low-cost PC cluster is implemented using MPICH2 libraries under

Fedora Core 2 running on Pentium IV 2.8GHz of processor, 512MB of memory, and

100Mbps of network speed. This setup is the minimum requirement for offline usage

if the user wants to install and use the extended UTMGO locally. However, for

online usage, the extended UTMGO can be accessed remotely via the internet like

other online bioinformatics tools. But currently these tools are not ready for online

usage and will be opened for public soon.

In case of data sets, a total of 200 protein sequences from the GO annotated

databases were used as input. These protein sequences were selected randomly with

50 protein sequences from Gramene, a database of Oryza sativa; 50 protein

sequences from Ensembl, a database of Homo sapiens; 50 protein sequences from

SGD, a database of Saccharomyces cerevisiae; and 50 protein sequences from TAIR,

a database of Arabidopsis thaliana. Same as with the basic UTMGO, the extended

UTMGO uses recall (refer to Equation 5.15) and precision (refer to Equation 5.16) to

validate its effectiveness.

6.5 Results and Discussion

The comparison between the extended UTMGO and the other GO-based

protein sequence annotation tools such as GoFigure [171], GOtcha [172], GOPET

[173], and JAFA [174] is shown in Table 6.1. The comparison is based on the

average results of the 200 query protein sequences that are selected randomly from

the GO annotated databases as mentioned earlier in Section 6.4. Thus, the extended

UTMGO provides a better precision (90.32%) and the JAFA offers a better recall

 92

(88.80%) which is just 0.87% higher than the extended UTMGO. However, the

JAFA provides the slowest processing time (518.22 seconds) and its precision is

3.55% lower than the extended UTMGO. The best processing time is 163.79 seconds

that is taken by the extended UTMGO. An example query that is based on

“MADS50” (MADS-box transcription factor 50, GR:Q9XJ60) as the input protein

sequence is shown in Table 6.2 (for the top 10 predicted GO terms). The average and

the maximum values of the sequence alignment score (avg and max) for the protein

sequences associated with the predicted GO terms are used as an indicator to assess

these tools, because quality of the results depends on the sequence alignment score

between the query anonymous protein sequence and the protein sequences associated

with the predicted GO terms. Thus, higher is better. As depicted in Table 6.2, all the

GO terms with the average sequence alignment score equal or higher than “RNA

polymerase II transcription factor activity” (GO:0003702, avg = 175.4) are returned

by the extended UTMGO. However, even though the average sequence alignment

scores for “flower development” (GO:0009908, avg = 113.0) and “cytoplasm”

(GO:0005737, avg = 93.8) are higher than “actin binding” (GO:0003779, avg =

87.8), they are out of the extended UTMGO radar since their term similarity scores

are 0.9% and 0.6% respectively. These term similarity scores are lower than the term

similarity threshold (1.0%) set for this testing session. Moreover, as shown in Table

6.2, all GO terms with the highest value of the maximum of sequence alignment

score (1,153) are returned by the extended UTMGO. Note that although GO terms

such as “positive regulation of transcription from RNA polymerase II promoter”

(GO:0045944, max = 153), “DNA bending activity” (GO:0008301, max = 153), and

“regulation of transcription from RNA polymerase II promoter” (GO:0006357, max

= 151) have the maximum of sequence alignment score higher than “actin binding”

(GO: 0003779, max = 92), but they are not ranked as the predicted GO terms by the

extended UTMGO. The reason is that their average sequence alignment score is

lower than the value for “actin binding” (GO: 0003779).

 The experimental results have shown that the extended UTMGO has the

capability of annotating anonymous protein sequences with higher precision and

recall with quicker processing time as compared to other GO-based protein sequence

annotation tools such as GoFigure [171], GOtcha [172], GOPET [173], and JAFA

[174]. The protein sequences associated with the predicted GO terms that are

 93

returned by the extended UTMGO also have higher sequence alignment score to the

query anonymous protein sequence. In addition, the extended UTMGO does not

depend on BLAST and RDBMS and is fully based on the GO data.

Table 6.1: Comparison of performance between extended UTMGO and other GO-

based protein sequence annotation tools.

GO-based protein
sequence

annotation tool
Recall Precision CPU time

extended UTMGO 87.93 90.32 163.79
GoFigure 83.15 84.09 195.48
GOtcha 83.62 84.63 302.11
GOPET 86.39 85.31 270.82
JAFA 88.80 86.77 518.22

6.6 Summary

The GO terms have been actively used to annotate various protein sets.

SWISS-PROT, TrEMBL, and InterPro are protein databases that are annotated

according to the GO terms. However, direct implementation of the GO terms for

annotation of anonymous protein sequences is not easy, especially for species not

commonly represented in biological databases. Therefore, in this chapter, the

structure of the basic UTMGO is extended to develop a GO-based protein sequence

annotation tool named extended UTMGO. The objective of developing the extended

UTMGO is to provide a simple and practical tool that is capable of producing better

results and requires a reasonable amount of running time with low computing cost

specifically for offline usage. The extended UTMGO uses the GO terms together

with protein sequences associated with the terms to perform the annotation task.

Other GO-based protein sequence annotation tools such as GoFigure, GOtcha,

GOPET, and JAFA have been used to compare the performance of the extended

UTMGO.

Table 6.2: An example of comparison between extended UTMGO and other GO-based protein sequence annotation tools.

