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ABSTRACT 

 

 

 

 

 Protein sequence annotation is important for the preservation and reuse of 

knowledge, for content-based queries, and for the understanding of its function. 

Traditional wet-lab methods are labor intensive and prone to human error. 

Alternatively, existing tools are time intensive and require high investment in 

computing facilities for offline usage. On the other hand, these tools are highly 

dependent on internet stability and speed for online usage. Therefore, a simple and 

practical computational method that is more accurate, faster, easy to configure and 

use, and bears low computing cost is needed particularly for offline usage. In this 

study, a Gene Ontology (GO) based protein sequence annotation tool named 

extended UTMGO is developed to meet these features. The GO is selected because 

of its ability to provide dynamic, precisely defined, structured, and controlled terms 

that describe genes and their functions and products in any organism. Furthermore, 

the GO terms are linked with gene products and their protein sequences from various 

species provided by Gene Ontology Annotation (GOA). Thus, assigning highly 

correlated GO terms of annotated protein sequences to partially annotated or newly 

discovered protein sequences can be made. The tool comprises two intelligent 

algorithms. The first algorithm combines parallel genetic algorithm with the split-

and-merge algorithm. The idea is to cluster the GO terms into number k of clusters in 

order to split the monolithic GO RDF/XML file into smaller files. Thus, it enables 

protein sequences and Inferred from Electronic Annotation (IEA) evidence 

associations to be included in those files. The second algorithm incorporates parallel 

genetic algorithm with the semantic similarity measure algorithm. The motive is to 

search for a set of semantically similar GO terms from the fragmented GO 

RDF/XML files to a given query. In addition, its basic version which is a GO 

browser based on semantic similarity search is also introduced to overcome the 

weaknesses of conventional approach: the keyword matching. 
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ABSTRAK 

 

 

 

 

 Penganotasian jujukan protein adalah penting untuk pemeliharaan dan 

penggunaan semula pengetahuan, pertanyaan berasaskan-kandungan dan pemahaman 

terhadap fungsinya. Kaedah makmal-basah tradisional adalah intensif buruh dan 

terdedah kepada ralat manusia. Sebagai alternatif, alatan sedia ada adalah intensif 

masa dan memerlukan pelaburan kemudahan pengkomputeran yang tinggi untuk 

penggunaan luar talian. Selain itu, ia sangat bergantung kepada kestabilan dan 

kelajuan internet untuk penggunaan dalam talian. Maka, kaedah komputasi yang 

mudah dan praktikal yang lebih tepat, pantas, mudah dikonfigurasi dan diguna serta 

dengan kos pengkomputeran yang murah diperlukan terutamanya untuk penggunaan 

luar talian. Dalam pengajian ini, alatan penganotasian jujukan protein berasaskan 

Ontologi Gen (GO) iaitu UTMGO lanjutan dibangunkan untuk memenuhi ciri-ciri 

tersebut. GO dipilih kerana keupayaannya menyediakan istilah yang dinamik, 

takrifan tepat, berstruktur dan terkawal yang menerangkan gen dan fungsi serta 

produknya dalam sebarang organisma. Tambahan pula, istilah GO dihubungkan 

dengan produk gen dan jujukan proteinnya daripada pelbagai spesies yang 

disediakan oleh Anotasi Ontologi Gen (GOA). Dengan itu, penentuan istilah GO 

bagi jujukan protein yang amat tinggi hubung kaitnya kepada jujukan protein yang 

telah separa dianotasi atau baru ditemui boleh dibuat. Alatan ini mengandungi dua 

algoritma pintar. Algoritma pertama menggabungkan algoritma genetik selari dengan 

algoritma pisah-dan-cantum. Tujuannya ialah untuk mengelompokkan istilah GO 

kepada sejumlah k kelompok bagi memisahkan fail GO RDF/XML yang besar 

kepada fail-fail yang kecil. Dengan itu, jujukan protein dan perhubungan bukti 

Disimpul daripada Anotasi Elektronik (IEA) boleh ditambah ke dalam fail-fail 

tersebut. Algoritma kedua menggabungkan algoritma genetik selari dengan algoritma 

sukatan keserupaan semantik. Tujuannya ialah untuk mencari satu set istilah GO 

yang semantiknya serupa dengan pertanyaan yang ditentukan daripada fail-fail GO 

RDF/XML yang kecil. Selain itu, versi asasnya iaitu pelayar GO yang berasaskan 

kepada carian keserupaan semantik juga diperkenalkan untuk mengatasi masalah 

pendekatan konvensional: padanan kata kunci. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

Bioinformatics is the application of computer technology to store, organize, 

and analyze the vast amount of biological data which is available in the form of 

sequences and structures of proteins (the building blocks of organisms) and nucleic 

acids (the information carrier). The biological information of nucleic acids is 

available as sequences while the data of proteins is available as sequences and 

structures. The protein sequence is a chain of amino acids that represents the primary 

structure of a protein. It plays a central role to determine the structure, homology, 

and function of a protein. Annotation of a protein sequence is important for the 

preservation and reuse of knowledge and for content-based queries. Annotation is a 

process of associating additional information with a particular point in a piece of 

information. The protein sequence annotation is done either manually by several 

expert biologists, automatically using bioinformatics tools like Basic Local 

Alignment Search Tool (BLAST), or both combinations. By supplementing 

additional information to a protein sequence, it increases the value of the resource for 

users and can be regarded to be highly reliable. Recently, the Gene Ontology (GO; 

http://www.geneontology.org/) has been widely used in protein sequence annotation. 

This is due to characteristics of the GO that the data is continuously evolved and 

refined, the structure is simple and relatively easy to understand and use, direct input 
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from the biological community, and active curation to sustain the quality and 

integrity of data. The GO is a collection of nearly 23 thousand terms to describe gene 

and gene product attributes in any organism. The terms are structured, controlled 

vocabularies and organized as a Directed Acyclic Graph (DAG) in three aspects: 

cellular component, biological process, and molecular function. 

 

 

 

 

1.2 Current Methods for Protein Sequence Annotation 

 

 

Instead of traditional wet-lab methods that are manually done by the 

biologists, the computational methods for automated protein sequence annotation can 

be divided into four main categories as follows:  

(i) Sequence-similarity-based method depends on the determination of a 

local or global similarity between the not-yet annotated protein 

sequence and protein sequences with known annotation. This method 

uses sequence similarity search algorithms such as Smith-Waterman 

and Needleman-Wunsch algorithms.  

(ii) Controlled-vocabulary-based method employs the most widely used 

biological ontology, the GO along with its annotation databases to 

annotate protein sequence.  

(iii) Literature-based method relies on natural language processing and 

text mining techniques to extract information from the biomedical 

literature as evidence to annotate protein sequence. 

(iv) Rule-based method annotates protein sequence based on condition 

and existence of certain rules. The rules are created according to 

information extracted from the secondary databases such as protein 

families, domains, and functional sites databases. 

 

Recently, the GO is an emerging ontology that is gaining momentum for the 

purpose of genome, expressed sequence tag (EST), and protein annotations. The 

advantages of using the GO for protein sequence annotation are:  
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(i) The GO data is dynamic and constantly evolves according to the 

current state of biological knowledge advances.  

(ii) The GO data is publicly available and can be downloaded at any time 

on the World Wide Web (WWW) in various formats that can be 

understandable and processable by human and machine alike. 

(iii) The common GO terms shared by gene and protein sequences in 

multiple organisms in different databases can facilitate uniform 

queries across them. 

(iv) The association of GO terms with nearly 2.5 million gene products 

that are supported by citation and evidence can affirm its reliability 

for future evaluation and use. 

 

 

 

 

1.3 Challenges of Protein Sequence Annotation 

 

 

Application of the GO terms to annotate protein sequences is not easy, 

especially for species not yet inserted in public biological databases. Furthermore, for 

bioscientists with little computational knowledge or limited facilities it is a hard task 

to annotate those protein sequences. This is due to the fact that generally the existing 

GO-based protein sequence annotation tools are:  

(i) Dependent on BLAST which is computationally intensive and 

requires high-cost and high-specification hardware since sequence 

alignment is performed to all protein sequences but not to protein 

sequences only that indicate higher similarity. 

(ii) Dependent on Relational Database Management Systems (RDBMS) 

which require the user to setup the RDBMS software and to import 

the data or sources into the RDBMS format. 

(iii) Partially based on the GO data which requires the user to download 

the Gene Ontology Annotation (GOA) data or protein sequence data 

sets from several sources. 
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Furthermore, the traditional wet-lab methods are labor intensive and prone to 

human error. On the other hand, sequence-similarity-based tools like BLAST that are 

used by most of the computational methods as described in Section 1.2 are time 

intensive and require high investment in computing facilities such as cluster server or 

grid computing if being used locally. Moreover, for remote users, these tools are 

subject to internet stability and speed to access the tools and to get the results online. 

 

 

 

 

1.4  Statement of the Problem 

 

 

 The macro (application) problem that is tried to be solved in this study can be 

described as follows: 

“Given a protein sequence, it is a challenging task to develop a new GO-

based method to annotate protein sequences that does not depend on BLAST 

and RDBMS and is fully based on the GO data. At the same time it is capable 

of producing better results and requires a reasonable amount of running time 

with low computing cost specifically for offline usage”.  

 

In order to develop the new GO-based method to annotate protein sequences, 

the following factors need to be considered: 

(i) The first factor relates to the process of splitting the monolithic GO 

RDF/XML file into smaller files. The aims are to avoid dependency 

on RDBMS format, to fully use the GO data by adding the GOA data 

and the protein sequence data sets into the files since they are 

excluded in the original GO RDF/XML file, and to make it easier to 

be accessed and processed.  

(ii) The second factor relates to the process of searching the smaller and 

fragmented GO RDF/XML files. The aim is to find a group of GO 

terms with higher term similarity score to a GO term which is 

foreseen to have higher relationship with the query protein sequence. 
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(iii) The third factor relates to the process of verifying the results obtained 

from the second factor by computing sequence alignment score 

between the query protein sequence and all sequences attached to the 

predicted GO terms. The aim is to ensure that sequence alignment is 

not carried out to all protein sequences but only to protein sequences 

with higher outguessed similarity. Hence, it will require low cost and 

minimum hardware specification and less amount of processing time. 

 

The factors as described above lead to more technical and theoretical 

problems. These micro (research) problems are related to automatic clustering and 

semantic similarity searching. Automatic clustering is an unsupervised learning 

problem that tries to divide a set of elements into a number k of clusters. Thus, 

elements in the same cluster are as similar as possible and elements in different 

clusters are as dissimilar as possible. Determining the number k of clusters is done by 

the algorithm and it can be regarded as a hard algorithmic problem. To cluster the 

GO terms into the number k of clusters in order to split the monolithic GO 

RDF/XML file, the following questions need to be answered: 

(i) What is the most suitable clustering algorithm that provides optimal 

solution and offers reasonable amount of processing time? 

(ii) What is the precise criterion for identifying the number k of clusters 

and for measuring the goodness of those clusters? 

 

On the other hand, semantic similarity searching relates to the problem of 

determining semantic relatedness between terms either by virtue of their likeness 

(bank-trust company), synonymy (car-automobile), meronymy (computer-keyboard), 

antonymy (rich-poor), functional relationship (marker pen-white board), or frequent 

association (orang utan-Borneo). For semantically similar GO terms, the terms are 

related according to “association”: a table storing information that is shared among 

the GO terms. Particularly, this table provides an annotation record that is basically a 

link between a gene product and a GO term provided by the GOA. To search the GO 

terms, the following questions need to be answered: 

(i) What is the most suitable search algorithm that provides optimal 

solution and offers reasonable amount of processing time?  

(ii) What is the precise criterion for this biology-related search for 
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measuring the semantic similarity between the GO terms? 

 

 

 

 

1.5 Objective of the Study 

 

 

The goal of this study is to develop a computational method to annotate 

protein sequences using information in the GO. Therefore, this study has several 

objectives to achieve as follows: 

(i) To study and design a GO-based method that uses intelligent 

techniques and the GO in order to annotate protein sequences. 

(ii) To develop an automatic clustering algorithm using the genetic split-

merge algorithm in order to split the monolithic GO RDF/XML file. 

(iii) To develop a similarity search algorithm using the genetic similarity 

algorithm in order to find a group of semantically similar GO terms. 

(iv) To develop a tool as a proof-of-concept study that applied both 

algorithms mentioned above in order to highlight the capabilities of 

the proposed GO-based method. 

 

 

 

 

1.6 Scope and Significance of the Study 

 

 

Protein sequence annotation is important for the preservation and reuse of 

knowledge and for content-based queries. Traditional wet-lab methods are labor 

intensive and prone to human error. Alternatively, sequence-similarity-based tools 

are time intensive and require high investment in computing facilities for offline 

usage. On the other hand, these tools are highly dependent on internet stability and 

speed for online usage. Therefore, a simple and practical computational method that 

is more accurate, faster, easy to configure and use, and bears low computing cost is 



 7

needed particularly for offline usage. In this study, a GO-based protein sequence 

annotation tool named extended UTMGO is developed to meet these features. The 

tool employs two primary intelligent algorithms. The first algorithm named genetic 

split-merge algorithm is used to split the monolithic GO RDF/XML file. The genetic 

split-merge algorithm applies the parallel genetic algorithm and the split-and-merge 

algorithm. The split-and-merge algorithm is implemented to improve infeasible 

clusters in order to efficiently estimate the number k of clusters. The second 

algorithm named genetic similarity algorithm is used to search for semantically 

similar GO terms from the fragmented GO RDF/XML files. The genetic similarity 

algorithm applies the parallel genetic algorithm and the semantic similarity measure 

algorithm. The semantic similarity measure algorithm is implemented due to its 

ability to improve the precision and recall of information retrieval by identifying the 

relation between GO terms. This is acquired by computing the distance or the 

amount of information those GO terms share in common. Both algorithms use the 

parallel genetic algorithm because of its capability of being adaptive, efficient, 

robust, and a global search method that is suitable to address a situation where the 

search space is large. Moreover, the parallel genetic algorithm optimizes its fitness 

function by utilizing the genetic operators to find an optimal solution. It can also be 

executed on a low-cost Personal Computer (PC) cluster using message passing 

interface libraries that are open source and easy to install. 