extended UTMGO GoFigure GOtcha
Rank GO term

accession number
Sequence

alignment score
GO term

accession number
Sequence

alignment score
GO term

accession number
Sequence

alignment score

1 GO:0003700 avg = 694.8
max = 1,153 GO:0003700 avg = 694.8

max = 1,153 GO:0003677 avg = 577.6
max = 1,153

2 GO:0006355 avg = 686.0
max = 1,153 GO:0003677 avg = 577.6

max = 1,153 GO:0030528 avg = 0.0
max = 0

3 GO:0005634 avg = 604.0
max = 1,153 GO:0007275 avg = 0.0

max = 0 GO:0003700 avg = 694.8
max = 1,153

4 GO:0003677 avg = 577.6
max = 1,153 GO:0009908 avg = 113.0

max = 565 GO:0006139 avg = 0.0
max = 0

5 GO:0005739 avg = 526.4
max = 1,153 GO:0006350 avg = 0.0

max = 0 GO:0006350 avg = 0.0
max = 0

6 GO:0005515 avg = 441.4
max = 537 GO:0006355 avg = 686.0

max = 1,153 GO:0006355 avg = 686.0
max = 1,153

7 GO:0042802 avg = 244.8
max = 382 GO:0005634 avg = 604.0

max = 1,153 GO:0005622 avg = 38.6
max = 101

8 GO:0003713 avg = 195.6
max = 204 - - GO:0008233 avg = 29.6

max = 148

9 GO:0003702 avg = 175.4
max = 204 - - GO:0005215 avg = 17.0

max = 85

10 GO:0003779 avg = 87.8
max = 92 - - GO:0005737 avg = 93.8

max = 134

 94

extended UTMGO GOPET JAFA
Rank GO term

accession number
Sequence

alignment score
GO term

accession number
Sequence

alignment score
GO term

accession number
Sequence

alignment score

1 GO:0003700 avg = 694.8
max = 1,153 GO:0006355 avg = 686.0

max = 1,153 GO:0045944 avg = 86.4
max = 153

2 GO:0006355 avg = 686.0
max = 1,153 GO:0003677 avg = 577.6

max = 1,153 GO:0006657 avg = 0.0
max = 0

3 GO:0005634 avg = 604.0
max = 1,153 GO:0003700 avg = 694.8

max = 1,153 GO:0004402 avg = 0.0
max = 0

4 GO:0003677 avg = 577.6
max = 1,153 GO:0006139 avg = 0.0

max = 0 GO:0008362 avg = 0.0
max = 0

5 GO:0005739 avg = 526.4
max = 1,153 GO:0006350 avg = 0.0

max = 0 GO:0007144 avg = 0.0
max = 0

6 GO:0005515 avg = 441.4
max = 537 GO:0045944 avg = 86.4

max = 153 GO:0007129 avg = 36.2
max = 92

7 GO:0042802 avg = 244.8
max = 382 GO:0006357 avg = 85.2

max = 151 GO:0007020 avg = 19.0
max = 95

8 GO:0003713 avg = 195.6
max = 204 GO:0003936 avg = 0.0

max = 0 GO:0007004 avg = 0.0
max = 0

9 GO:0003702 avg = 175.4
max = 204 GO:0008301 avg = 57.4

max = 153 GO:0007015 avg = 20.2
max = 101

10 GO:0003779 avg = 87.8
max = 92 - - GO:0006430 avg = 16.6

max = 83

95

CHAPTER 7

CONCLUSION

7.1 Concluding Remarks

Protein sequence annotation is pivotal for the understanding of its function.

Accuracy of manual annotation provided by curators is still questionable by having

lesser evidence strength and yet a hard task and time consuming. A number of

computational methods including tools have been developed to tackle this

challenging task. However, particularly for offline usage, these tools are difficult to

configure and use, especially by bioscientists. The tools also require an expensive

high performance computing environment, require the user to setup the RDBMS

software and to import the data or sources into the RDBMS format every time the

data is updated, require the user to download relevant data from multiple sources,

and depend on time intensive and blind sequence similarity search like BLAST.

Whereas, for online usage, they depend on internet stability and speed. Therefore, the

goal of this study is to introduce a new computational method for assigning highly

correlated GO terms of annotated protein sequences to partially annotated or newly

discovered protein sequences. This computational method is fully based on GO data

and annotations. Two problems were identified to achieve this GO-based method.

The first problem relates to splitting the monolithic GO RDF/XML file into a set of

smaller files that can be easy to assess and process. Thus, these files can be enriched

with protein sequences and IEA evidence associations. This automatic clustering

 97

problem has been solved by the genetic split-merge algorithm. The second problem

involves searching for a group of semantically similar GO terms that match to the

query GO term. The genetic similarity algorithm has been proposed to resolve this

semantic similarity searching problem. The GO-based protein sequence annotation

tool namely extended UTMGO has been introduced to demonstrate the capabilities of

the proposed GO-based method. Furthermore, its basic version which is a GO

browser that is based on semantic similarity search has also been introduced.

As mentioned earlier in Chapter 3, the methodology of this study is structured

in three phases. In the first phase, as discussed in Chapter 4, the monolithic GO

RDF/XML file is split into smaller files in order to reduce difficulties in maintaining,

publishing, validating, and processing the file. To split the GO RDF/XML file, the

GO terms have been grouped into a number k of clusters. Thence, this study has

shown that clustering the GO terms can be modeled as the GPP. The GPP has been

solved by the genetic split-merge algorithm that combines the parallel genetic

algorithm and the split-and-merge algorithm. The parallel genetic algorithm has been

used to find the best combination of node-cluster. On the other hand, the split-and-

merge algorithm has been applied to identify the best number k of clusters kbest.

During the clustering process, the genetic split-merge algorithm has employed

cohesion-and-coupling metric as a criterion to measure the goodness of the generated

clusters. The dependency index γ has been introduced to avoid the genetic split-

merge algorithm from producing problematic clusters with either undersized or

oversized number of elements. Unlike any other clustering algorithm, the proposed

algorithm with the split-and-merge strategy can automatically find the best number k

of clusters kbest. Compared to other automatic clustering algorithms, the genetic split-

merge algorithm is capable of producing balanced clusters. The experimental results

have shown that the genetic split-merge algorithm requires reasonable amount of

execution time and the generated clusters have better DBI and F-measure values

compared to the existing algorithms. Furthermore, the users are allowed to set the

minimum number k of clusters kmin they wish to maintain.

In the second phase, as discussed in Chapter 5, the basic UTMGO is based on

the genetic similarity algorithm. It is a combination of genetic and semantic

similarity search, and has been presented as an alternative way of searching the GO

 98

terms. The search is done by determining a group of semantically similar GO terms

that are related to the query GO term. The semantic similarity search is not based on

keyword matching but is based on the degree of relationships between the GO terms.

A gene product that is associated with one or more GO terms is used as a foundation

to compute the amount of information the GO terms share in common that gives the

degree of relationships. In the meantime, the genetic search plays the main role in

finding a set of GO terms from the large GO graph. The search results have indicated

that the basic UTMGO is able to find a group of semantically similar GO terms with

higher recall and precision and reasonable processing time as compared to other

existing GO browsers.

Lastly, in the third phase, as discussed in Chapter 6, the usefulness of the

basic UTMGO has been shown by its extended version. The extended UTMGO has

the capability of annotating anonymous protein sequences with higher precision and

recall with quicker processing time. The protein sequences associated with the

predicted GO terms that are returned by the extended UTMGO also have higher

sequence alignment score to the query anonymous protein sequence. In addition, the

extended UTMGO does not depend on BLAST and RDBMS and is fully based on

the GO data.

7.2 Contributions

As described earlier in the previous section, the contributions of this study

can be summarized as follows:

(i) In Chapter 4, the genetic split-merge algorithm has been introduced as

an automatic clustering algorithm. The algorithm is specifically

designed for ontology clustering by combining the parallel genetic

algorithm with the split-and-merge algorithm.

(ii) In Chapter 5, the genetic similarity algorithm has been introduced as a

semantic similarity searching algorithm. The algorithm is specifically

 99

designed for ontology searching by combining the parallel genetic

algorithm with the semantic similarity measure algorithm.

(iii) In Chapter 5, the basic UTMGO has been developed as a semantic

similarity-based GO browser. The tool is specifically developed for

finding a group of semantically similar GO terms for a given query

GO term.

(iv) In Chapter 6, the extended UTMGO has been developed as a GO-

based protein sequence annotation tool. The tool is specifically

developed for finding a group of GO terms which are predicted to

have higher relationship with the query anonymous protein sequence

that can be used for annotation of the query anonymous protein

sequence.

7.3 Future Works and Constraints

Future work for the genetic split-merge algorithm and the genetic similarity

algorithm is to develop an adaptive mechanism that is capable of automatically

determining the optimal values of genetic algorithm parameters such as crossover

probability, mutation probability, and replacement percentage. This is due to the fact

that the most suitable combination of parameters for one problem or data set is not

always optimal for others. Therefore, these parameters should be tuned whenever the

problem or data set changes. Particularly for the genetic split-merge algorithm, an

improvement to be considered is to use semantic similarity measure during the

calculation of the degree of interaction between GO terms by the cohesion-and-

coupling metric. On the other hand, for the genetic similarity algorithm, further

improvement includes taking the known correlations among GO terms into

consideration in the calculation of the conceptual distance.