 

 

 

 

1.7 Organization of the Thesis 

 

 

 This thesis is organized into 7 chapters. A brief description of the contents of 

each chapter is given as follows: 

(i) Chapter 1 describes the problems, objective, scope, and significance 

of the study. 

(ii) Chapter 2 reviews main subjects used in the thesis that include protein 

sequence annotation, the GO, algorithms for automatic clustering of 
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GO RDF/XML file and semantic similarity searching of GO terms, 

and related tools for protein sequence annotation. 

(iii) Chapter 3 describes the operational framework adopted to achieve the 

objective of the study including the results analysis, instrumentations, 

and data sources used in the thesis. 

(iv) Chapter 4 describes a solution of splitting the monolithic GO 

RDF/XML file using the genetic split-merge algorithm. The genetic 

split-merge algorithm combines the parallel genetic algorithm and the 

split-merge algorithm. The parallel genetic algorithm finds the best 

combination of node-cluster and the split-merge algorithm identifies 

the best number k of clusters kbest. 

(v) Chapter 5 describes a solution of finding a group of semantically 

similar GO terms using the genetic similarity algorithm. The genetic 

similarity algorithm combines the parallel genetic algorithm and the 

semantic similarity measure algorithm. The semantic similarity 

measure algorithm computes the degree of relationship between the 

GO terms and the parallel genetic algorithm generates a solution 

comprising a group of semantically similar GO terms. A GO browser 

named basic UTMGO is introduced to show the applicability of the 

genetic similarity algorithm. 

(vi) Chapter 6 describes a solution of annotating anonymous protein 

sequence using a GO-based protein sequence annotation tool named 

extended UTMGO. The extended UTMGO comprises two intelligent 

algorithms: the genetic split-merge algorithm and the genetic 

similarity algorithm. 

(vii) Chapter 7 draws general conclusions about achieved results and 

presents the contributions and future works of the study. 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Introduction 

 

 

Through bioinformatics, a scientist can use a genomic DNA 

(Deoxyribonucleic acid) sequence to: predict which part of the DNA sequence is a 

gene; compare the gene sequence to other known genes to predict a function; convert 

the DNA sequence into the protein sequence to predict a function; compare the 

sequences to study evolutionary relationships; analyze the protein sequence to 

predict when, how, and where it might function; and generate a 3-D model of the 

predicted protein. Bioinformatics has shown that protein sequence information from 

simpler organisms such as microbes can be used to understand protein sequences in 

complex organisms such as animals and plants. Using the relationships and 

predictions generated by bioinformatics, scientists can better understand how an 

organism functions, from simple to complex. However, to annotate a protein 

sequence, meaning that interpreting the features of the protein sequence and adding 

additional information to the protein sequence using computational tools and 

combined with biological knowledge, is not an easy task. Even though, controlled 

vocabulary such as GO has imposed itself as a standard for proteome annotation and 

function prediction of proteins. This chapter begins with explanation about protein 

sequence annotation (Section 2.2). Following that, this chapter describes the GO 

(Section 2.3) followed by a review of the automatic clustering algorithms (Section 
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2.4) and the semantic similarity searching algorithms (Section 2.5) that relates to the 

objectives of the study. A review of the protein sequence annotation tools is given in 

Section 2.6. Finally, the chapter concludes with findings of the literature review. 

 

 

 

 

2.2 Protein Sequence Annotation 

 

 

A protein sequence is a chain of amino acids that represents the primary 

structure of a protein as shown in Figure 2.1. The protein sequence plays a central 

role to determine the structure, homology, and function of a protein as depicted in 

Figure 2.2. 

 

 The database of protein sequences can be considered as primary database. It 

serves as a source for the construction of secondary databases that contain the results 

of analysis of the protein sequences in the primary databases. The secondary 

databases are related to protein families, domains, and functional sites. Examples of 

secondary databases are:  

(i) PROSITE (http://www.expasy.ch/prosite/) is a database of protein 

families, domains, and functional sites. The PROSITE is provided by 

the Expert Protein Analysis System (ExPASy) proteomics server of 

the Swiss Institute of Bioinformatics (SIB).    

(ii) Pfam (http://www.sanger.ac.uk/Pfam/) comprises many common 

protein families and domains. It is a database managed by the 

Wellcome Trust Sanger Institute.  

(iii) Protein and Associated Nucleotide Domains with Inferred Trees 

(PANDIT; http://www.ebi.ac.uk/goldman-srv/pandit/) is a protein 

families database developed and maintained by the European 

Bioinformatics Institute (EBI). 

Recently, many works have used the protein sequence databases as main resource to 

predict protein-protein interactions [1], metabolic pathway [2], and protein 

subcellular localization [3]. 



 

 

 

 

 

 

 

 

 

 

  
>TAIR|gene:2828322 symbol:AT2G07727.1 species:3702  

C

B
"Arabidopsis thaliana" Ncbi:NP_178804 
MTIRNQRFSLLKQPISSTLNQHLVDYPTPSNLSYWWGFGPLAGICLVIQI 
VTGVFLAMHYTPHVDLAFNSVEHIMRDVEGGWLLRYMHANGASMFLIVVY 
LHIFRGLYHASYSSPREFVWCLGVVIFLLMIVTAFIGYVLPWGQMSFWGA 
TVITSLASAIPVVGDTIVTWLWGGFSVDNATLNRFFSLHHLLPFILVGAS 
LLHLAALHQYGSNNPLGVHSEMDKIAFYPYFYVKDLVGWVAFAIFFSIWI 
FYAPNVLGHPDNYIPANPMSTPPHIVPEWYFLPIHAILRSIPDKAGGVAA 
IAPVFICLLALPFFKSMYVRSSSFRPIHQGMFWLLLADCLLLGWIGCQPV 
EAPFVTIGQISPLVFFLFFAITPILGRVGRGIPNSYTDETDHT 

A Primary protein structure  
is sequence of a chain of amino 
acids. 

Secondary protein structure  
occurs when the sequence of 
amino acids are linked by 
hydrogen bonds. 

Tertiary protein structure  
occurs when certain attractions 
are present between alpha 
helices and pleated sheets. 

Quaternary protein structure  
is a protein consisting of more 
than one amino acid chain. 
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Figure 2.1: The protein sequence illustration: (A) The protein primary structure (source: the National Human Genome Research Institute 

(NHGRI)); (B) The protein sequence of AT2G07727.1 (Gene:2828322) in FASTA format (source: TAIR); (C) The four levels of protein 

structure (source: NHGRI). 11
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Figure 2.2: Three different ways of inferring protein function from the protein 

sequence. 

 

 

The protein sequence databases are divided into two categories: the protein 

sequence repositories and the annotated protein sequence databases. The discussions 

of protein sequence databases have been presented by Whitfield et al. [4], 

Brooksbank et al. [5], and Apweiler et al. [6]. The protein sequence repositories are 

highly redundant and with little or no additional information to aid further analysis of 

the records. Among protein sequence repositories are National Center for 

Biotechnology Information (NCBI) Entrez Protein (http://www.ncbi.nlm.nih.gov/ 

entrez/query.fcgi?db=Protein) and Reference Sequence (RefSeq; http://www.ncbi. 

nlm.nih.gov/RefSeq/). On the other hand, the annotated protein sequence databases 

provide non-redundant set of protein sequences by consolidating all reports for a 

given protein sequence into one unique record. The annotation is done either 

manually by several expert biologists, automatically using bioinformatics tools like 

BLAST, or both combinations. By supplementing additional information to a protein 

sequence, it increases the value of the resource for users and can be regarded to be 

highly reliable. The most comprehensive annotated protein sequence database is 

Universal Protein Resource (UniProt; http://www.ebi.uniprot.org/). The UniProt 

merges the information contained in UniProtKB/Swiss-Prot (Swiss Protein; 

http://www.ebi.ac.uk/swissprot/), UniProtKB/TrEMBL (Translated European 

Molecular Biology Laboratory; http://www.ebi.ac.uk/trembl/), and Protein 

Information Resource (PIR; http://pir.georgetown.edu/). The aim is to provide a 
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central resource on protein sequences and functional annotation. The UniProt 

consists of three main components: 

(i) UniProt Knowledgebase (UniProtKB) provides extensive cross-

references, functional and feature annotations, and literature-based 

evidence attribution for easy analysis and cross-database search. It 

comprises the manually annotated UniProtKB/Swiss-Prot section and 

the automatically annotated UniProtKB/TrEMBL section. 

(ii) UniProt Reference Clusters (UniRef) offers speed similarity searches 

through sequence space compression by combining closely correlated 

sequences into a single record. 

(iii) UniProt Archive (UniParc) stores all publicly available protein 

sequences, including their history and links to the source databases. 

The UniProt is maintained collaboratively by the SIB and the EBI. Other annotated 

protein sequence databases are Experimentally Verified Protein Functions (EXProt; 

http://www.cmbi.kun.nl/EXProt/), Protein Research Foundation (PRF; 

http://www.prf.or.jp/en/), and Transporter Classification Database (TCDB; 

http://www.tcdb.org/). 

 

The most systematic protein sequence annotation is carried out by the 

UniProt. The protein sequences in the UniProt undergo three major phases of 

annotation as shown in Figure 2.3. The process starts when the wet-lab researchers 

submit their nucleotide sequence to the European Molecular Biology Laboratory 

(EMBL). A similarity analysis including search for protein domains and the coding 

sequence (CDS) expected should be determined by the wet-lab researcher. Secondly, 

the CDS is translated into protein sequence. The protein sequence is then annotated 

automatically and stored in the UniProtKB/TrEMBL. The automated annotation is 

performed using automatically generated rules as in Spearmint [7] or manually 

curated rules based on protein families, including PIRSF classification-based name 

rules and site rules [8], HAMAP family rules [9], and RuleBase rules [10]. The 

UniProtKB/TrEMBL also received nucleotide sequences from GenBank 

(http://www.ncbi.nlm.nih.gov/Genbank/) and DNA Data Bank of Japan (DDBJ; 

http://www.ddbj.nig.ac.jp/) and protein sequences extracted from the literature or 

directly sent to the UniProtKB/Swiss-Prot. Thirdly, protein sequences in the 

UniProtKB/TrEMBL are selected for full manual annotation and consolidation into 
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the UniProtKB/Swiss-Prot. The manual annotation is done by biologists and is based 

on literature curation and sequence analysis. The manual annotation procedures were 

described in detail by Apweiler et al. [11]. Further explanation of the annotation 

processes in the UniProt can be found in [12], [13]. 
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Figure 2.3: Phases of protein sequence annotation in the UniProt. 

 

 

Lately numerous methods have been proposed for automated protein 

sequence annotation. These methods can essentially be divided into four main 

categories as follows: 

(i) Sequence-similarity-based method depends on the determination of a 

local or global similarity between the not-yet annotated protein 

sequence and protein sequences with known annotation. This method 

uses sequence similarity search algorithms such as Smith-Waterman 

and Needleman-Wunsch algorithms. Examples of works have been 

carried out by Snyder et al. [14] and Koski et al. [15]. 

(ii) Controlled-vocabulary-based method employs the most widely used 

biological ontology, the GO along with its annotation databases to 

annotate protein sequence such as studies done by Jones et al. [16] 

and Prlic et al. [17]. 

(iii) Literature-based method relies on natural language processing and 

text mining techniques to extract information from the biomedical 
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literature as evidence to annotate protein sequence. Some recent 

studies have been conducted by Yuan et al. [18] and Chiang and Yu 

[19]. 

(iv) Rule-based method annotates protein sequence based on condition 

and existence of certain rules. The rules are created according to 

information extracted from the secondary databases. This method has 

been applied by Sigrist et al. [20] and Yu [21]. 

 

 

 

 

2.3 The Gene Ontology 

 

 

The GO project started in 1998 by collaboration between three model 

organism databases: FlyBase (http://flybase.bio.indiana.edu/), Saccharomyces 

Genome Database (SGD; http://www.yeastgenome.org/), and Mouse Genome 

Informatics (MGI; http://www.informatics.jax.org/). Currently, databases 

participated in the GO project covers model organisms like Arabidopsis thaliana, 

Caenorhabditis elegans, Danio rerio, Dictyostelium discoideum, Oryza, Rattus 

norvegicus, and several protozoan parasites including Leishmania major, 

Plasmodium falciparum, and Trypanosoma brucei. The GO project is developed and 

maintained by the GO Consortium. The GO Consortium is currently formed by 16 

entities such as EBI, University of Cambridge, University of California Berkeley, 

The Jackson Laboratory, Stanford University, and Princeton University. The GO is 

one of the ontologies that take part in the Open Biomedical Ontologies (OBO; 

http://obo.sourceforge.net/). The OBO is an umbrella project providing well-

structured controlled vocabularies that are freely available and can be used across 

different biological and medical domains. 

 

The goal of the GO project is to construct a well defined and standardized 

vocabulary for describing the roles of genes and gene products in any organism, even 

if the cell is evolving and their roles in the cells are changing. The purposes of 

producing the controlled vocabularies are to manage different names for the same 
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concepts existing in various species, to support cross-species comparison and cross-

databases search, and to assist annotation of vast amounts of biological data held in 

genome and protein databases. The main concept used in the development of the GO 

is ontology. The ontology is an explicit description of a domain. The ontology is 

created to define common vocabulary and to share common understanding of the 

meaning of any vocabulary used. The ontology has been developed in many fields 

such as chemical process engineering [22], ecoinformatics [23], and multimedia [24]. 

The ontology has also been implemented to solve various problems related to 

semantic web search [25], verification of conceptual models [26], and database 

integration [27]. 

 

The GO comprises three sub-ontologies as shown in Figure 2.4. The cellular 

component describes locations that refer to the place in the cell where a gene product 

is active like “cytoplasm” (GO:0005737). The biological process describes biological 

goals contributed by the gene or gene product such as “cell cycle” (GO:0007049). 