Future improvements in the basic and extended UTMGO are to provide the

user with free text typing during entering the GO term and to develop a thesaurus for

 100

the user to check the predicted annotation. Specifically for the basic UTMGO, future

development direction is to implement it to predict protein function and protein-

protein interactions. For extended UTMGO, additional enhancement includes the

ability to support more than one protein sequence per query and to accept DNA

sequence as an input.

 Some constraints identified in this study are as follows: Determining which

GO terms are relevant using Equations 5.15 and 5.16 from over 20 thousand GO

terms is not an easy task to execute, especially when what is relevant can be very

subjective. A ranking function that determines the ordering of the query results, in

order to determine how relevant a GO term is, is required for a basic calculation to

accurately estimate the recall and precision. In the meantime, as the size of the GO

increases, additional computing resources are required to provide faster results.

Understanding of the GO terms and their properties by the users is also required in

order for them to use the basic and the extended UTMGO efficiently.

7.4 Summary

In this chapter, we concluded our study and presented the contributions to

solve the problems of browsing the GO terms and annotating the protein sequence.

The chapter ended with proposing some directions for further research works.

LIST OF RELATED PUBLICATIONS

No Journal
Related

Chapters

1 Othman R. M., Deris S., and Illias R. M. Computational Method

for Annotation of Protein Sequence According to Gene

Ontology Terms. International Journal of Biomedical Sciences.

2006. 1(3): 186-199. [a GO Bibliography]

Chapters 1-3

2 Othman R. M., Deris S., Illias R. M., Zakaria Z., and Mohamad

S. M. Automatic Clustering of Gene Ontology by Genetic

Algorithm. International Journal of Information Technology.

2006. 3(1): 37-46. [a GO Bibliography]

Chapter 4

3 Othman R. M., Deris S., and Illias R. M. A Genetic Split-Merge

Algorithm for Splitting the Monolithic Gene Ontology

RDF/XML File. Journal of Biomedical Informatics. Accepted

and revision under review. [impact factor of the journal: 2.388]

Chapter 4

4 Othman R. M., Deris S., Illias R. M., Alashwal H. T., Hassan

R., and Mohamed F. Incorporating Semantic Similarity Measure

in Genetic Algorithm: An Approach for Searching the Gene

Ontology Terms. International Journal of Computational

Intelligence. 2006. 3(3): 257-266. [a GO Bibliography]

Chapter 5

5 Othman R. M., Deris S., and Illias R. M. A Genetic Similarity

Algorithm for Searching the Gene Ontology Terms and

Annotating Anonymous Protein Sequences. Journal of

Biomedical Informatics. DOI: 10.1016/j.jbi.2007.05.010.

[impact factor of the journal: 2.388]

Chapters 5-6

 102

No Journal
Related

Chapters

6 Othman R. M., Deris S., and Illias R. M. UTMGO: A Tool for

Searching a Group of Semantically Related Gene Ontology

Terms and Application to Annotation of Anonymous Protein

Sequence. International Journal of Biomedical Sciences. 2006.

1(2): 111-119. [a GO Bibliography]

Chapters 5-6

REFERENCES

[1] Chinnasamy A., Mittal A., and Sung W. K. Probabilistic Prediction of

Protein-Protein Interactions from the Protein Sequences. Computers in

Biology and Medicine. 2006. 36(10): 1143-1154.

[2] Pireddu L., Szafron D., Lu P., and Greiner R. The Path-A Metabolic Pathway

Prediction Web Server. Nucleic Acids Research. 2006. 34(Web Server Issue):

W714-W719.

[3] Acquaah-Mensah G. K., Leach S. M., and Guda C. Predicting the Subcellular

Localization of Human Proteins Using Machine Learning and Exploratory

Data Analysis. Genomics Proteomics Bioinformatics. 2006. 4(2): 120-133.

[4] Whitfield E. J., Pruess M., and Apweiler R. Bioinformatics Database

Infrastructure for Biotechnology Research. Journal of Biotechnology. 2006.

124(4): 629-639.

[5] Brooksbank C., Cameron G., and Thornton J. The European Bioinformatics

Institute’s Data Resources: Towards Systems Biology. Nucleic Acids

Research. 2005. 33(Database Issue): D46-D53.

[6] Apweiler R., Bairoch A., and Wu C. H. Protein Sequence Databases. Current

Opinion in Chemical Biology. 2004. 8(1): 76-80.

[7] Kretschmann E., Fleischmann W., and Apweiler R. Automatic Rule

Generation for Protein Annotation with the C4.5 Data Mining Algorithm

Applied on SWISS-PROT. Bioinformatics. 2001. 17(10): 920-926.

[8] Wu C. H., Huang H., Yeh L. S., and Barker W. C. Protein Family

Classification and Functional Annotation. Computational Biology and

Chemistry. 2003. 27(1): 37-47.

[9] Gattiker A., Michoud K., Rivoire C., Auchincloss A. H., Coudert E., Lima T.,

Kersey P., Pagni M., Sigrist C. J., Lachaize C., Veuthey A. L., Gasteiger E.,

and Bairoch A. Automated Annotation of Microbial Proteomes in SWISS-

 104

PROT. Computational Biology and Chemistry. 2003. 27(1): 49-58.

[10] Fleischmann W., Moller S., Gateau A., and Apweiler R. A Novel Method for

Automatic Functional Annotation of Proteins. Bioinformatics. 1999. 15(3):

228-233.

[11] Apweiler R., Bairoch A., Wu C. H., Barker W. C., Boeckmann B., Ferro S.,

Gasteiger E., Huang H., Lopez R., Magrane M., Martin M. J., Natale D. A.,

O’Donovan C., Redaschi N., and Yeh L. S. UniProt: The Universal Protein

Knowledgebase. Nucleic Acids Research. 2004. 32(Database Issue): D115-

D119.

[12] Wu C. H., Apweiler R., Bairoch A., Natale D. A., Barker W. C., Boeckmann

B., Ferro S., Gasteiger E., Huang H., Lopez R., Magrane M., Martin M. J.,

Mazumder R., O’Donovan C., Redaschi N., and Suzek B. The Universal

Protein Resource (UniProt): An Expanding Universe of Protein Information.

Nucleic Acids Research. 2006. 34(Database Issue): D187-D191.

[13] Bairoch A., Apweiler R., Wu C. H., Barker W. C., Boeckmann B., Ferro S.,

Gasteiger E., Huang H., Lopez R., Magrane M., Martin M. J., Natale D. A.,

O’Donovan C., Redaschi N., and Yeh L. S. The Universal Protein Resource

(UniProt). Nucleic Acids Research. 2005. 33(Database Issue): D154-D159.

[14] Snyder K. A., Feldman H. J., Dumontier M., Salama J. J., and Hogue C. W.

Domain-Based Small Molecule Binding Site Annotation. BMC

Bioinformatics. 2006. 7: 152.

[15] Koski L. B., Gray M. W., Lang B. F., and Burger G. AutoFACT: An

Automatic Functional Annotation and Classification Tool. BMC

Bioinformatics. 2005. 6: 151.

[16] Jones C. E., Baumann U., and Brown A. L. Automated Methods of Predicting

the Function of Biological Sequences Using GO and BLAST. BMC

Bioinformatics. 2005. 6: 272.