Finally, the molecular function describes activity of a gene product at the molecular 

level, an example includes “protein kinase activator activity” (GO:0030295). The 

vocabulary of the GO is called term. Each GO term is related to its parent either via: 

an “is-a” relationship like “intracellular part” (GO:0044424) is a “cell part” 

(GO:0044464); or a “part-of” relationship such as “intracellular part” (GO:0044424) 

is part of “intracellular” (GO:0005622). The properties of the GO term are depicted 

in Figure 2.5. Each gene product associated to the GO term is supported by an 

evidence code and a specific reference. For example, an association between gene 

product “easily shock” (eas; FBgn0000536) and GO term “mechanosensory 

behavior” (GO:0007638) is supported by an evidence code of Inferred from Mutant 

Phenotype (IMP) and a literature reference PMID:7932299 from PubMed 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed). The evidence codes 

and its description can be found at http://www.geneontology.org/GO.evidence.shtml. 

The association of gene products to the GO terms is provided by GOA 

(http://www.ebi.ac.uk/GOA/). The GOA had successfully annotated proteins in the 

UniProtKB from a variety of species to the GO terms [28]. 
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Figure 2.4: The GO sub-ontologies 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: The properties of the GO term. For example, the “mechanosensory behavior” (GO:0007638) and part of its gene product association. 

 

(1) Name :  mechanosensory behavior 
(2) Accession number :  GO:0007638 
(3) Ontology category :  biological process 
(4) Synonyms :  exact: behavioral response to mechanical stimulus 
  exact: behavioural response to mechanical 

stimulus 
  exact: mechanosensory behaviour 
(5) Definition : Behavior that is dependent upon the sensation of a 

mechanical stimulus. [source: GOC:go_curators] 
(6) Comment :  None 
(7) Term lineage : 
  all : all 
   (is-a) GO:0008150 : biological_process 
    (is-a) GO:0050896 : response to stimulus 
     (is-a) GO:0007610 : behavior 
      (is-a) GO:0007638 : mechanosensory behavior 
     (is-a) GO:0009628 : response to abiotic stimulus 
      (is-a) GO:0009612 : response to mechanical stimulus 
       (is-a) GO:0007638 : mechanosensory behavior 
     (is-a) GO:0009605 : response to external stimulus 
      (is-a) GO:0009612 : response to mechanical stimulus 
       (is-a) GO:0007638 : mechanosensory behavior 
(8) Database (external) references : 
  SP_KW 
  KW-0213 Dejerine-Sottas syndrome  

(9) Gene product associations : 
 
No. Name/Symbol Information Evidence Reference Assigned by 
1   bas gene from Drosophila IMP PMID:7932299 FlyBase 
 bang-sensitive melanogaster  
2 bss gene from Drosophila IMP PMID:7932299 FlyBase 
 bang senseless melanogaster 
3 E(sda)A gene from Drosophila IMP PMID:12454073 FlyBase 
  melanogaster 
4 E(sda)D gene from Drosophila IMP PMID:12454073 FlyBase 
  melanogaster 
5 E(sda)F gene from Drosophila IMP PMID:12454073 FlyBase 
  melanogaster 
6 E(sda)J gene from Drosophila IMP PMID:12454073 FlyBase 
  melanogaster 
7 E(sda)O gene from Drosophila IMP PMID:12454073 FlyBase 
  melanogaster 
8 e(sei) gene from Drosophila IMP PMID:2440763 FlyBase 
 enhancer of melanogaster 
 seizure 
9 eas gene from Drosophila IMP PMID:7932299 FlyBase 
 easily shocked melanogaster 
10 Etv1 gene from Mus IMP PMID:10850491 MGI
 ets variant musculus 
 gene 1 
11 Etv1_predicted gene from Rattus ISS RGD:1580654 RGD
 est variant norvegicus 
 gene 1 
 (predicted)  
 

18
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The size of the GO data (as of January 2007) is shown in Table 2.1. The GO 

data is stored in the following database categories: 

(i) termdb is a database that contains information on the GO terms and 

relationships only. 

(ii) assocdb is a database which subsumes data in the termdb and addition 

with associations between the GO terms and gene products. 

(iii) seqdb is a database containing protein sequences that associate with 

gene products and all data in the assocdb. 

(iv) seqdblite is a database which is same as seqdb, except all Inferred 

from Electronic Annotation (IEA) evidence associations have been 

taken out. 

The GO data is in OBO, OWL, RDF/XML, and MySQL formats. The OBO and 

OWL formats are available just on the termdb. The MySQL format can be 

downloaded on all database categories. Meanwhile, the RDF/XML format comes 

without protein sequences and IEA evidence associations. 

 

 

Table 2.1: Size of the GO data. 

Item No. of records 
GO terms 22,954 
Definitions of GO terms 22,086 
Synonyms for GO terms 20,797 
Relationships between GO terms 35,006 
All paths in GO graph 1,970,267 
External database identifier entities 5,833,963 
Links from GO terms to other databases 92,670 
Gene products 2,498,910 
Synonyms for  gene products 330,752 
Link between gene product and GO term 10,380,867 
Gene product counts per GO term 550,392 
Evidence type and reference for an association 
between gene product and GO term   11,866,795 

External database links for an association between 
gene product and GO term 11,436,198 

Protein sequences 2,310,180 
Link between gene product and protein sequence 2,315,391 
External database links for a protein sequence 21,761,312 
Species 268,435 
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The GO has been used in many applications including gene expression 

studies [29], proteomics studies [30], comparative genomics [31], and data and text 

mining [32]. This is due to characteristics of the GO that the data is continuously 

evolved and refined, the structure is simple and relatively easy to understand and use, 

direct input from the biological community, and active curation to sustain the quality 

and integrity of data. Detail discussion about GO can be found in [33]–[39]. 

 

 

 

 

2.4 Automatic Clustering Algorithms 

 

 

Automatic clustering is a process of dividing a set of elements into unknown 

clusters, where the best number k of clusters is determined by the clustering 

algorithm. That is, elements within each cluster should be highly similar to each 

other than to elements in any other cluster. Finding the k automatically is a hard 

algorithmic problem. The automatic clustering problem can be defined as follows: 

“Let X = {X1, X2, …, Xn} be a set of n element. These elements are clustered 

into non-overlapping clusters C = {C1, C2, …, Ck}, where C is called a 

cluster, k is the unknown number of clusters, Ci ∩ Cj = Ø for i ≠ j, C1 ∪ C2 ∪ 

… ∪ Ck = X, Ci ⊆ X, and Ci ≠ Ø.” 

 

The clustering problem is omnipresent in many fields of science and 

engineering. It has been solved by various techniques such as k-means [40], genetic 

algorithm [41], self-organizing map [42], fuzzy c-means [43], and particle swarm 

optimization [44]. Survey of clustering techniques can be found in [45]–[47]. 

Recently, the increasing amount of data has made the number k of clusters difficult to 

guess, and the value supplied by the user based on prior knowledge, presumptions, 

and practical experiences is often inaccurate. Therefore, reasonable ways of 

identifying the number k of clusters automatically is required to avoid trial-and-error 

work. Lately, several techniques have been proposed to determine the number k of 

clusters. Most of the techniques are wrapped around k-means or genetic algorithm. 

Split and/or merge rules are the most famous wrapper methods to increase or 
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decrease the number k of clusters while the algorithm continues. Among these 

techniques are: 

(i) X-means [48]; in this the splitting decision is performed by computing 

the Bayesian Information Criterion (BIC) until the upper bound of k is 

attained. 

(ii) G-means [49]; it starts with small number of k-means centers and 

raises the number of centers using Gaussian distribution. 

(iii) CLUSTERING [50]; it is an automatic clustering based on heuristic 

strategy that uses the nearest neighbor to group those data that are 

situated close to one and another. Then, genetic algorithm is used to 

group the smaller clusters into larger ones.  

(iv) S+G [51]; it is also a two stage method, which in the beginning uses a 

self-organizing feature map to determine the number k of clusters and 

then employs a genetic algorithm based clustering to find the final 

solution. 

 

In the GO context, the GO terms are structured as DAG. Let GO graph G = 

{V, E}, where V is a set of nodes that represent the GO terms and E is a set of 

directed edges that represent relationships between the GO terms. Partitioning the 

GO graph in order to cluster the GO terms can be considered as a Graph Partitioning 

Problem (GPP). The aim of GPP is to cut a vertex set V into k disjoint and non-empty 

subsets such that the number of edges connecting nodes in different subsets is 

minimized and the number of edges connecting the nodes in the same subsets is 

maximized. GPP is a fundamental combinatorial optimization problem that has 

numerous practical applications in many areas including design of Very Large Scale 

of Integration (VLSI) circuits [52], mesh partitioning in parallel processing [53], 

image segmentation in computer vision [54], and gene expression analysis in 

bioinformatics [55]. An extensive study of Kerninghan-Lin algorithm, simulated 

annealing, tabu search, watermarking, and normalized cut have been carried out by 

[56]–[59], [54] respectively to solve the GPP. Review of the GPP techniques can be 

found in [60], [61]. Several studies using genetic algorithm for the GPP have also 

been done by: 

(i) Bui and Moon [62] introduced a schema of preprocessing phase 

before the initialization of population to ameliorate the quality of the 
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chromosome. The different classes of graphs: random graph, random 

geometric graph, random regular graph, and caterpillar graph 

consisting of 134 to 5,252 nodes, were tested with the algorithm. 

(ii) Kaveh and Bondarabady [63] implemented genetic algorithm for 

finite element decomposition of 1,640 to 6,720 elements. Sequences 

of coarsening and uncoarsening process are performed to transform 

the large scale graph G0 into a smaller size graph Gn and vice versa 

such that a suitable size of graph can be partitioned by genetic 

algorithm. 

(iii) Kohmoto et al. [64] has incorporated simulated annealing into genetic 

algorithm to generate feasible solutions. The algorithm is then applied 

to undirected graph with 124 to 250 nodes. 

 

For the ontology clustering, very little effort has been done in this area. 

Stuckenschmidt and Klein [65] have proposed a method for automatic clustering of 

large ontologies based on the structure of the class hierarchy. The method consists of 

three steps: 

(i) In the first step, a dependency graph is created from ontology source 

file using PROLOG-based tool that reads OWL and RDF schema 

files. It then displays the dependency graph using networks analysis 

tool Pajek. 

(ii) In the second step, the strength of the dependencies between the 

concepts in the dependency graph is determined by computing the 

propositional strength network. 

(iii) In the third step, an island algorithm is used to determine the modules 

existing in the dependency graph. 
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2.5 Semantic Similarity Searching Algorithms 

 

 

Ontology is a description of concepts in a domain and the relationships 

between the concepts. Ontology can be represented as a directed graph. The ontology 

graph comprises the concepts including the descriptions as nodes and semantic 

relationships as edges. Recently, there has been growing development of ontology in 

the bioinformatics field such as Sequence Ontology [66], Cell Ontology [67], 

Chemical Ontology [68], Multiple Alignment Ontology [69], Biodynamic Ontology 

[70], and Protein-Interactions Ontology [71]. However, the “ontology searching”, 

which refers to the activity of retrieving concepts in the ontology graph, is not 

accurately performed by the traditional search engines that are based on keywords. 

These search engines neglect the semantic relationships between the search concepts 

and only consider those concepts as character strings. Thence, a mechanism to 

measure the similarity between concepts in the ontology graph is required to reduce 

dependency of specialists of a certain domain to input relevant concepts as search 

words.  

 

There are numerous search techniques that are frequently and extensively 

used in computer science, engineering, mathematics, and other fields such as:  

(i) Tabu search is a local search technique. It uses a local or 

neighborhood search procedure to repetitively move from a solution x 

to a solution x' in the neighborhood of x, until termination criterion is 

satisfied. Examples of application include flow shop problem [72] and 

facility location problem [73]. 

(ii) Simulated annealing is a global optimization technique that is based 

on probabilistic methods. It traverses the search space by producing 

neighboring solutions of the current solution. The simulated annealing 

has been applied in flexible manufacturing system [74] and 

heterogeneous distributed system [75]. 

(iii) Genetic algorithms are a global search heuristics. These algorithms 

work by seeking potential solutions and evaluating them. The best 

solutions are modified to form a new population. This operation is 

repeated until no better solutions are generated. The genetic 
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algorithms have solved various problems such as nurse rerostering 

problem [76] and personnel assignment problem [77]. 

(iv) Ant colony optimization is a population-based technique that tries 

numerous solution options at each step of the algorithm. The ant 

colony optimization is inspired by the behavior of ants in discovering 

routes from the colony to food. It has been applied in water 

distribution system [78] and solved the nonlinear resource allocation 

problem [79]. 

Other techniques include particle swarm optimization [80], hill climbing [81], and 

cross-entropy method [82]. A detailed comparison among these techniques can be 

found in [83]–[85]. 

 

In the case of semantic similarity search, researchers have used different 

measures to identify similarity between two concepts being compared. Lately, 

several new semantic similarity measures have been introduced such as:  

(i) Edge-similarity measure [86] is applied to varying image illumination 

and contrast.  

(ii) Quantitative tract similarity measure [87] is based on the shape and 

length of the two tracts being analyzed to improve image 

segmentation reproducibility. 

(iii) Trainable similarity measure [88] applied the matching-pursuit 

approach for road-sign classification. 

(iv) Clip-based similarity measure [89] is based on two bipartite graph 

matching algorithms (maximum matching and optimal matching) for 

video retrieval and video summarization. 

(v) Spectral similarity measures [90] consist of four spectral measures 

(spectral angel measure, Euclidean distance measure, spectral 

correlation measure, and spectral information divergence) for the 

analysis of hyperspectral imagery.  

Other semantic similarity measures are: Chen et al. [91] has proposed fuzzy 

similarity measure for distorted fingerprints matching; and Lee and Crawford [92] 

and Moghaddam et al. [93] have created Bayesian similarity measure for image 

segmentation and image matching respectively. Evaluation of different semantic 

similarity measures have been done by Skerl et al. [94] for rigid registration of 
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medical images and Núñez et al. [95] on improving case-based reasoning for 

environmental decision support systems. 

 

On the other hand, for the GO, semantic similarity search is required in order 

to search for semantically similar GO terms and to reduce dependency on the 

specialists. Thence, it avoids the users from investing lots of time browsing the GO 

terms. However, this approach involves computing the amount of information the 

GO terms share in common and/or calculating the depth and the local network 

density of the GO term. This scenario becomes complicated since the GO terms are 

structured as a DAG and searching the GO graph is an NP-complete problem. By 

contrast, the existing GO browsers to support basic needs for scientists to search the 

GO terms are still using conventional approach which is based on keyword matching. 