[17] Prlic A., Domingues F. S., Lackner P., and Sippl M. J. WILMA-Automated

Annotation of Protein Sequences. Bioinformatics. 2004. 20(1): 127-128.

[18] Yuan X., Hu Z. Z., Wu H. T., Torii M., Narayanaswamy M., Ravikumar K.

E., Vijay-Shanker K., and Wu C. H. An Online Literature Mining Tool for

Protein Phosphorylation. Bioinformatics. 2006. 22(13): 1668-1669.

[19] Chiang J. H. and Yu H. C. Literature Extraction of Protein Functions Using

Sentence Pattern Mining. IEEE Transactions on Knowledge and Data

 105

Engineering. 2005. 17(8): 1088-1098.

[20] Sigrist C. J. A., Castro E. D., Langendijk-Genevaux P. S., Saux V. L.,

Bairoch A., and Hulo N. ProRule: A New Database Containing Functional

and Structural Information on PROSITE Profiles. Bioinformatics. 2005.

21(21): 4060-4066.

[21] Yu G. X. Ruleminer: A Knowledge System for Supporting High-Throughput

Protein Function Annotations. Journal of Bioinformatics and Computational

Biology. 2004. 2(4): 595-617.

[22] Morbach J., Yang A., and Marquardt W. OntoCAPE—A Large-Scale

Ontology for Chemical Process Engineering. Engineering Applications of

Artificial Intelligence. 2007. 20(2): 147-161.

[23] Williams R. J., Martinez N. D., and Golbeck J. Ontologies for

Ecoinformatics. Journal of Web Semantics: Science, Services and Agents on

the World Wide Web. 2006. 4(4): 237-242.

[24] Naphade M., Smith J. R., Tesic J., Chang S., Hsu W., Kennedy L.,

Hauptmann A., and Curtis J. Large-Scale Concept Ontology for Multimedia.

IEEE Multimedia. 2006. 13(3): 86-91.

[25] Köhler J., Philippi S., Specht M., and Rüegg A. Ontology Based Text

Indexing and Querying for the Semantic Web. Knowledge-Based Systems.

2006. 19(8): 744-754.

[26] Hess C. and Schlieder C. Ontology-Based Verification of Core Model

Conformity in Conceptual Modeling. Computers, Environment, and Urban

Systems. 2006. 30(5): 543-561.

[27] Pérez-Rey D., Maojo V., García-Remesal M., Alonso-Calvo R., Billhardt H.,

Martin-Sánchez F., and Sousa A. ONTOFUSION: Ontology-Based

Integration of Genomic and Clinical Databases. Computers in Biology and

Medicine. 2006. 36(7-8): 712-730.

[28] Camon E., Magrane M., Barrell D., Lee V., Dimmer E., Maslen J., Binns D.,

Harte N., Lopez R., and Apweiler R. The Gene Ontology Annotation (GOA)

Database: Sharing Knowledge in Uniprot with Gene Ontology. Nucleic Acids

Research. 2004. 32(Database Issue): D262-D266.

[29] Lewin A. and Grieve I. C. Grouping Gene Ontology Terms to Improve the

Assessment of Gene Set Enrichment in Microarray Data. BMC

Bioinformatics. 2006. 7: 426.

 106

[30] Wu X., Zhu L., Guo J., Zhang D. Y., and Lin K. Prediction of Yeast Protein-

Protein Interaction Network: Insights from the Gene Ontology and

Annotations. Nucleic Acids Research. 2006. 34(7): 2137-2150.

[31] Cai Z., Mao X., Li S., and Wei L. Genome Comparison using Gene Ontology

(GO) with Statistical Testing. BMC Bioinformatics. 2006. 7: 374.

[32] Zheng B., McLean D. C., and Lu X. Identifying Biological Concepts from a

Protein-Related Corpus with a Probabilistic Topic Model. BMC

Bioinformatics. 2006. 7: 58.

[33] The Gene Ontology Consortium. The Gene Ontology (GO) Project in 2006.

Nucleic Acids Research. 2006. 34(Database Issue): D322-D326.

[34] Lomax J. Get Ready to GO! A Biologist’s Guide to the Gene Ontology.

Briefings in Bioinformatics. 2005. 6(3): 298-304.

[35] Harris M. A., Lomax J., Ireland A., and Clark J. I. The Gene Ontology

Project. In: Subramaniam S. ed. Encyclopedia Genetics, Genomics,

Proteomics and Bioinformatics: Volume 4. New York: John Wiley & Sons.

g408202; 2005.

[36] Bada M., Stevens R., Goble C., Gil Y., Ashburner M., Blake J. A., Cherry J.

M., Harris M. A., and Lewis S. A Short Study on the Success of the Gene

Ontology. Journal of Web Semantics: Science, Services and Agents on the

World Wide Web. 2004. 1(2): 235-240.

[37] The Gene Ontology Consortium. The Gene Ontology (GO) Database and

Informatics Resource. Nucleic Acids Research. 2004. 32(Database Issue):

D258-D261.

[38] The Gene Ontology Consortium. Creating the Gene Ontology Resource:

Design and Implementation. Genome Research. 2001. 11(8): 1425-1433.

[39] The Gene Ontology Consortium. Gene Ontology: Tool for the Unification of

Biology. Nature Genetics. 2000. 25(1): 25-29.

[40] Kanungo T., Mount D. M., Netanyahu N. S., Piatko C. D., Silverman R., and

Wu A. Y. An Efficient k-Means Clustering Algorithm: Analysis and

Implementation. IEEE Transactions on Pattern Analysis and Machine

Intelligence. 2002. 24(7): 881-892.

[41] Cheng C. H., Lee W. K., and Wong K. F. A Genetic Algorithm-Based

Clustering Approach for Database Partitioning. IEEE Transactions on

Systems, Man and Cybernetics, Part C. 2002. 32(3): 215-230.

 107

[42] Günter S. and Bunke H. Self-Organizing Map for Clustering in the Graph

Domain. Pattern Recognition Letters. 2002. 23(4): 405-417.

[43] Hathaway R. J. and Bezdek J. C. Fuzzy c-Means Clustering of Incomplete

Data. IEEE Transactions on Systems, Man and Cybernetics, Part B. 2001.

31(5): 735-744.

[44] Chen C. Y. and Ye F. Particle Swarm Optimization Algorithm and its

Application to Clustering Analysis. Proceedings of the 2004 IEEE

International Conference on Networking, Sensing, and Control. March 21-23,

2004. Taipei, Taiwan: IEEE. 2004. 789-794.

[45] Jain A. K., Murty M. N., and Flynn P. J. Data Clustering: A Review. ACM

Computing Surveys. 1999. 31(3): 264-323.

[46] Berkhin P. Survey of Clustering Data Mining Techniques. Technical Report.

Accrue Software Inc.; 2002.

[47] Kotsiantis S. and Pintelas P. Recent Advances in Clustering: A Brief Survey.

WSEAS Transactions on Information Science and Applications. 2004. 1(1):

73-81.

[48] Pelleg D. and Moore A. X-Means: Extending k-Means with Efficient

Estimation of the Number of Clusters. Proceedings of the 17th. International

Conference on Machine Learning. June 29-July 2, 2000. Stanford, California:

Morgan Kaufmann. 2000. 727-734.

[49] Hamerly G. and Elkan C. Learning the k in k-Means. Proceedings of the

17th. Conference on Neural Information Processing Systems. July 20-24,

2003. Vancouver, Canada: NIPS Foundation. 2003.

http://books.nips.cc/nips16.html.