Thus, for a scientist to find a group of GO terms that have semantically similar 

properties is time consuming and a hard task. A list of tools for searching and 

browsing the GO terms can be found at http://www.geneontology.org/GO.tools. 

browsers.shtml. All these tools are free to academics, among them are: 

(i) CGAP GO Browser is developed by The Cancer Genome Anatomy 

Project. It allows the user to browse the GO terms using the hierarchy 

view and find the known human and mouse genes assigned to each 

term. This tool can be used at http://cgap.nci.nih.gov/Genes/ 

GOBrowser/. 

(ii) GOFish is created using Java applet by the Roth Laboratory at the 

Harvard University. It uses term name or accession number as an 

input and then performs keyword matching. This tool allows the user 

to construct arbitrary Boolean queries using GO terms, and ranks gene 

products that satisfy the queries. The GOFish can be found at 

http://llama.med.harvard.edu/software.html. 

(iii) Ontology Lookup Service is provided by the EBI. It is based on 

partial keyword search. As the users types into the search box, they 

will see recommended terms that match what are being entered in the 

list box. This tool was developed to merge all publicly available 

biomedical ontologies into a single database. It can be viewed at 

http://www.ebi.ac.uk/ontology-lookup/. 
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Other browsers are AmiGO (http://godatabase.org/), EP GO Browser 

(http://ep.ebi.ac.uk/EP/GO/), QuickGO Browser (http://www.ebi.ac.uk/ego/), 

GenNav Browser (http://mor.nlm.nih.gov/perl/gennav.pl), and MGI GO Browser 

(http://www.informatics.jax.org/searches/GO_form.shtml). 

 

 

 

 

2.6 Protein Sequence Annotation Tools 

 

 

Bioinformatics is the application of computer technology to store, retrieve, 

analyze, simulate, or predict the composition or the structure of biomolecules. It 

involves the development of algorithms and statistical techniques, databases, and 

tools. The bioinformatics tools should be developed using open source and web 

technologies. Therefore, these tools can be distributed freely and used extensively by 

the bioscientists. However, an excellent tool should be easy to be setup and used, can 

be run on low-cost hardware, and requires a short execution time. 

 

Recently, a number of bioinformatics tools have been developed for protein 

sequence annotation based on the GO. These tools are: 

(i) Blast2GO employs BLAST to find homologous sequences to Fast 

Alignment (FASTA) formatted input protein sequences. The 

Blast2GO extracts the GO terms for each found hit by mapping to 

existing annotation associations. An annotation rule finally assigns 

GO terms to the query protein sequence. This tool can be accessed at 

http://bioinfo.ivia.es/blast2go/. It is maintained by the Centro de 

Genómica at the Instituto Valenciano de Investigaciones Agrarias. 

(ii) GoAnna can be applied for protein sequence annotation using a 

sequence similarity search. This tool accepts a list of protein 

sequences in FASTA format. The GoAnna conducts BLAST search 

against AgBase databases or GO annotated databases like 

UniProtKB/Swiss-Prot and UniProtKB/TrEMBL. This tool is 

developed by the Mississippi State University and can be used at 
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http://agbase.msstate.edu/GOAnna.html. 

(iii) HT-GO-FAT provides the bioscientists with a high-throughput 

mapping of unknown protein sequence to GO annotation. It uses 

BLAST for sequence similarity search. The HT-GO-FAT can be 

downloaded from http://liru.ars.usda.gov/mainbioinformatics.html. 

This tool is developed by the Livestock Issues Research Unit at the 

United States Department of Agriculture (USDA) Agricultural 

Research Service. 

(iv) InGOt is capable to assign up-to-date GO terms to a given protein 

sequence. The InGOt claims to have more sequences than any public 

resource and assignments harvested from the broadest possible GO-

linked resources. It is proprietary software by Inpharmatica Ltd. A 

free two week trial of this tool can be downloaded at 

http://www.inpharmatica.co.uk/ingot/.  

Other GO-based protein sequence annotation tools are: GOPET is addressable via 

http://genius.embnet.dkfz-heidelberg.de/menu/biounit/open-husar/, and it has been 

developed by the German Cancer Research Center; GOtcha (http://www.compbio. 

dundee.ac.uk/gotcha/gotcha.php) by the Barton Group at the University of Dundee; 

GoFigure (http://udgenome.ags.udel.edu/gofigure/) is under the UDGenome project 

by the University of Delaware; GOblet (http://goblet.molgen.mpg.de/) is introduced 

by the Max Planck Institute for Molecular Genetics; and lastly JAFA 

(http://jafa.burnham.org/) is maintained by the Burnham Institute for Medical 

Research. 

 

In parallel, several works using computational intelligence techniques for 

protein sequence annotation have also been done by: 

(i) Kirac et al. [96] introduced a data mining technique that calculates the 

probabilistic relationships between the GO annotations of proteins on 

protein-protein interaction data. Then, it assigns highly associated GO 

terms of annotated proteins to the target protein sequence. 

(ii) Ray and Craven [97] built a system to annotate a given protein 

sequence with codes from the GO using the text of an article from the 

biomedical literature as evidence. This system relies on statistical 

techniques namely the n-gram models and the Naïve Bayes models. 
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(iii) Ponomarenko et al. [98] shows how protein sequence annotation can 

be improved and corrected if protein structures are available. They 

used the combinatorial extension algorithm to compare the structure. 

Then, it widens the protein annotation provided by the GOA to further 

annotate the protein sequences in the Protein Data Bank (PDB; 

http://www.rcsb.org/pdb/). 

There are also varieties of protein sequence annotation tools that have been 

developed without depending on the GO data such as FeatureMap3D 

(http://www.cbs.dtu.dk/services/FeatureMap3D/), KOBAS (http://kobas.cbi.pku.edu. 

cn/), MineBlast (http://leger2.gbf.de/cgi-bin/MineBlast.pl), ProtoBee (http://www. 

protobee.cs.huji.ac.il/), and ProFAT (http://cluster-1.mpi-cbg.de/profat/). 

 

 

 

 

2.7 Trends and Tendencies 

 

 

Protein sequences are stored in a database called primary database. The 

primary database provides a source for the prediction of structure, homology, and 

function of a protein. The primary databases are divided into protein sequence 

repositories such as NCBI Entrez Protein and RefSeq and annotated protein sequence 

databases such as UniProt and EXProt. The annotated protein sequence databases 

provide non-redundant set of protein sequences with additional information 

compared to the protein sequence repositories. The most systematic protein sequence 

annotation is done by the UniProt which involves three major phases: similarity 

analysis of the submitted nucleotide sequence, translation into protein sequence and 

automated annotation, and manual annotation for verification. Currently for 

automated annotation, four methods have been identified: sequence-similarity [14], 

controlled-vocabulary [16], literature [18], and rule [20] -based methods. Lately, the 

controlled-vocabulary-based method using GO has been widely applied to annotate 

protein sequences. This is because the GO data constantly evolves and it is publicly 

available, well defined and a consistent biological terminology, and associated with a 

large number of gene products that are supported by citation and evidence.  
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In the case of splitting the monolithic GO RDF/XML file, the process can be 

regarded as GPP. Several works done by [62]–[64] have shown that the GPP can be 

efficiently solved by genetic algorithm. Furthermore, algorithms such as 

CLUSTERING [50] and S+G [51] have shown that genetic algorithm can be 

combined with other algorithms to find the number k of clusters automatically. 

However, applications of genetic algorithm to split the monolithic GO RDF/XML 

file is not easy since very little work has been done in ontology clustering as 

references. Another focus of this study is to perform semantic similarity searching on 

the GO terms. Currently, most of the GO browsers such as AmiGO and GOFish are 

based on keyword matching. On the other hand, existing searching algorithms such 

as genetic algorithm are not capable of executing the task alone. Therefore, a suitable 

semantic similarity measure for ontology searching is required to combine with the 

genetic algorithm. However, most of the existing semantic similarity measures [86]–

[95] are specifically designed for image segmentation and image matching. Lastly, 

although most of the protein sequence annotation tools such as GoAnna and HT-GO-

FAT are publicly available via the internet, yet they depend on BLAST to perform 

sequence similarity that requires high computing power and high implementation 

cost especially for offline usage. Therefore, a simple and practical tool that is easy to 

be configured with low computing cost needs to be developed. 

 

 

 

 

2.8 Summary 

 

 

This chapter gives broad review of basic concepts of the protein sequence, 

protein sequence databases, and processes involved in the protein sequence 

annotation for better understanding of the nature of the problems, together with 

explanation about GO including its properties, characteristics, and applications. This 

chapter also presents related algorithms for clustering, automatic clustering, GPP, 

and ontology clustering including algorithms for searching, semantic similarity 

searching, and protein sequence annotation. Reviews of GO browsers and protein 

sequence annotation tools are also presented in this chapter.   



 

 

 

 

CHAPTER 3 

 

 

 

 

RESEARCH METHODOLOGY 

 

 

 

 

3.1 Introduction 

  

 

One of the advantages of the GO terms is that it can cope with synonyms and 

can describe biological function. Furthermore, the GO terms are linked with 

approximately 10.38 million associations, 2.50 million different gene products, and 

with the largest set covering around 2.31 million protein sequences from 0.27 million 

species. Thence, specific protein sets can easily be compared with respect to 

common functional features [30], [99], protein databases such as MiGenes [100] and 

PA-GOSUB [101] can be explored through complicated queries, and large-scale 

protein database can simply be annotated [28], [102] based on the GO terms. 

However, direct use of the GO terms to annotate protein sequences is not easy, 

especially from small sequencing projects or for species not commonly represented 

in biological databases. Furthermore, for small group of scientists with little 

computational background or without appropriate facilities it is a tedious task to 

annotate those protein sequences. Therefore, in Section 3.2, we present the 

framework of the study that discusses the development of the extended UTMGO 

including its basic version for browsing the GO terms. The framework also discusses 

the intelligent algorithms of the extended UTMGO: the genetic split-merge algorithm 

and the genetic similarity algorithm that are used to split the monolithic GO 

RDF/XML file and to search a group of semantically similar GO terms respectively. 
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The data sets used as well as the instrumentation and analysis of the results of the 

algorithms and tools are also discussed in Sections 3.3 and 3.4 respectively.  

 

 

 

 

3.2 Framework of the Study 

 

 

The framework of the study involved three main phases namely the ontology 

clustering phase, the ontology searching phase, and the bioinformatics tool 

development phase as depicted in Figure 3.1.  

 

 

Monolithic GO 
RDF/XML file 

Phase 1: Ontology clustering 
using genetic split-merge algorithm 

Phase 2: Ontology searching 
using genetic similarity algorithm 

GO RDF/XML 
file 1 

GO RDF/XML 
file 2 

GO RDF/XML 
file n 

Phase 3: Bioinformatics tool development 
 

Developing GO 
browser named 
basic UTMGO 

Developing protein 
sequence annotation tool 
named extended UTMGO 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 3.1: The framework of the study. 

 

 

In the ontology clustering phase, the genetic split-merge algorithm is formed 

to cluster the GO terms. The aim is to split the monolithic GO RDF/XML file into a 
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number of smaller files. The genetic split-merge algorithm is a combination of 

parallel genetic algorithm and split-and-merge algorithm. The detail about genetic 

split-merge algorithm is discussed in Chapter 4. The genetic split-merge algorithm 

can be summarized as follows: 

(i) Initialization of a population of chromosomes where alleles for each 

chromosome show the cluster number and loci represent the GO terms 

accession number. 

(ii) Evaluate the fitness of each chromosome. 

(iii) Select chromosomes for reproduction using the roulette wheel 

selection scheme. 

(iv) Apply partial match crossover and swap mutation operators. 

(v) Replace the least fit chromosomes in the existing population by the 

newly generated offspring. 

(vi) Repeat steps (ii)–(v) until the stopping criteria are met. 

The inputs for the genetic split-merge algorithm are the GO graph and the minimum 

number k of clusters specified by the user. This algorithm returns the best 

chromosome representing a k number of good clusters. The genetic split-merge 

algorithm is capable of automatically identifying the number k of clusters, producing 

balanced clusters in terms of number of elements in each cluster, requires reasonable 

amount of processing time, and generates good clusters. 

 

In the ontology searching phase, the genetic similarity algorithm is developed 

to perform semantic similarity search. The idea is to find a group of semantically 

similar GO terms for a given query GO term. The genetic similarity algorithm 

incorporates semantic similarity measure algorithm in the parallel genetic algorithm. 

A comprehensive discussion of the genetic similarity algorithm is done in Chapter 5. 

The genetic similarity algorithm can be summarized as the following steps: 

(i) Perform preprocessing using the semantic similarity measure 

algorithm. 

(ii) Initialization of a population of chromosomes where alleles for each 

chromosome show either the GO terms are retrieved or not retrieved 

and loci represent the GO terms accession number. 

(iii) Evaluate the fitness of each chromosome. 

(iv) Select chromosomes for reproduction using the roulette wheel 
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selection scheme. 

(v) Apply two-point crossover and swap mutation operators. 

(vi) Replace the least fit chromosomes in the existing population by the 

newly generated offspring. 

(vii) Repeat steps (iii)–(vi) until the stopping criteria are met. 

The inputs for the genetic similarity algorithm are the GO graph and the query GO 

term. This algorithm returns the best chromosome representing a group of GO terms 

that are semantically similar to the query GO term. The genetic similarity algorithm 

is susceptible of returning the GO terms whose names do not have keywords similar 

to the name of the query GO term has. Furthermore, it is able to avoid producing 

many GO terms with low term similarity score and can be executed in a short time. 

 

In the bioinformatics tool development phase, the basic UTMGO is 

developed using web technology. The main goal of this tool is to act as a new way to 

search the GO terms. The basic UTMGO has shown its capability to determine the 

semantically similar GO terms as compared to other keyword-based GO browsers. 

This is due to the effectiveness of the genetic split-merge algorithm and the genetic 

similarity algorithm. The potential of this tool has been broadened to annotate protein 

sequences. The tool named extended UTMGO is able to return a set of GO terms 

together with their associated protein sequences that have higher sequence alignment 

score to the query protein sequence. This feature allows bioscientists to annotate 

protein sequences by only using the GO terms and its properties. Thus, it prevents 

dependency on BLAST, RDBMS, various sources of data, and high-cost and high-

specification hardware unlike other protein sequence annotation tools. The basic and 

extended UTMGO are described in Chapter 5 and 6 respectively. 

 

 

 

 

3.3 Data Sources 

 

 

The GO data used in this study is in RDF/XML format which can be 

downloaded from http://archive.godatabase.org/. The data is compressed in a GZIP 
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file named go_YYYYMM-assocdb.rdf-xml.gz. In Chapter 4, all GO data in the 

RDF/XML format is used to test the genetic split-merge algorithm. However, to 

include protein sequences and IEA evidence associations into the smaller GO 

RDF/XML files, these data are taken from the MySQL format. The GO data in the 

MySQL format is stored in a file named go_YYYYMM-seqdb-tables.tar.gz. In 

Chapter 5, the basic UTMGO and the genetic similarity algorithm use 250 GO terms 

as the query GO terms. These terms are selected randomly which comprise 8% from 

cellular components, 56% from biological processes, and 36% from molecular 

functions. In the meantime, to assess the performance of the extended UTMGO for 

annotating protein sequences, 50 protein sequences are selected randomly as the 

query protein sequence from each species as follows: 

(i) Oryza sativa ssp japonica from the Gramene database 

(http://www.gramene.org/Oryza_sativa/index.html). 

(ii) Homo sapiens is obtained from the Ensembl database 

(http://www.ensembl.org/Homo_sapiens/index.html).  

(iii) Saccharomyces cerevisiae from the SGD database. 

(iv) Arabidopsis thaliana is downloaded from the TAIR database (The 

Arabidopsis Information Resource; http://www.arabidopsis.org/). 

 

 

 

 

3.4 Instrumentation and Results Analysis 

 

 

All experiments are run on a 25-node low-cost PC cluster with 2.8GHz 

Pentium IV of processor, 512MB of memory, and 100Mbps of network speed. The 

low-cost PC cluster is based on island (coarse-grained) model and it is implemented 

using MPICH2 libraries (http://www-unix.mcs.anl.gov/mpi/mpich/). The operating 

system used is Fedora Core 5. The genetic algorithm adopted in this study is an 

enhancement of the GAlib C++ libraries (http://lancet.mit.edu/ga/). The interface for 

the basic and extended UTMGO are developed using Java Server Pages (JSP) scripts. 
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In Chapter 4, four comparisons are presented to evaluate the performance of 

the genetic split-merge algorithm. The comparison includes results analysis of 

different number of processors of the low-cost PC cluster used to run the genetic 

split-merge algorithm, different fitness functions of the genetic split-merge 

algorithm, and comparison between genetic split-merge algorithm and other 

clustering and automatic clustering algorithms. In Chapter 5, the results of the 

genetic similarity algorithm are analyzed with different semantic similarity measure 

and different combinations of parameters α and β for depth and local network density 

factors respectively. Whereas, different semantic similarity and keyword-based GO 

browsers are used to analyze the results of the basic UTMGO. The results analysis of 

different number of processors of the low-cost PC cluster used to run the basic 

UTMGO and the genetic similarity algorithm as its intelligent engine are also 

presented in Chapter 5. Lastly, in Chapter 6, the results of the extended UTMGO 

have been analyzed with other GO-based protein sequence annotation tools. The 

expert and the system that are related to Equation 5.15 and 5.16, discussed in Section 

5.6 and 6.4, refer to a biologist who has knowledge of the GO and protein sequence 

annotations and the basic and the extended UTMGO, respectively. The results in this 

study have been validated by the GO Consortium. Some publications of the study 

have also been included in the GO bibliography (http://www.geneontology.org/cgi-

bin/biblio.cgi). 

 

 

 

 

3.5 Summary 

 

 

 The framework of this study has been presented in this chapter to solve the 

macro (application) and micro (research) problems. However, in the following 

chapters, we are going to present more details of the techniques for splitting the 

monolithic GO RDF/XML file, followed by techniques for finding a group of 

semantically similar GO terms, and then developing the basic and extended 

UTMGO. 



 

 

 

 

CHAPTER 4 

 

 

 

 

THE GENETIC SPLIT-MERGE ALGORITHM  

FOR SPLITTING THE MONOLITHIC GENE ONTOLOGY RDF/XML FILE 

 

 

 

 

4.1 Introduction 

 

 

The GO is a collection of dynamic and standardized biological terms used to 

annotate gene products in any organism. These biological terms are rich with 

information such as definition, synonyms, external database references, association 

with annotated gene products and their protein sequences that are provided by the 

GOA, and relationships with other terms. The GO data is available in RDF/XML, 

OBO/XML, OWL, and MySQL formats. The GO RDF/XML is created to allow the 

GO data to be shared and reused across the WWW in a way that it can be interpreted 

and processed by human and machine alike. The advantage is that, especially for 

bioscientists, it obviates the need for manually importing the GO data into relational 

database format every time it is updated. Thus, it prevents them from setting up the 

database software. The GO RDF/XML has been used by numerous bioinformatics 

tools such as WEGO [103], a tool for plotting GO annotation results; ErmineJ [104], 

a tool for the functional analysis of gene sets in microarray gene expression data; 

DynGO [105], a tool to search for a GO term and its association using batch and 

semantic retrieval; and COBrA [106], a browser and editor for GO and OBO 

ontologies that allows the user to make links between terms in those ontologies. 
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Due to large amount of the GO data as shown in Table 2.1, protein sequences 

and IEA evidence associations are not included in the GO RDF/XML file by the GO 

Consortium. But still the astronomical size and massive nature of this single flat file 

(current size is 472 MB) has caused the GO RDF/XML difficult to be maintained, 

published, validated, and processed. An alternative way to make the GO RDF/XML 

more complete, coherent, and easy to browse is to split it into multiple files. Thus, it 

enables protein sequences and IEA evidence associations to be included in the 

smaller GO RDF/XML files.  

 

Splitting the GO RDF/XML file requires the GO terms to be grouped into a 

number k of clusters. Since the GO terms are structured as DAG, let GO graph be G 

= {V, E} that consists of two main elements: V is a set of nodes that represent the GO 

terms and E is a set of edges that represent relationships between the GO terms. 

Partitioning the GO graph is a combinatorial problem and can be regarded as a GPP. 

The intention of GPP is to divide a vertex set V into k disjoint and non-empty subsets 

in order to produce partitions that have higher degree of interaction between nodes in 

the same partition and have lower degree of interaction between nodes in different 

partitions. The task of partitioning the large GO graph that contains more than 22 

thousand nodes and almost 2.0 million paths is characterized as bearing very high 

computational complexity. Moreover, identifying the number k of clusters is a hard 

algorithmic problem since it is difficult to guess, and it requires a trial-and-error 

work. 

 

This chapter is organized as follows. Section 4.2 gives related work on 

clustering, automatic clustering, and GPP. Section 4.3 explains the proposed 

algorithm to split the monolithic GO RDF/XML file. Section 4.4 describes the 

testing environment and evaluation measures used in this chapter. Section 4.5 

presents experimental results and discussion. Finally, the chapter summary is 

provided in Section 4.6. 
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4.2 Related Work 

 

 

A large number of clustering algorithms have been proposed in the past 

decade. Among the successfully implemented clustering algorithms are fuzzy logic, 

e.g. fuzzy clustering by local approximation of membership [107] and fuzzy c-means 

[108] for clustering DNA microarray data; support vector machines, e.g. clustering 

support vector machines [109] for protein local structure prediction and support 

vector clustering [110] for marketing segmentation; k-means, e.g. k-means range 

algorithm [111] for personalized data clustering in e-commerce and greedy k-means 

algorithm [112] for global gene trajectory clustering; and evolutionary algorithms, 

e.g. hybrid-evolutionary-programming algorithms [113] for microbial growth studies 

and genetic clustering [114] for clustering gene expression data. Other clustering 

algorithms include hierarchical clustering [115], Bayesian clustering [116], profile 

hidden Markov model [117], and self-organizing map [118]. There are also hybrid 

clustering algorithms such as rough fuzzy c-means [119], rough k-means [120], and 

evolutionary fuzzy c-means [121]. Comparison of clustering algorithms can be found 

in [122]–[125]. 

 

For automatic clustering, several new algorithms have been developed 

recently. Evolutionary clustering [126] employs merge and split mutation operators 

to dynamically change the number k of clusters that is represented by the length of 

the chromosome during the evolutionary process. This algorithm is specifically 

developed to cluster gene expression microarray data. Laszlo and Mukherjee [127] 

introduces genetic algorithm for evolving centers in the k-means. They exploit the 

emersion of chromosomes with varying number of genes to simultaneously search 

for a range of good clusters around the specified k. The algorithm has been tested 

using benchmark data sets of traveling salesman problem. Hybrid niching genetic 

algorithm [128] applies Selecting Factor Group (SFG) and Comparing Factor Group 

(CFG). The SFG is used to encourage mating between chromosomes. Meanwhile, 

the purpose of the CFG is to balance competition during substitution between 

chromosomes with the same number of clusters and chromosomes with different 

number of clusters. Three real data sets of iris, breast cancer, and subcellcycle are 

used in the experiments.  
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In another part, GPP has been studied by several researchers for different 

sizes of graph. Aykanat et al. [129] has formulated adaptive object space 

decomposition problem as a GPP. A tool named RM-MeTiS is developed to partition 

the graph. This tool consists of three phases: multilevel coarsening, initial 

remapping, and multilevel refinement. The largest graph consists of 109,744 nodes 

and the experiments are conducted on a 28-node PC cluster. Duarte et al. [130] has 

modeled image segmentation as a GPP. The GPP is resolved by a variant of 

normalized cut using hierarchical social metaheuristic. The experiments involve the 

largest graph with 11,155 nodes and 1,817,351 edges. Mitchell and Mancoridis [131] 

has invented Bunch as a tool for modularization of software systems. This tool uses 

search techniques and treats the clustering process as a GPP. It has been tested to the 

largest graph with almost 10,000 nodes and 100,000 edges. 

 

In genetic algorithm based clustering, a population with ps number of 

chromosomes is randomly generated with every chromosome representing a solution. 

The goodness of each chromosome is evaluated by a fitness function. Salim and 

Mohemad [132] has introduced mean inter-cluster molecular dissimilarity measure to 

calculate the fitness function as follows: 

1 1
SM 2( ) 1

n n

ij
i j

T
f x

n
= == −
∑∑

, (4.1) 

where  represents the Tanimoto coefficient between cluster centroids and n is the 

number of centroids. In the meantime, Garai and Chaudhuri [133] defines the fitness 

function of a chromosome as follows: 
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where  represents intra-distance in cluster Cintra ( )iD C i,  represents inter-

distance of cluster C

inter ( )iD C

i, and B  represents the size of dataset. 
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4.3 The Genetic Split-Merge Algorithm 

 

 

 A genetic split-merge algorithm that combines parallel genetic algorithm with 

split-and-merge algorithm is proposed to cluster the GO terms. The aim is to split the 

monolithic GO RDF/XML file into a number of smaller files. The parallel genetic 

algorithm is used because of its capability of being adaptive, efficient, robust, and a 

global search method that is suitable to address a situation where the search space is 

large. Moreover, parallel genetic algorithm optimizes its fitness function by utilizing 

the genetic operators to find an optimal solution. It can also be executed on a low-

cost PC cluster using message passing interface libraries that are open source and 

easy to install. The split-and-merge algorithm is implemented to improve infeasible 

clusters in order to efficiently estimate the number k of clusters. Generally, the 

genetic split-merge algorithm works by decomposing the GO terms into a number of 

clusters and then automatically combines these clusters in several iterations until the 

best number k of clusters is found. The genetic split-merge algorithm uses cohesion-

and-coupling metric to measure the goodness of the generated clusters. The genetic 

split-merge algorithm is expected to be capable of automatically identifying the 

number k of clusters, producing balanced clusters in terms of number of elements in 

each cluster, requires reasonable amount of processing time, and generates good 

clusters. The overview of the genetic split-merge algorithm is shown in Figure 4.1. 

 

 

 

 

4.3.1 Chromosome Representation 

 

 

 The GO graph is represented by a chromosome using 1D array of integers. 

The chromosome is built in a way where gene represents the cluster number, loci 

represents the node number, and the chromosome length represents the number of 

nodes in the GO graph. This encoding scheme allows any size of graph to be easily 

represented by the chromosome, increases the convergence velocity of the genetic 

split-merge algorithm, and makes the gene values to be simply assigned and 



 41

interpreted. An example of chromosome representation of GO graph with 12 nodes 

and 3 clusters is shown in Figure 4.2. 
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Genetic-Split-Merge-Algorithm (G, kmin); 
Input: G = {V, E} (a Gene Ontology graph) and kmin (a minimum number k 
of clusters) 
Output: C = (C1, C2, …,  Ck) (a clustering) 
begin 
 t := 0; 
 initialize ;   // note that  where  and ( )Pop t 1( ) { , , }t t

psPop t x x= … ( )Pop t
tx  are the population and chromosome for generation 

t respectively and ps is the size of population 
 evaluate ;    ( )Pop t
 while not termination-condition do 
  t := t + 1; 
  select  from ( )Pop t ( 1Pop t )− ; 
  alter  by crossover and mutation operators; ( )Pop t
  alter  by split and merge functions; ( )Pop t
  evaluate ; ( )Pop t
 end-while 
end 

Figure 4.1: The genetic split-merge algorithm. 

 

 

 

 

4.3.2 Crossover and Mutation Operators  

 

 

 Two classical and most often-used genetic operators, the crossover and the 

mutation operators, are employed during the reproduction phase. These operators are 

chosen since they work effectively with a chromosome that uses 1D array of integers 

and a fitness function that is based on the cohesion-and-coupling metric. The 

crossover operator performs a probabilistic process to create new offsprings by 

combining features of their parents. The mutation operator also performs a 

probabilistic process to modify one or more genes of each new offspring produced 

from the crossover process. The reason for using these operators in the genetic split-
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merge algorithm is to generate new population with higher total fitness in each 

generation. 
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Figure 4.2: An example of chromosome representation. 