[50] Tseng L. Y. and Yang S. B. A Genetic Approach to the Automatic Clustering

Problem. Pattern Recognition. 2001. 34(2): 415-424.

[51] Kuo R. J., Chang K., and Chien S. Y. Integration of Self-Organizing Feature

Maps and Genetic-Algorithm-Based Clustering Method for Market

Segmentation. Journal of Organizational Computing and Electronic

Commerce. 2004. 14(1): 43-60.

[52] Dutt S. and Deng W. Probability-Based Approaches to VLSI Circuit

Partitioning. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems. 2000. 19(5): 534-549.

[53] Walshaw C. and Cross M. Parallel Optimisation Algorithms for Multilevel

 108

Mesh Partitioning. Parallel Computing. 2000. 26(12): 1635-1660.

[54] Shi J. and Malik J. Normalized Cuts and Image Segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence. 2000. 22(8):

888-905.

[55] Getz G., Gal H., Kela I., Notterman D. A., and Domany E. Coupled Two-

Way Clustering Analysis of Breast Cancer and Colon Cancer Gene

Expression Data. Bioinformatics. 2003. 19(9): 1079-1089.

[56] Walshaw C. and Cross M. Mesh Partitioning: A Multilevel Balancing and

Refinement Algorithm. SIAM Journal on Scientific Computing. 2000. 22(1):

63-80.

[57] D’Amico S. J., Wang S. J., Batta R., and Rump C. M. A Simulated Annealing

Approach to Police District Design. Computers and Operations Research.

2002. 29(6): 667-684.

[58] Saab Y. G. An Effective Multilevel Algorithm for Bisecting Graphs and

Hypergraphs. IEEE Transactions on Computers. 2004. 53(6): 641-652.

[59] Wolfe G., Wong J. L., and Potkonjak M. Watermarking Graph Partitioning

Solutions. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems. 2002. 21(10): 1196-1204.

[60] Elsner U. Graph Partitioning: A Survey. Technical Report. Technische

Universitat Chemnitz; 1997.

[61] Fjällström P. O. Algorithms for Graph Partitioning: A Survey. Linköping

Electronic Articles in Computer and Information Science. 1998. 3(10):

http://www.ep.liu.se/ea/cis/1998/010.

[62] Bui T. N. and Moon B. R. Genetic Algorithm and Graph Partitioning. IEEE

Transactions on Computers. 1996. 45(7): 841-855.

[63] Kaveh A. and Bondarabady H. A. R. A Hybrid Graph-Genetic Method for

Domain Decomposition. Finite Elements in Analysis and Design. 2003.

39(13): 1237-1247.

[64] Kohmoto K., Katayama K., and Narihisa H. Performance of a Genetic

Algorithm for the Graph Partitioning Problem. Mathematical and Computer

Modelling. 2003. 38(11-13): 1325-1332.

[65] Stuckenschmidt H. and Klein M. Structure-Based Partitioning of Large

Concept Hierarchies. Proceedings of the 3rd. International Semantic Web

Conference. November 7-11, 2004. Hiroshima, Japan: Springer. 2004. 289-

 109

303.

[66] Eilbeck K., Lewis S. E., Mungall C. J., Yandell M., Stein L., Durbin R., and

Ashburner M. The Sequence Ontology: A Tool for the Unification of

Genome Annotations. Genome Biology. 2005. 6(5): R44.

[67] Bard J., Rhee S. Y., and Ashburner M. An Ontology for Cell Types. Genome

Biology. 2005. 6(2): R21.

[68] Feldman H. J., Dumontier M., Ling S., Haider N., and Hogue C. W. CO: A

Chemical Ontology for Identification of Functional Groups and Semantic

Comparison of Small Molecules. FEBS Letters. 2005. 579(21): 4685-4691.

[69] Thompson J. D., Holbrook S. R., Katoh K., Koehl P., Moras D., Westhof E.,

and Poch O. MAO: A Multiple Alignment Ontology for Nucleic Acid and

Protein Sequences. Nucleic Acids Research. 2005. 33(13): 4164-4171.

[70] Grenon P., Smith B., and Goldberg L. Biodynamic Ontology: Applying BFO

in the Biomedical Domain. Studies in Health Technology and Informatics.

2004. 102: 20-38.

[71] Ratsch E., Schultz J., Saric J., Lavin P. C., Wittig U., Reyle U., and Rojas I.

Developing a Protein-Interactions Ontology. Comparative and Functional

Genomics. 2003. 4(1): 85-89.

[72] Grabowski J. and Pempera J. The Permutation Flow Shop Problem with

Blocking: A Tabu Search Approach. Omega. 2007. 35(3): 302-311.

[73] Sun M. Solving the Uncapacitated Facility Location Problem Using Tabu

Search. Computers and Operations Research. 2006. 33(9): 2563-2589.

[74] Tiwari M. K., Kumar S., Prakash, and Shankar R. Solving Part-Type

Selection and Operation Allocation Problems in an FMS: An Approach Using

Constraints-Based Fast Simulated Annealing Algorithm. IEEE Transactions

on Systems, Man and Cybernetics, Part A. 2006. 36(6): 1170-1184.

[75] Attiya G. and Hamam Y. Task Allocation for Maximizing Reliability of

Distributed Systems: A Simulated Annealing Approach. Journal of Parallel

and Distributed Computing. 2006. 66(10): 1259-1266.

[76] Moz M. and Pato M. V. A Genetic Algorithm Approach to a Nurse

Rerostering Problem. Computers and Operations Research. 2007. 34(3): 667-

691.

[77] Toroslu I. H. and Arslanoglu Y. Genetic Algorithm for the Personnel

Assignment Problem with Multiple Objectives. Information Sciences. 2007.

 110

177(3): 787-803.

[78] Zecchin A. C., Simpson A. R., Maier H. R., Leonard M., Roberts A. J., and

Berrisford M. J. Application of Two Ant Colony Optimisation Algorithms to

Water Distribution System Optimization. Mathematical and Computer

Modelling. 2006. 44(5-6): 451-468.

[79] Yin P. Y. and Wang J. Y. Ant Colony Optimization for the Nonlinear

Resource Allocation Problem. Applied Mathematics and Computation. 2006.

174(2): 1438-1453.

[80] Heo J. S., Lee K. Y., and Garduno-Ramirez R. Multiobjective Control of

Power Plants Using Particle Swarm Optimization Techniques. IEEE

Transactions on Energy Conversion. 2006. 21(2): 552-561.

[81] Jacobson S. H., McLay L. A., Hall S. N., Henderson D., and Vaughan D. E.

Optimal Search Strategies Using Simultaneous Generalized Hill Climbing

Algorithms. Mathematical and Computer Modelling. 2006. 43(9-10): 1061-

1073.

[82] You L. and Wood S. Assessing the Spatial Distribution of Crop Areas Using

a Cross-Entropy Method. International Journal of Applied Earth Observation

and Geoinformation. 2005. 7(4): 310-323.

[83] Arostegui Jr. M. A., Kadipasaoglu S. N., and Khumawala B. M. An

Empirical Comparison of Tabu Search, Simulated Annealing, and Genetic

Algorithms for Facilities Location Problems. International Journal of

Production Economics. 2006. 103(2): 742-754.