 

 

 

 

4.3.3 Split and Merge Functions 

 

 

 By adopting the split-and-merge algorithm, the k value in the chromosomes is 

refined and fixed. After every reproduction by the genetic operators, each new 

offspring goes through alteration process by the split function S(x) and then by the 

merge function M(x). The transformation is based on a cluster-by-cluster basis by 

making modification in a single chromosome (S(x), M(x): x → x′), which is then 

evaluated by the fitness function fO(x′) (refer to Equation 4.8). Through these 
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functions, chromosomes with best number k of clusters and high fitness are recreated 

in each generation. Hence, it indirectly eliminates the process of producing solution 

with unsuitable number k of clusters and accelerates the pace for convergence.  

 

The main objective of the split function S(x) is to decompose each cluster in 

chromosome x into reasonable fragmented clusters. This function works by creating 

clone chromosomes 1
cx … c

nx  from the chromosome x ∈ . For each cluster 

C

( )Pop t

1…Cp in the clone chromosome xc, the cluster Cp is divided into two clusters  

and . The chromosome x is replaced by the best clone chromosome x

1pC

2pC c that 

satisfies the following criteria:  

(i) The Quality of Clustering (QOC) of the clusters  and  in the 

clone chromosome x

1pC
2pC

c is higher than the QOC of the cluster Cp in the 

chromosome x. 

(ii) The dependency index γ (refer to Equation 4.7) of the clusters  and 

 in the clone chromosome x

1pC

2pC c must be greater than the dependency 

index threshold for small cluster Imin. 

 

The QOC of the clusters  and  in the clone chromosome x
1pC

2pC c is 

computed as follows: 
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where αi is the cohesion of the cluster i (refer to Equation 4.9) and βi,j is the coupling 

between clusters i and j (refer to Equation 4.10). The QOC of the cluster Cp in the 

chromosome x is calculated with the following equation: 
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The merge function M(x) is carried out for combining the isolated clusters by 

repairing genes in the chromosome x when necessary. The objective is to guarantee 

that all the chromosomes repaired by the split function S(x) are genuinely fit to be 
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feasible and near optimal solution. The merge function M(x) is invoked to combine 

clusters Cp and Cq in the chromosome x ∈ . If the trial consolidation fulfills 

the following conditions, then the clusters C

( )Pop t

p and Cq are permanently merged: 

(i) The QOC of the merged clusters Cp and Cq is higher than the QOC of 

the cluster Cp alone. 

(ii) The dependency index γ of the merged clusters Cp and Cq must be less 

than the dependency index threshold for large cluster Imax. 

 

The QOC of the cluster Cp in the chromosome x is computed by Equation 4.5 

as shown below: 
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The QOC of the merged clusters Cp and Cq in the chromosome x is calculated as 

follows: 
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After undergoing the split and merge processes, any illegal chromosome is 

adjusted and then evaluated by the fitness function fO(x). The illegal chromosome 

contains one or more clusters which are empty. For example, given k = 4, the 

chromosome x = (4 1 1 4 1 4 4 4 1) is illegal because cluster number two and three 

are empty. In some cases the split and merge processes can cause clusters to further 

split or merge due to strong internal dependencies. This phenomenon creates 

unbalanced clusters and reflects the aim of creating modular GO RDF/XML files that 

are easy to be maintained, published, validated, and processed. Therefore, 

dependency index γ is introduced to stabilize the split-and-merge algorithm and to 

forbid it from producing micro or giant clusters during splitting or merging process. 

The dependency index γi of the cluster i is given by: 

1
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i
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j
j
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N
γ

=

−
=

−∑
, (4.7) 

where Ni is the number of nodes in the cluster i and Nj is the total number of nodes in 
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the GO graph. The target value for dependency index γi of the cluster i is 0. The 

maximum value is 1 which represents the worst case where most of the nodes form a 

large cluster. Meanwhile, negative value indicates pathological clusters with 

undersized number of nodes. 

 

 

 

 

4.3.4 Fitness Function 

 

 

 The fitness function fO(x) to partition the GO graph is based on the cohesion-

and-coupling metric and is defined as follows:  
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The value of the fitness function fO(x) vary between [-1…1]. A good quality 

chromosome has a high value of fitness function fO(x). The cohesion αi of the cluster 

i is calculated by: 

( 1
2

i
i

i iN N
µα =
−

, (4.9) 

where Ni is the number of nodes in the cluster i and µi is the number of its internal 

edges. The coupling βi,j between clusters i and j is given by: 

0
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where Ni and Nj are number of nodes in the clusters i and j respectively and εij is the 

number of edges from cluster i to cluster j. 
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4.3.5 Parallelization Process 

 

 

Partitioning the GO graph is computationally intensive. This is due to the fact 

that the GO graph has a large number of nodes and paths. Furthermore, to obtain a 

good solution, it requires a multitude of chromosomes and many generations of 

population. This scenario becomes deteriorated when population for each generation 

is required to go through the reproduction process and the split and merge functions. 

To solve this problem, the genetic split-merge algorithm is paralleled by exploiting 

the advantages of island (coarse-grained) model [134]–[136]. It is implemented on a 

low-cost PC cluster using message passing interface libraries. The parallelization 

process of the genetic split-merge algorithm is shown in Figure 4.3. 

 

 

 

 

4.4 Testing Preparation and Evaluation Measures 

 

 

The GO data used in this chapter is in RDF/XML format as released in 

January 2007 (refer to Table 2.1). The data is compressed in a GZIP file named 

go_200701-assocdb.rdf-xml.gz. The data is updated monthly and can be downloaded 

from http://archive.godatabase.org/. The data comes without protein sequences and 

IEA evidence associations. Therefore, to include both of them into the fragmented 

GO RDF/XML files these data are taken from the MySQL format. The GO data in 

MySQL format is stored in a file named go_200701-seqdb-tables.tar.gz. The genetic 

split-merge algorithm and other algorithms that have been used for comparison are 

run on a 25-node low-cost PC cluster with 2.8GHz Pentium IV of processor, 512MB 

of memory, and 100Mbps of network speed. The operating system used is Fedora 

Core 5. The low-cost PC cluster is implemented using MPICH2 libraries [137]. The 

genetic algorithm used in this chapter is an enhancement of the existing GAlib C++ 

libraries created by Wall [138]. The parameters used to run the genetic split-merge 

algorithm are shown in Table 4.1. 
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 Create initial population 

Divide population into subpopulations 

Distribute subpopulations to processors 

Subpopulation 
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Subpopulation 
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Processor      
1 
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Perform parallelization computation 

1. Create new subpopulation. 
2. Alter subpopulation by crossover and mutation operators. 
3. Alter subpopulation by split and merge functions. 
4. Evaluate subpopulation. 
5. Exchange best chromosomes between subpopulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: The parallelization flow of the genetic split-merge algorithm. 

 

 

To evaluate the goodness of the clustering produced by the genetic split-

merge algorithm, two validity measures are used: the Davies-Bouldin index (DBI) 

measure and the F-measure. The DBI measure is defined as follows: 

intra intra
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where dintra is the average distance of all patterns in cluster i to their cluster center ci 

and dinter is the distance of cluster centers ci and cj. Since the clustering objective is to 

maximize inter-cluster distance and to minimize intra-cluster distance, a good 

clustering therefore should have a small value of DBI. The DBI measure has been 

studied by [139]–[141]. On the other hand, the F-measure combines the precision 

and recall measures adopted from information retrieval. The F-measure is calculated 

as follows: 
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2PRF
P R

=
+

, (4.12) 

where P ij

i

N
N

= , R ij

j

N
N

= , Nij is the number of elements with cluster label i within 

cluster j, Ni is the number of elements with cluster label i, and Nj is the number of 

elements of cluster j. The F-measure values are in the interval [0, 1], and the larger 

value indicates better clustering quality. The F-measure has been used by Ma et al. 

[126], Cui et al. [142], and Watts and Porter [143] to validate the clustering results. 

 

 

Table 4.1: Parameters of the genetic split-merge algorithm. 

Item Parameter 
Size of population 100 
Number of generations 400 
Crossover probability 0.8 
Mutation probability 0.01 
Length of chromosome 22,954 
Replacement percentage 0.5 
Type of crossover Partial match crossover 
Type of mutation Swap mutation 
Type of genetic algorithm Steady-state genetic algorithm 
Scaling Sigma truncation scaling 
Fitness function Maximizing preferences 
Number of clone chromosomes 5 
Dependency index threshold for small cluster 0.1 
Dependency index threshold for large cluster 0.3 
Number of subpopulations 25 
Isolation time 10 generations 
Number of emigrants 1 
Type of replacement Bad by best 
Type of migration Stepping stone 

 

 

 

 

4.5 Results and Discussion 

 

 

In order to justify the need for executing the genetic split-merge algorithm on 

a low-cost PC cluster, the effect of using different number of processors in the low-
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cost PC cluster is analyzed. The effect on the following factors is studied: number of 

generations to converge gbest, number of clusters found kfound, CPU time (in seconds), 

maximum value of fitness function max{fO(x)}, DBI, and F-measure. Results in 

Table 4.2 show that a cluster of 25 processors is the ideal solution to handle the 

computational problem. Six factors, particularly the CPU time, were highly affected 

if more number of processors were removed. Otherwise, additional processors only 

slightly affected those factors. 

 

 

Table 4.2: The effects of different number of processors used on the performance of 

the genetic split-merge algorithm. 

Number of processors Item 5 10 15 20 25 30 
gbest  580 470 430 320 250 250 
kfound 5 5 5 5 5 5 
CPU time 12,652.7 2,472.8 996.0 353.5 32.4 31.9 
max{fO(x)} 0.1051 0.1168 0.1237 0.1305 0.1353 0.1356 
DBI 1.75 1.68 1.63 1.58 1.52 1.50 
F-measure 0.74 0.81 0.85 0.88 0.92 0.93 
 

 

 To assess the performance of our fitness function fO(x), its results are 

compared with fitness functions introduced by Salim and Mohemad fSM(x) [132] and 

Garai and Chaudhuri fGC(x) [133]. The dependency index γ is added to both fitness 

functions as well as to our fitness function fO(x) and different minimum number k of 

clusters kmin are used. The results in Table 4.3 show that the earliest number of 

generations to converge gbest is obtained by our fitness function fO(x) which appeared 

as early as after 250 generations. The results also show that if the minimum number k 

of clusters kmin is greater than the best number k of clusters kbest, then the number k of 

clusters found kfound is bound to it. Furthermore, the results show that our fitness 

function fO(x) provides the best value of CPU time (in seconds), DBI, and F-measure 

which are 32.4 seconds, 1.52, and 0.92 respectively. 



 

Table 4.3: Comparison of different fitness functions. 

fO(x) fSM(x) fGC(x) 
kmin gbest kfound

CPU 
time DBI F-

measure gbest kfound
CPU 
time DBI F-

measure gbest kfound
CPU 
time DBI F-

measure 
1          310 5 38.4 1.57  0.79 480 5 287.0 1.64 0.83 640 5 71.3 1.67  0.66
2               300 5 36.8 1.55 0.81 430 5 266.8 1.61 0.78 610 5 64.4 1.64 0.70
3               290 5 33.5 1.58 0.85 390 5 242.1 1.60 0.71 590 5 62.5 1.65 0.67
4               260 5 32.9 1.54 0.80 370 5 203.9 1.62 0.67 530 5 59.9 1.63 0.71
5               250 5 32.4 1.52 0.92 330 5 194.9 1.60 0.74 430 5 58.9 1.59 0.69
6               270 6 33.0 1.65 0.67 340 6 229.7 1.71 0.61 470 6 62.7 1.79 0.41
7               280 7 33.6 1.64 0.66 380 7 280.2 1.69 0.58 510 7 63.5 1.78 0.38
8               310 8 37.6 1.63 0.64 450 8 308.1 1.68 0.56 560 8 81.7 1.75 0.37
9               320 9 38.3 1.60 0.62 480 9 340.2 1.66 0.51 620 9 87.9 1.71 0.34
10                330 10 41.8 1.59 0.58 530 10 357.0 1.64 0.44 670 10 109.8 1.70 0.28

 

 

Table 4.4: Comparison of different clustering algorithms. 

Genetic split-merge algorithm k-means Fuzzy c-means Support vector clustering k or 
kmin CPU time DBI F-measure CPU time DBI F-measure CPU time DBI F-measure CPU time DBI F-measure 

5  32.4 1.52  0.92 74.9 1.61  0.72 72.1 1.53  0.76 40.9 1.55  0.86
6             33.0 1.65 0.67 79.0 1.78 0.66 74.7 1.75 0.67 41.3 1.74 0.74
7             33.6 1.64 0.66 83.5 1.74 0.62 76.2 1.70 0.64 42.0 1.68 0.67
8             37.6 1.63 0.64 86.7 1.73 0.57 80.1 1.69 0.60 44.7 1.65 0.62
9             38.3 1.60 0.62 88.5 1.70 0.50 86.2 1.62 0.53 53.1 1.64 0.59
10             41.8 1.59 0.58 94.9 1.65 0.44 87.6 1.60 0.51 53.9 1.61 0.56
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In this chapter, three most popular clustering algorithms are examined and 

compared with the genetic split-merge algorithm as shown in Table 4.4. As it is clear 

from the table, k=5 returns the best DBI and F-measure values for k-means, fuzzy c-

means, and support vector clustering which are (1.61, 0.72), (1.53, 0.76), and (1.55, 

0.86) respectively. The results indirectly prove that the kfound=5 returned by the 

genetic split-merge algorithm is the best number k of clusters kbest. On the other hand, 

the best CPU time (in seconds), DBI, and F-measure are obtained by the genetic 

split-merge algorithm when k=5 is examined. The clustering utilization as depicted in 

Figure 4.4 shows that the dependency index γ plays an important role in creating 

balanced clusters. 
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Figure 4.4: Cluster utilization of different clustering algorithms. 

 

 

 The comparison between the genetic split-merge algorithm and other 

automatic clustering algorithms such as evolutionary clustering [126], Laszlo and 

Mukherjee’s algorithm [127], and hybrid niching genetic algorithm [128] is shown in 

Table 4.5. The results show that the genetic split-merge algorithm provides the best 

F-measure (0.92) and obtains the earliest number of generations to converge gbest 

(250 generations), the hybrid niching genetic algorithm offered the best DBI (1.49), 

and the best CPU time (in seconds) is 31.2 seconds that is taken by the evolutionary 

clustering. Further, kfound=5 is returned as the best number k of clusters kbest by all the 
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four algorithms. Figure 4.5 illustrates how the other automatic clustering algorithms 

are unable to produce balanced clusters compared to the genetic split-merge 

algorithm. 