[84] Kannan S., Slochanal S. M. R., and Padhy N. P. Application and Comparison

of Metaheuristic Techniques to Generation Expansion Planning Problem.

IEEE Transactions on Power Systems. 2005. 20(1): 466-475.

[85] Elbeltagi E., Hegazy T., and Grierson D. Comparison among Five

Evolutionary-Based Optimization Algorithms. Advanced Engineering

Informatics. 2005. 19(1): 43-53.

[86] Kumar S., Ong S. H., Ranganath S., and Chew F. T. A Luminance- and

Contrast-Invariant Edge-Similarity Measure. IEEE Transactions on Pattern

Analysis and Machine Intelligence. 2006. 28(12): 2042-2048.

[87] Clayden J. D., Bastin M. E., and Storkey A. J. Improved Segmentation

Reproducibility in Group Tractography Using a Quantitative Tract Similarity

Measure. NeuroImage. 2006. 33(2): 482-492.

 111

[88] Paclik P., Novovicova J., and Duin R. P. W. Building Road-Sign Classifiers

Using a Trainable Similarity Measure. IEEE Transactions on Intelligent

Transportation Systems. 2006. 7(3): 309-321.

[89] Peng Y. and Ngo C. W. Clip-Based Similarity Measure for Query-Dependent

Clip Retrieval and Video Summarization. IEEE Transactions on Circuits and

Systems for Video Technology. 2006. 16(5): 612-627.

[90] van der Meer F. The Effectiveness of Spectral Similarity Measures for the

Analysis of Hyperspectral Imagery. International Journal of Applied Earth

Observation and Geoinformation. 2006. 8(1): 3-17.

[91] Chen X., Tian J., and Yang X. A New Algorithm for Distorted Fingerprints

Matching Based on Normalized Fuzzy Similarity Measure. IEEE

Transactions on Image Processing. 2006. 15(3): 767-776.

[92] Lee S. and Crawford M. M. Unsupervised Multistage Image Classification

Using Hierarchical Clustering with a Bayesian Similarity Measure. IEEE

Transactions on Image Processing. 2005. 14(3): 312-320.

[93] Moghaddam B., Nastar C., and Pentland A. A Bayesian Similarity Measure

for Deformable Image Matching. Image and Vision Computing. 2001. 19(5):

235-244.

[94] Skerl D., Likar B., and Pernus F. A Protocol for Evaluation of Similarity

Measures for Rigid Registration. IEEE Transactions on Medical Imaging.

2006. 25(6): 779-791.

[95] Núñez H., Sànchez-Marrè M., Cortés U., Comas J., Martínez M., Rodríguez-

Roda I., and Poch M. A Comparative Study on the Use of Similarity

Measures in Case-Based Reasoning to Improve the Classification of

Environmental System Situations. Environmental Modelling and Software.

2004. 19(9): 809-819.

[96] Kirac M., Ozsoyoglu G., and Yang J. Annotating Proteins by Mining Protein

Interaction Networks. Bioinformatics. 2006. 22(14): e260-e270.

[97] Ray S. and Craven M. Learning Statistical Models for Annotating Proteins

with Function Information Using Biomedical Text. BMC Bioinformatics.

2005. 6(Suppl 1): S18.

[98] Ponomarenko J. V., Bourne P. E., and Shindyalov I. N. Assigning New GO

Annotations to Protein Data Bank Sequences by Combining Structure and

Sequence Homology. Proteins. 2005. 58(4): 855-865.

 112

[99] Salasznyk R. M., Westcott A. M., Klees R. F., Ward D. F., Xiang Z.,

Vandenberg S., Bennett K., and Plopper G. E. Comparing the Protein

Expression Profiles of Human Mesenchymal Stem Cells and Human

Osteoblasts Using Gene Ontologies. Stem Cells and Development. 2005.

14(4): 354-366.

[100] Basu S., Bremer E., Zhou C., and Bogenhagen D. F. MiGenes: A Searchable

Interspecies Database of Mitochondrial Proteins Curated Using Gene

Ontology Annotation. Bioinformatics. 2005. 22(4): 485-492.

[101] Lu P., Szafron D., Greiner R., Wishart D. S., Fyshe A., Pearcy B., Poulin B.,

Eisner R., Ngo D., and Lamb N. PA-GOSUB: A Searchable Database of

Model Organism Protein Sequences with their Predicted Gene Ontology

Molecular Function and Subcellular Localization. Nucleic Acids Research.

2005. 33(Database Issue): D147-D153.

[102] Camon E., Magrane M., Barrell D., Binns D., Fleischmann W., Kersey P.,

Mulder N., Oinn T., Maslen J., Cox A., and Apweiler R. The Gene Ontology

Annotation (GOA) Project: Implementation of GO in SWISS-PROT,

TrEMBL, and InterPro. Genome Research. 2003.13(4): 662-672.

[103] Ye J., Fang L., Zheng H., Zhang Y., Chen J., Zhang Z., Wang J., Li S., Li R.,

Bolund L., and Wang J. WEGO: A Web Tool for Plotting GO Annotations.

Nucleic Acids Research. 2006. 34(Web Server Issue): W293-W297.

[104] Lee H. K., Braynen W., Keshav K., and Pavlidis P. ErmineJ: Tool for

Functional Analysis of Gene Expression Data Sets. BMC Bioinformatics.

2005. 6: 269.

[105] Liu H., Hu Z. Z., and Wu C. H. DynGO: A Tool for Browsing and Mining

Gene Ontology and its Associations. BMC Bioinformatics. 2005. 6: 201.

[106] Aitken S., Korf R., Webber B., and Bard J. COBrA: A Bio-Ontology Editor.

Bioinformatics. 2005. 21(6): 825-826.

[107] Fu L. and Medico E. FLAME, A Novel Fuzzy Clustering Method for the

Analysis of DNA Microarray Data. BMC Bioinformatics. 2007. 8: 3.

[108] Kim S. Y., Lee J. W., and Bae J. S. Effect of Data Normalization on Fuzzy

Clustering of DNA Microarray Data. BMC Bioinformatics. 2006. 7: 134.

[109] Zhong W., He J., Harrison R., Tai P. C., and Pan Y. Clustering Support

Vector Machines for Protein Local Structure Prediction. Expert Systems with

Applications. 2007. 32(2): 518-526.

 113

[110] Huang J., Tzeng G., and Ong C. Marketing Segmentation Using Support

Vector Clustering. Expert Systems with Applications. 2007. 32(2): 313-317.

[111] Papamichail G. P. and Papamichail D. P. The k-Means Range Algorithm for

Personalized Data Clustering in e-Commerce. European Journal of

Operational Research. 2007. 177(3): 1400-1408.

[112] Chan Z. S. H., Collins L., and Kasabov N. An Efficient Greedy k-Means

Algorithm for Global Gene Trajectory Clustering. Expert Systems with

Applications. 2006. 30(1): 137-141.

[113] Martinez-Estudillo A. C., Hervas-Martinez C., Martinez-Estudillo F. J., and

Garcia-Pedrajas N. Hybridization of Evolutionary Algorithms and Local

Search by Means of a Clustering Method. IEEE Transactions on Systems,

Man and Cybernetics, Part B. 2006. 36(3): 534-545.

[114] Gesu V. D., Giancarlo R., Bosco G. L., Raimondi A., and Scaturro S.

GenClust: A Genetic Algorithm for Clustering Gene Expression Data. BMC

Bioinformatics. 2005. 6: 289.

[115] Meunier B., Dumas E., Piec I., Bechet D., Hebraud M., and Hocquette J. F.

Assessment of Hierarchical Clustering Methodologies for Proteomic Data

Mining. Journal of Proteome Research. 2007. 6(1): 358-366.

[116] Li Y. Bayesian Model Based Clustering Analysis: Application to a Molecular

Dynamics Trajectory of the HIV-1 Integrase Catalytic Core. Journal of

Chemical Information and Modeling. 2006. 46(4): 1742-1750.

[117] Zeng Y. and Garcia-Frias J. A Novel HMM-Based Clustering Algorithm for

the Analysis of Gene Expression Time-Course Data. Computational Statistics

and Data Analysis. 2006. 50(9): 2472-2494.

[118] Torres H. M., Gurlekian J. A., Rufiner H. L., and Torres M. E. Self-

Organizing Map Clustering Based on Continuous Multiresolution Entropy.

Physica A: Statistical Mechanics and its Applications. 2006. 361(1): 337-354.

[119] Mitra S., Banka H., and Pedrycz W. Rough–Fuzzy Collaborative Clustering.

IEEE Transactions on Systems, Man and Cybernetics, Part B. 2006. 36(4):

795-805.

[120] Peters G. Some Refinements of Rough k-Means Clustering. Pattern

Recognition. 2006. 39(8): 1481-1491.

[121] Zio E. and Baraldi P. Evolutionary Fuzzy Clustering for the Classification of

Transients in Nuclear Components. Progress in Nuclear Energy. 2005. 46(3-

 114

4): 282-296.

[122] Datta S. and Datta S. Evaluation of Clustering Algorithms for Gene

Expression Data. BMC Bioinformatics. 2006. 7(Suppl 4): S17.

[123] Mingoti S. A. and Lima J. O. Comparing SOM Neural Network with Fuzzy

c-Means, k-Means and Traditional Hierarchical Clustering Algorithms.

European Journal of Operational Research. 2006. 174(3): 1742-1759.

[124] Thalamuthu A., Mukhopadhyay I., Zheng X., and Tseng G. C. Evaluation and

Comparison of Gene Clustering Methods in Microarray Analysis.

Bioinformatics. 2006. 22(9): 2405-2412.

[125] Guldemır H. and Sengur A. Comparison of Clustering Algorithms for Analog

Modulation Classification. Expert Systems with Applications. 2006. 30(4):

642-649.

[126] Ma P. C. H., Chan K. C. C., Yao X., and Chiu D. K. Y. An Evolutionary

Clustering Algorithm for Gene Expression Microarray Data Analysis. IEEE

Transactions on Evolutionary Computation. 2006. 10(3): 296-314.

[127] Laszlo M. and Mukherjee S. A Genetic Algorithm Using Hyper-Quadtrees

for Low-Dimensional k-Means Clustering. IEEE Transactions on Pattern

Analysis and Machine Intelligence. 2006. 28(4): 533-543.

[128] Sheng W., Swift W., Zhang L., and Liu X. A Weighted Sum Validity

Function for Clustering with a Hybrid Niching Genetic Algorithm. IEEE

Transactions on Systems, Man and Cybernetics, Part B. 2005. 35(6): 1156-

1167.

[129] Aykanat C., Cambazoglu B. B., Findik F., and Kurc T. Adaptive

Decomposition and Remapping Algorithms for Object-Space-Parallel Direct

Volume Rendering of Unstructured Grids. Journal of Parallel and

Distributed Computing. 2007. 67(1): 77-99.

[130] Duarte A., Sánchez Á., Fernández F., and Montemayor A. S. Improving

Image Segmentation Quality through Effective Region Merging Using a

Hierarchical Social Metaheuristic. Pattern Recognition Letters. 2006. 27(11):

1239-1251.

[131] Mitchell B. S. and Mancoridis S. On the Automatic Modularization of

Software Systems Using the Bunch Tool. IEEE Transactions on Software

Engineering. 2006. 32(3): 193-208.

[132] Salim N. and Mohemad R. Compound Selection for Drug Lead Identification

 115

Using Genetic Algorithm (GA). Journal of Advancing Information and

Management Studies. 2005. 2(1): 46-55.

[133] Garai G. and Chaudhuri B. B. A Novel Genetic Algorithm for Automatic

Clustering. Pattern Recognition Letters. 2004. 25(2): 173-187.

[134] Takashima E., Murata Y., Shibata N., and Ito M. Techniques to Improve

Exploration Efficiency of Parallel Self-Adaptive Genetic Algorithms by

Dispensing with Iteration and Synchronization. Systems and Computers in

Japan. 2006. 37(14): 25-33.

[135] Rahul, Chakraborty D., and Dutta A. Optimization of FRP Composites

against Impact Induced Failure Using Island Model Parallel Genetic

Algorithm. Composites Science and Technology. 2005. 65(13): 2003-2013.

[136] Katayama K., Hirabayashi H., and Narihisa H. Analysis of Crossovers and

Selections in a Coarse-Grained Parallel Genetic Algorithm. Mathematical

and Computer Modelling. 2003. 38(11-13): 1275-1282.

[137] Gropp W., Lusk E., Ashton D., Buntinas D., Butler R., Chan A., Ross R.,

Thakur R., and Toonen B. MPICH2 User’s Guide Version 1.0.4. MPICH2

Documentation. Argonne National Laboratory; 2006.

[138] Wall M. GAlib: A C++ Library of Genetic Algorithm Components. GAlib

Documentation. Massachusetts Institute of Technology; 1996.

[139] Günter S. and Bunke H. Validation Indices for Graph Clustering. Pattern

Recognition Letters. 2003. 24(8): 1107-1113.

[140] Maulik U. and Bandyopadhyay S. Performance Evaluation of Some

Clustering Algorithms and Validity Indices. IEEE Transactions on Pattern

Analysis and Machine Intelligence. 2002. 24(12): 1650-1654.

[141] Bandyopadhyay S. and Maulik U. Nonparametric Genetic Clustering:

Comparison of Validity Indices. IEEE Transactions on Systems, Man and

Cybernetics, Part C. 2001. 31(1): 120-125.

[142] Cui X., Gao J., and Potok T. E. A Flocking Based Algorithm for Document

Clustering Analysis. Journal of Systems Architecture. 2006. 52(8): 505-515.

[143] Watts R. J. and Porter A. L. R&D Cluster Quality Measures and Technology

Maturity. Technological Forecasting and Social Change. 2003. 70(8): 735-

758.

[144] Carroll S. and Pavlovic V. Protein Classification Using Probabilistic Chain

Graphs and the Gene Ontology Structure. Bioinformatics. 2006. 22(15):

 116

1871-1878.

[145] Zhou G. P. and Cai Y. D. Predicting Protease Types by Hybridizing Gene

Ontology and Pseudo Amino Acid Composition. Proteins. 2006. 63(3): 681-

684.

[146] Scheer M., Klawonn F., Munch R., Grote A., Hiller K., Choi C., Koch I.,

Schobert M., Hartig E., Klages U., and Jahn D. JProGO: A Novel Tool for

the Functional Interpretation of Prokaryotic Microarray Data Using Gene

Ontology Information. Nucleic Acids Research. 2006. 34(Web Server Issue):

W510-W515.