 

 

Table 4.5: Comparison of different automatic clustering algorithms. 

 gbest kfound CPU time DBI F-measure
Genetic split-merge algorithm 250 5 32.4 1.52 0.92 
Evolutionary clustering 300 5 31.2 1.85 0.89 
Laszlo and Mukherjee’s 
algorithm 430 5 35.9 2.22 0.74 

Hybrid niching genetic 
algorithm 320 5 40.9 1.49 0.78 
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Figure 4.5: Cluster utilization of different automatic clustering algorithms. 

 

 

An example of part of a smaller Gene Ontology RDF/XML file that has been 

split by the genetic split-merge algorithm is shown in Figure 4.6. The example shows 

how a Gene Ontology term “tRNA processing” (GO:0008033) includes “RNA 

processing” (GO:0006396) from the cluster C2 (line 6) and “tRNA metabolic 

process” (GO:0006399) from the cluster C3 (line 7). The figure also shows the 

inclusion of an IEA evidence association with the gene product “BC4V2_0_00030” 

(DDB0218427) from the dictyBase database (line 8–31) and its protein sequence 
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(line 20–28). The example shows that by splitting the monolithic GO RDF/XML file, 

the smaller GO RDF/XML files can be easily maintained and become exhaustive. 
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<go:term rdf:about="http://localhost/go/cluster1#GO:0008033">
 <go:accession>GO:0008033</go:accession> 
 <go:name>tRNA processing</go:name> 
 <go:definition>The process by which a pre-tRNA molecule is converted to a 

mature tRNA, ready for addition of an aminoacyl group.</go:definition> 
 <go:is_a rdf:resource="&cluster2; http://localhost/go/cluster2#GO:0006396"> 
 <go:is_a rdf:resource="&cluster3; http://localhost/go/cluster3#GO:0006399"> 
 <go:association rdf:parseType="Resource"> 
  <go:evidence evidence_code="IEA"> 
   <go:dbxref rdf:parseType="Resource"> 
    <go:database_symbol>DDB_REF</go:database_symbol> 
    <go:reference>10157</go:reference> 
   </go:dbxref> 
  </go:evidence> 
  <go:gene_product rdf:parseType="Resource"> 
   <go:name>BC4V2_0_00030</go:name> 
   <go:dbxref rdf:parseType="Resource"> 
    <go:database_symbol>DDB</go:database_symbol> 
    <go:reference>DDB0218427</go:reference> 
    <go:sequence>MSPRYKIIYEYIGKSFTGFQRLKYPVVKLPVQQVL 
     EDSLEKIHGYKIPIVGSSRTDHGVSAVGQVSHFDVKTRTSKSGI 
     EMPLLSPEELTMAINYNVGKEYLKSIRIIKTEIVDDKFHCRFNA 
     TSRTYLYRVMANCGRKQIPLELLDRVYLVGPILNLDEMRKAS 
     EMFIGTHDFSSFRSAKCSSTRPIRSISHIKIYDLPLPDIFQYNPSFQ 
     NISRSNTNYPIGDGEKNLDKKNTGLQYFGIEIKARAFLHNQVRI 
     MVASLIKVGEGEISIQQLEEIKDKKDRGAAPPTASPEPLTLLTV 
     SYDDPKVNPSTFQQQQQQQQQQQQQQQQQQQQQQQQQQQQ 
     QQS</go:sequence> 
   </go:dbxref> 
  </go:gene_product> 
 </go:association> 
 <!-- more associations --> 
</go:term> 
<!-- more Gene Ontology terms --> 

Figure 4.6: An example of part of a smaller GO RDF/XML file. 

 

 

The experimental results have shown that, unlike any other clustering 

algorithm such as k-means, fuzzy c-means, and support vector clustering, the 

proposed algorithm with the split-and-merge strategy can automatically find the best 

number k of clusters kbest. Compared to other automatic clustering algorithms such as 
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evolutionary clustering [126], Laszlo and Mukherjee’s algorithm [127], and hybrid 

niching genetic algorithm [128], the genetic split-merge algorithm is capable of 

producing balanced clusters. The experimental results have shown that the genetic 

split-merge algorithm requires reasonable amount of execution time and the 

generated clusters have better DBI and F-measure values compared to the existing 

clustering and automatic clustering algorithms. Furthermore, the users are allowed to 

set the minimum number k of clusters kmin they wish to maintain. 

 

 

 

 

4.6 Summary 

 

 

The GO RDF/XML is created to allow the GO data to be shared and reused 

across the WWW in a way that it can be interpreted and processed by human and 

machine alike. The GO RDF/XML has been used by numerous bioinformatics tools 

for analyzing the GO annotation results, analysis of microarray gene expression data, 

and searching and browsing the GO. However, the increase in size of the GO data 

has caused the GO RDF/XML difficult to be maintained, published, validated, and 

processed. One of the solutions is splitting the GO RDF/XML into smaller files. 

Splitting the monolithic GO RDF/XML file requires the GO terms to be grouped into 

a number k of clusters. Clustering the GO terms is a difficult combinatorial problem 

and can be modeled as a GPP since they are structured as a DAG. Additionally, 

deciding the number k of clusters to use is not easily perceived and is a hard 

algorithmic problem. In this chapter, a genetic split-merge algorithm that combines 

parallel genetic algorithm with split-and-merge algorithm is proposed to handle these 

problems. The genetic split-merge algorithm uses cohesion-and-coupling metric to 

measure the goodness of the generated clusters. The performance of the genetic split-

merge algorithm has been compared and an example of a smaller GO RDF/XML file 

is given to show the effectiveness of the genetic split-merge algorithm. 



 

 

 

 

CHAPTER 5 

 

 

 

 

THE GENETIC SIMILARITY ALGORITHM  

FOR SEARCHING THE GENE ONTOLOGY TERMS 

 

 

 

 

5.1 Introduction 

 

 

The GO is a collection of nearly 23 thousand terms for providing consistent 

terms to describe gene and gene product attributes in any organism found in 

heterogeneous databases. The GO terms are structured, controlled vocabularies 

organized as a DAG in three aspects: cellular component, biological process, and 

molecular function. Let GO be a graph G = {V, E}, where V is a set of nodes 

representing the GO terms and E is a set of pairs of nodes representing relationships 

between the GO terms. The GO terms can have more than one parent, as well as 

multiple children. The GO terms are connected by two relationships: the “is-a” 

relationship, e.g. “chromatin binding” (GO:0003682) and “structure-specific DNA 

binding” (GO:0043566) are parents of “chromatin DNA binding” (GO:0031490); 

and the “part-of” relationship, e.g. “cytoplasmic part” (GO:0044444) is part of 

“cytoplasm” (GO:0005737). The GO have been utilized in bioinformatics research 

and has numerous practical applications including prediction of protein-protein 

interaction networks [30], protein classification [144], prediction of protease types 

[145], and functional interpretation of microarray data [146].
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However, the existing GO browsers that support basic needs of bioscientists 

for searching the GO terms still use a conventional approach based on keyword 

matching. Thus, for bioscientists, finding a group of semantically similar GO terms is 

time consuming and a tedious task. For example, the keyword matching is not 

capable of computing the relationship between “intracellular organelle” 

(GO:0043229) and “cytoplasm” (GO:0005737) even though they share the same 

parent “intracellular part” (GO:0044424) because their names do not exactly or 

approximately match. Therefore, a GO browser named basic UTMGO is introduced 

in this chapter to overcome the weaknesses of the existing GO browsers. The basic 

UTMGO uses a genetic similarity algorithm that incorporates the parallel genetic 

algorithm and the semantic similarity measure algorithm. The parallel genetic 

algorithm is used to generate a solution consisting of a group of semantically similar 

GO terms that best match to the query GO term, and to accelerate the search in the 

large GO graph. The search space of the GO graph, g(k), is astronomical and varies 

between: 
( 1) ( 1)

22 ( ) 3
k k k k

g k
− −

≤ ≤ 2 , (5.1) 

where k is the number of nodes in the GO graph. Currently the GO graph consists of 

22,954 nodes, so the search space of the GO graph is between 2263,431,581 and 

3263,431,581. A parallel genetic algorithm optimizes its fitness function by utilizing the 

genetic operators to find an optimal solution. It can also be executed on a low-cost 

PC cluster using message passing interface libraries that are open source and easy to 

install. The semantic similarity measure algorithm is added into the parallel genetic 

algorithm to measure the similitude strength between the GO terms during the 

creation of initial population and calculation of fitness value. The semantic similarity 

measure algorithm used is a combination of information content (node-based) and 

conceptual distance (edge-based). The information content is used to get the amount 

of information the GO terms share in common, whereas the conceptual distance is 

applied to know the depth and the local network density of the GO terms. 

 

The remainder of the chapter consists of related work in semantic similarity 

measure and genetic algorithm and existing tools for searching the GO terms 

(Section 5.2), technical description of the semantic similarity measure algorithm 

(Section 5.3), detailed explanation of the proposed genetic similarity algorithm 



 57

(Section 5.4), step-by-step explanation of the basic UTMGO (Section 5.5), 

description of the testing environment and evaluation measures used in this chapter 

(Section 5.6), the results and discussion of experiments (Section 5.7), and followed 

by the summary (Section 5.8). 

 

 

 

 

5.2 Related Work 

 

 

Semantic similarity measures play an important role in information retrieval 

and natural language processing. Example applications include characterization of 

human regulatory pathways [147], linguistic modeling [148], computer-assisted 

inter-observer consensus [149], and semantic feature ratings [150]. The choice of 

semantic similarity measure has the ability to improve the recall and precision of 

information retrieval by identifying the relation between concepts. This is done by 

calculating the distance or the amount of information in common between the two 

concepts being analyzed. Most of the popular measures are based on taxonomic or 

ontological structure [151–154]. These measures have been analyzed by Budanitsky 

and Hirst [155], and the evaluation of WordNet (http://wordnet.princeton.edu/) based 

semantic similarity measures in their study shows that the Jiang and Conrath 

semantic similarity measure [153] provides the best results. The Jiang and Conrath 

semantic similarity measure is a combined approach that inherits the conceptual 

distance approach enhanced with the information content approach. The basic 

calculation of the Jiang and Conrath semantic similarity measure is expressed as: 

1 2 1 2 1 2( , ) ( ) ( ) 2 ( , )dist c c IC c IC c sim c c= + − × , (5.2) 

where ( ) log ( )IC c P c= − , , c is some concept being 

studied, P(c) is the probability of encountering an instance of concept c, and S(c

1 2
1 2 ( , )

( , ) max { ( )}
c S c c

sim c c IC c
∈

=

1, c2) 

is the set of concepts that subsume both c1 and c2. 

 

 Lord et al. [156] has studied the Resnik [154] semantic similarity measure on 

the GO. They have only considered the GO annotations in Swiss-PROT and the “is-
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a” relationship. Their work has been extended by Popescu et al. [157]. In the 

meantime, Sevilla et al. [158] has compared different semantic similarity measures 

proposed by Lin [152], Jiang and Conrath, and Resnik. They conclude that the 

Resnik semantic similarity measure outperforms the other semantic similarity 

measures. However, their comparisons are based on the gene products rather than the 

GO terms, and they used the subsets of the GO terms and annotations. Therefore, in 

this study we use the Jiang and Conrath semantic similarity measure to compute the 

semantic similarity between pairs of GO terms rather than between pairs of gene 

products, and we use all the GO terms and annotations provided by the GO 

Consortium including the “part-of” relationships. The Jiang and Conrath semantic 

similarity measure is selected since both notions of the shared information content 

and the conceptual distance of the GO terms in the GO graph are considered as 

discussed in Section 5.1. 

 

A genetic algorithm is selected because its capabilities as a machine learning 

technique have been recognized in the information retrieval field. This is due to its 

capability of being adaptive, efficient, robust, and a global search method that is 

suitable to address a situation where the search space is large. The properties of the 

genetic algorithm are as follows: a chromosome (a string of symbols called genes) to 

represent a solution, an allele to represent the value of the gene (it is usually a binary 

bit {0, 1}, an integer, or a real number), loci to represent the positions of the genes in 

the chromosome, a population to represent a set of chromosomes, a fitness function 

to evaluate each chromosome, a set of genetic operators to generate a new 

population, and a selection method to select fitter chromosomes for the next 

generation. The genetic algorithm starts with an initialization step in which an initial 

population is generated at random. Then it evolves with the following steps in each 

generation: evaluation of fitness function (the value of each chromosome in the 

population is calculated according to the fitness function), selection (multiple 

chromosomes are stochastically selected from the current population based on their 

fitness to form a new population), and a genetic operation (modification is performed 

to a newly generated population). These steps are repeated until either a maximum 

number of generations have been produced or a satisfactory fitness level has been 

reached for the population. Some reviews of genetic algorithms can be found in 

[159–161]. Implementations of the genetic algorithm in information retrieval are 
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normally related to web search [162], gene selection [163], spatial information 

retrieval [164], and document retrieval [165].  

 

For searching the GO terms, most of the present GO browsers respond to user 

queries by retrieving relevant GO terms based on keyword matching. A list of tools 

for searching and browsing the GO terms can be found at 

http://www.geneontology.org/GO.tools.browsers.shtml. Among the popular GO 

browsers are: 

(i) AmiGO is a GO browser developed by the GO Consortium. The 

keyword-based search is executed either by “exact” or “contains” 

match over the GO term accession number, name, or synonyms. This 

tool also allows a user to use a gene product or a protein sequence as a 

search input.  

(ii) GenNav is a GO browser that uses string matching method namely 

“exact” or “approximate” match that responds to a given GO term or 

gene product. GenNav is maintained by the United States National 

Library of Medicine (US NLM). 

(iii) QuickGO is a GO browser that allows a user to retrieve the GO terms 

by “exact” or “wildcard” search for the GO term accession number, 

name, synonyms, definitions, or comments. This web-based GO 

browser can be found at the website of the EBI.  

(iv) TAIR Keyword Browser is a GO browser that uses the GO term 

accession number or name as an input and then performs either 

“contains”, “start with”, “end with”, or “exact” match. This tool is 

developed by TAIR. 