[147] Guo X., Liu R., Shriver C. D., Hu H., and Liebman M. N. Assessing

Semantic Similarity Measures for the Characterization of Human Regulatory

Pathways. Bioinformatics. 2006. 22(8): 967-973.

[148] Tang Y. and Zheng J. Linguistic Modelling Based on Semantic Similarity

Relation among Linguistic Labels. Fuzzy Sets and Systems. 2006. 157(12):

1662-1673.

[149] Steichen O., Bozec C. D., Thieu M., Zapletal E., and Jaulent M. C.

Computation of Semantic Similarity Within an Ontology of Breast Pathology

to Assist Inter-Observer Consensus. Computers in Biology and Medicine.

2006. 36(7-8): 768-788.

[150] Maki W. S., Krimsky M., and Munoz S. An Efficient Method for Estimating

Semantic Similarity Based on Feature Overlap: Reliability and Validity of

Semantic Feature Ratings. Behavior Research Methods. 2006. 38(1): 153-

157.

[151] Leacock C. and Chodorow M. Combining Local Context and WordNet

Similarity for Word Sense Identification. In: Fellbaum C. ed. WordNet: An

Electronic Lexical Database. Cambridge: MIT Press. 265-283; 1998.

[152] Lin D. An Information-Theoretic Definition of Similarity. Proceedings of the

International Conference on Machine Learning. July 24-27, 1998. Madison,

Wisconsin: Morgan Kaufmann. 1998. 296-304.

[153] Jiang J. J. and Conrath D. W. Semantic Similarity Based on Corpus Statistics

and Lexical Taxonomy. Proceedings of the International Conference on

Research in Computational Linguistics. August 22-24, 1997. Taipei, Taiwan:

Morgan Kaufmann. 1998. 19-33.

[154] Resnik P. Using Information Content to Evaluate Semantic Similarity in a

 117

Taxonomy. Proceedings of the International Joint Conference on Artificial

Intelligence. August 22-25, 1995. Montreal, Canada: Morgan Kaufmann.

1995. 448-453.

[155] Budanitsky A. and Hirst G. Evaluating WordNet-Based Measures of Lexical

Semantic Relatedness. Computational Linguistics. 2006. 32(1): 13-47.

[156] Lord P. W., Stevens R. D., Brass A., and Goble C. A. Investigating Semantic

Similarity Measures across the Gene Ontology: The Relationship Between

Sequence and Annotation. Bioinformatics. 2003. 19(10): 1275-1283.

[157] Popescu M., Keller J. M., and Mitchell J. A. Fuzzy Measures on the Gene

Ontology for Gene Product Similarity. IEEE/ACM Transactions on

Computational Biology and Bioinformatics. 2006. 3(3): 263-274.

[158] Sevilla J. L., Segura V., Podhorski A., Guruceaga E., Mato J. M., Martínez-

Cruz L. A., Corrales F. J., and Rubio A. Correlation Between Gene

Expression and GO Semantic Similarity. IEEE/ACM Transactions on

Computational Biology and Bioinformatics. 2005. 2(4): 330-338.

[159] Mitra S. and Hayashi Y. Bioinformatics with Soft Computing. IEEE

Transactions on System, Man and Cybernetics, Part C. 2006. 36(5): 616-635.

[160] Kushchu I. Web-Based Evolutionary and Adaptive Information Retrieval.

IEEE Transactions on Evolutionary Computation. 2005. 9(2): 117-125.

[161] Pal S. K., Talwar V., and Mitra P. Web Mining in Soft Computing

Framework: Relevance, State of the Art and Future Directions. IEEE

Transactions on Neural Networks. 2002. 13(5): 1163-1177.

[162] Chen L., Luh C., and Jou C. Generating Page Clippings from Web Search

Results Using a Dynamically Terminated Genetic Algorithm. Information

Systems. 2005. 30(4): 299-316.

[163] Paul T. K. and Iba H. Gene Selection for Classification of Cancers Using

Probabilistic Model Building Genetic Algorithm. Biosystems. 2005. 82(3):

208-225.

[164] Rodriguez M. A. and Jarur M. C. A Genetic Algorithm for Searching Spatial

Configurations. IEEE Transactions on Evolutionary Computation. 2005.

9(3): 252-270.

[165] Tamine L., Chrisment C., and Boughanem M. Multiple Query Evaluation

Based on an Enhanced Genetic Algorithm. Information Possessing and

Management. 2003. 39(2): 215-231.

 118

[166] Couto F., Silva M., and Coutinho P. Semantic Similarity over the Gene

Ontology: Family Correlation and Selecting Disjunctive Ancestors.

Proceedings of the ACM Conference on Information and Knowledge

Management. October 31-November 5, 2005. Bremen, Germany: ACM

Press. 2005. 343-344.

[167] Leung A. K., Trinkle-Mulcahy L., Lam Y. W., Andersen J. S., Mann M., and

Lamond A. I. NOPdb: Nucleolar Proteome Database. Nucleic Acids

Research. 2006. 34(Database Issue): D218-D220.

[168] Winter C., Henschel A., Kim W. K., and Schroeder M. SCOPPI: A Structural

Classification of Protein-Protein Interfaces. Nucleic Acids Research. 2006.

34(Database Issue): D310-D314.

[169] Gao G., Zhong Y., Guo A., Zhu Q., Tang W., Zheng W., Gu X., Wei L., and

Luo J. DRTF: A Database of Rice Transcription Factors. Bioinformatics.

2006. 22(10): 1286-1287.

[170] Flores S., Echols N., Milburn D., Hespenheide B., Keating K., Lu J., Wells

S., Yu E. Z., Thorpe M., and Gerstein M. The Database of Macromolecular

Motions: New Features Added at the Decade Mark. Nucleic Acids Research.

2006. 34(Database Issue): D296-D301.

[171] Khan S., Situ G., Decker K., and Schmidt C. J. GoFigure: Automated Gene

Ontology Annotation. Bioinformatics. 2003.19(18): 2484-2485.

[172] Martin D. M., Berriman M., and Barton G. J. GOtcha: A New Method for

Prediction of Protein Function Assessed by the Annotation of Seven

Genomes. BMC Bioinformatics. 2004. 5: 178.

[173] Vinayagam A., del Val C., Schubert F., Eils R., Glatting K. H., Suhai S., and

König R. GOPET: A Tool for Automated Predictions of Gene Ontology

Terms. BMC Bioinformatics. 2006. 7: 161.

[174] Friedberg I., Harder T., and Godzik A. JAFA: A Protein Function Annotation

Meta-Server. Nucleic Acids Research. 2006. 34(Web Server Issue): W379-

W381.

[175] Groth D., Lehrach H., and Hennig S. GOblet: A Platform for Gene Ontology

Annotation of Anonymous Sequence Data. Nucleic Acids Research. 2004.

32(Web Server Issue): W313-W317.

[176] Enault F., Suhre K., Poirot O., Abergel C., and Claverie J. M. Phydbac

(Phylogenomic Display of Bacterial Genes): An Interactive Resource for the

 119

Annotation of Bacterial Genomes. Nucleic Acids Research. 2003. 31(13):

3720-3722.

[177] Quevillon E., Silventoinen V., Pillai S., Harte N., Mulder N., Apweiler R.,

and Lopez R. InterProScan: Protein Domains Identifier. Nucleic Acids

Research. 2005. 33(Web Server Issue): W116-W120.