Moreover, DynGO [105] and FuSSiMeG [166] are recently developed GO browsers 

that perform the semantic similarity search over the GO terms. However, the DynGO 

has only focused on the information content and has overlooked the role of 

conceptual distance in finding the significant GO terms. Whereas, the FuSSiMeG is 

not capable of returning more than one GO term for each query. 
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5.3 The Semantic Similarity Measure Algorithm 

 

 

The semantic similarity measure algorithm, as shown in Figure 5.1, takes as 

input a set of subgraphs of the GO graph and the query GO term. It returns a set of 

subgraphs of the GO graph with assigned term similarity score for each node in the 

subgraphs. The term similarity score is used for generation of the initial population 

and evaluation of the fitness function. The semantic similarity measure algorithm 

described in this section is adopted from the Jiang and Conrath. It is simplified, and a 

direct explanation of how the GO is applied to their semantic similarity measure is 

given. 

 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 

12 

13 

14 
15 
16 
17 

Semantic-Similarity-Measure-Algorithm (G, q); 
Input:  (a set of subgraphs of the GO graph) and q 
(a query GO term) 

1 2{ , , , }mG G G G= …

Output:  (a set of subgraphs of the GO graph with 
assigned term similarity score) 

' ' ' '
1 2{ , , , }mG G G G= …

begin 
 for i := 1 to m do   // where m is the number of subgraphs 
  for j := 1 to n do   // where n is the number of nodes in the 

subgraph  iG
   calculate the information content ( )i

jIC c ;   //  where  i
ic G∈

   calculate the depth ( )i
jD c ; 

   calculate the local network density ( )i
jE c ; 

   calculate the semantic distance ( , )i
jdist q c ; 

   calculate the term similarity score ( , )i
jsim q c ; 

  end-for 
 end-for 
end 

Figure 5.1: The semantic similarity measure algorithm. 
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5.3.1 Information Content Approach 

 

 

The information content is computed according to the association: a source 

that presents information shared among the GO terms. The association is a table that 

stores annotations which provide links between GO terms and gene products that are 

supported by evidence codes and literature references. For example, gene product 

“rpl23-A” (Chloroplast 50S ribosomal protein L23, GR:P12097), an Oryza sativa 

species from Gramene (http://www.gramene.org) database, is shared among GO 

terms like “plastid” (GO:0009536), a cellular component that is supported by an 

evidence code of Inferred from Curator (IC) and a literature reference 

PMID:12520024; “RNA binding” (GO:0003723), a molecular function,  is supported 

by an evidence code of inferred from Reviewed Computational Analysis (RCA) and 

literature reference GR.REF:8030; and “translation” (GO:0006412), a biological 

process, is supported by an evidence code of RCA and literature reference 

GR.REF:8030. These links are used to calculate the term similarity score between 

these three GO terms even though they are not directly connected by the “is-a” or 

“part-of” relationships, are from different categories, and do not have similar 

keywords. The information content of the GO term IC(c) is represented as follows:  

( ) log( ( ))IC c P c= − , (5.3) 

where P(c) is the probability of occurrence of a GO term c in the association. The 

probability is measured using maximum likelihood estimation as given below: 

( )( ) freq cP c
N

= , (5.4) 

where N is the total number of occurrences in the association and freq(c) is the 

number of times that the GO term c and all its descendants occur in the association. 

The frequency of the GO term c is defined as follows: 

( )
( ) ( )

i

i
c descendants c

freq c occur c
∈

= ∑ , (5.5) 

where descendants(c) is a function that returns a set of GO terms that are the 

descendants of the GO term c. Note that if a GO term c1 is an ancestor of a GO term 

c2, then freq(c1) ≥ freq(c2) since the GO term c1 subsumes the GO term c2 and all its 

descendants. Therefore, P(c) is larger when the GO term c is nearer to the root term 

c0, and IC(c1) ≤ IC(c2). 
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5.3.2 Conceptual Distance Approach 

 

 

The conceptual distance of a GO term is calculated based on the depth and 

the local network density factors. The depth is referred to as the distance of the GO 

term in the hierarchy of the GO graph. The local network density is related to the 

number of children that span out from the GO term. The depth of the GO term D(c) 

is given as follows: 

( ) 1( )
( )

d cD c
d c

α
⎛ ⎞+

= ⎜
⎝ ⎠

⎟ , (5.6) 

where d(c) is the level of the GO term c in the GO graph. The depth of the root term 

c0 is 1, and it increases as the altitude of the GO term decreases in the hierarchy. The 

parameter α controls the degree of how much the depth factor contributes to 

Equation 5.6, and α ≥ 0. 

 

The local network density of the GO term E(c) is given by the following 

equation: 

( ) (1 )
( )
EE c

e c
β β

⎛ ⎞
= − × +⎜
⎝ ⎠

⎟ , (5.7) 

where e(c) is the number of edges that begin from the GO term c and E  is the 

number of edges divided by the number of GO terms in the GO graph. The parameter 

β controls the degree of how much the local network density factor contributes to 

Equation 5.7, and 0 ≤ β ≤ 1. The effect of multiple inheritances is not considered in 

Equation 5.7 since they have been considered during calculation of the information 

content as mentioned in Equation 5.5. Furthermore, the term similarity score between 

GO terms cm and cn is calculated according to the shortest path that links both of the 

GO terms via their nearest shared ancestor as formulated in Equation 5.8 and 5.9. 

 

Note that the parameters α and β become less important when α approaches 0 

and β approaches 1, since D(c) and E(c) will reach 1 respectively. Furthermore, 

Equation 5.6 and 5.7 are equal when α = 0 and β = 1. 
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5.3.3 The Hybrid Approach 

 

 

The hybrid approach is derived from the notion of the conceptual distance, 

and by incorporating the information content as a decision factor. Given a sequence 

of GO terms c1, …, cn representing the path from GO term c1 to cn with length n. The 

hybrid approach computes the semantic distance between GO terms c1 and cn by the 

following formula: 

(
1

1
0

( , ) ( ) ( ) ( ) ( )
n

n i i i
i

dist c c D c E c IC c IC c
−

+
=

= × × −∑ )1 i

1

, (5.8) 

where dist(c1, cn) is the summation of edge weights along the shortest path that links 

c1 with cn. Thence, the semantic distance between GO terms cm and cn is quantified 

as given below: 

1( , ) ( , ) ( , )m n m ndist c c dist c v dist c v= + , (5.9) 

where GO term c1 is the nearest shared ancestor of GO terms cm and cn. As the 

semantic distance is founded on the difference between the information content, the 

normalization of the semantic distance is given by: 

( , )( , ) min{1, }
max{ ( )}

m n
norm m n

dist c cdist c c
IC c

= . (5.10) 

 

Therefore, the term similarity score between GO terms cm and cn is measured 

by converting the semantic distance as follows: 

( , ) 1 ( , )m n norm m nsim c c dist c c= − . (5.11) 

Note that 0 ≤ sim(cm, cn) ≤ 1 because 0 ≤ distnorm(cm, cn) ≤ 1. 

 

 

 

 

5.4 The Genetic Similarity Algorithm 

 

 

An overview of the genetic similarity algorithm is shown in Figure 5.2. The 

genetic similarity algorithm takes the GO graph and a query GO term as an input. 
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The best chromosome representing a set of GO terms that have higher term similarity 

score to the query GO term is returned by the genetic similarity algorithm. The 

genetic similarity algorithm uses the semantic similarity measure algorithm to 

calculate the term similarity score which is the semantic similarity measure between 

each GO term and the query GO term. 
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Genetic-Similarity-Algorithm (G, q); 
Input: G (a GO graph) and q (a query GO term) 
Output: bestx  (the best chromosome representing a set of GO terms that 
have higher term similarity score to the query GO term) 
begin 
 preprocessing by semantic similarity measure algorithm; 
 : 0t = ; 
 initialize ;  // note that  where  

and 

( )Pop t 1( ) { , , }t t
psPop t x x= … ( )Pop t

tx  are the population and chromosome for 
generation t respectively and ps is the size of 
population 

 evaluate ; ( )Pop t
 while not termination-condition do 
  ; : 1t t= +
  select  from ( )Pop t ( 1)Pop t − ; 
  alter by crossover and mutation operators; ( )Pop t
  evaluate ; ( )Pop t
 end-while 
end 

Figure 5.2: The genetic similarity algorithm. 

 

 

 

 

5.4.1 Preprocessing 

 

 

The first step of the genetic similarity algorithm is the calculation of the term 

similarity score between each node in the subgraphs of the GO graph and the query 

GO term. The GO graph is partitioned into several subgraphs in order to make 

calculation of the term similarity score and generation of the initial population easier 

and faster. The preprocessing step is done by the semantic similarity measure 
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algorithm to improve the quality of the chromosome. This is done by setting the 

positions of nodes in the chromosome before the initialization step. Thus, the first 

chromosome created contains the nodes with the highest term similarity score in each 

subgraph. The second chromosome contains the second best and so on, as shown in 

example in Figure 5.3 for a GO graph with 4 subgraphs and 20 nodes in which “4” is 

the query GO term. Note that the GO term accession number is mapped to the node 

number according to the identification in the “term” table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3: Sort the nodes in each subgraph according to their 
term similarity score. 

 Subgraph 1 Subgraph 2 Subgraph 3 Subgraph 4 
Rank 1 13 (0.66) 4 (1.00) 12 (0.80) 15 (0.45) 
Rank 2 9 (0.33) 11 (0.73) 7 (0.76) 5 (0.41) 
Rank 3 1 (0.29) 17 (0.51) 18 (0.42) 8 (0.27) 
Rank 4 3 (0.13) 14 (0.28) 2 (0.38) 19 (0.20) 
Rank 5 20 (0.05) 6 (0.23) 16 (0.19)  
Rank 6  10 (0.16)   

Step 1: Given a GO graph with 4 subgraphs and 20 nodes. 
Subgraph 1 Subgraph 2 Subgraph 3 Subgraph 4 

1 4 2 5 
3 6 7 8 
9 10 12 15 
13 11 16 19 
20 14 18  
 17   

 

Step 2: Calculate the term similarity score between each 
node in the subgraphs and the query GO term “4”. 

Subgraph 1 Subgraph 2 Subgraph 3 Subgraph 4 
1 (0.29) 4 (1.00) 2 (0.38) 5 (0.41) 
3 (0.13) 6 (0.23) 7 (0.76) 8 (0.27) 
9 (0.33) 10 (0.16) 12 (0.80) 15 (0.45) 
13 (0.66) 11 (0.73) 16 (0.19) 19 (0.20) 
20 (0.05) 14 (0.28) 18 (0.42)  

 17  (0.51)  

Given a query 
GO term “4” 

Figure 5.3: An example of preprocessing. 
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5.4.2 Chromosome Representation 

 

 

Based on the results returned by the semantic similarity measure algorithm, 

the initial population is generated according to the following representations: 

population size is the size of the subgraph with the highest node compared to other 

subgraphs; chromosome length is the number of nodes in the GO graph; loci 

represent the node number; a gene specifies whether a node in the pool of nodes is 

represented by a chromosome or not; and an allele is formed by two binary elements 

either 0 or 1, where 1 shows presence (retrieved) and 0 shows absence (not retrieved) 

of a node in a chromosome. 

 

A chromosome is created by taking a node from each subgraph beginning 

with the ones with higher term similarity score, as shown in example in Figure 5.4. If 

the cardinality of a subgraph is smaller than the number of chromosomes to be 

produced, then that subgraph will not be present in each chromosome. An example of 

mapping of a GO graph into a chromosome is shown in Figure 5.5. This 

representation is crucial to ensure that the large GO graph can be presented with a 

simple and straightforward representation; the processing time taken to converge can 

be shortened since the chromosome is represented using 1D binary string; and the 

evolution of the genetic similarity algorithm is started with an initial population such 

that t1(xi) ≥ t1(xj), where t1(x) is the sum of the term similarity score of the nodes in a 

chromosome x, ∀i,j ∈ {1, 2, …, ps}, ps is the size of population, and i < j. 

 

 

 

 



 

  Subgraph 1 Subgraph 2 
 

 

 

 

 

Subgraph 3 Subgraph 4 
Rank 1 13 (0.66) 4 (1.00) 12 (0.80) 15 (0.45) 
Rank 2 9 (0.33) 11 (0.73) 7 (0.76) 5 (0.41) 
Rank 3 1 (0.29) 17 (0.51) 18 (0.42) 8 (0.27) 
Rank 4 3 (0.13) 14 (0.28) 2 (0.38) 19 (0.20) 
Rank 5 20 (0.05) 6 (0.23) 16 (0.19)  
Rank 6  10 (0.16)   

 

Subgraphs and 
initial population 
mapping. 

 

          1 2 3 4 5 6 

 

7 8 9 10 11 12 13 14 15 16 17 18 19 20
Chromosome 1 0                   0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0
Chromosome 2 0                   0 0 0 1 0 

 
1 0 1 0 1 0 0 0 0 0 0 0 0 0

Chromosome 3 1                   0 0 0 0 0 

 

0 1 0 0 0 0 0 0 0 0 1 1 0 0
Chromosome 4 0                   1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
Chromosome 5 0                   0 0 0 0 1 

 
0 0 0 0 0 0 0 0 0 1 0 0 0 1

Chromosome 6 0                   0 0 0 0 0 

Figure 5.4: An example of generating initial population. Note that subgraphs “1” and “3” are not present in chromosome “6” and subgraph “4” is 

not present in chromosome “5” and “6” since their cardinality is smaller than the size of population. 

0 0 0 1 0 0 0 0 0 0 0 0 0 0
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Chromosome 1 
GO graph

node number

presence (1) or 
absence (0) flag

loci 

genes 0 0 0 1 0 0 0 0 0 0 0 1 

[1]   [2] [3] [4] [5]     [6] [7] [8] [9] [10] [11] [12] 

1 0 1 0 0 0 0 0

[13] [14] [15] [16] [17] [18] [19] [20] 

Subgraph 3Subgraph 2

Subgraph 4

16

1 

2 

13

17 5 

6 

7 

15 

3 

1011

9 

20

4 

14

18

12

8 

19

Subgraph 1

Figure 5.5: An example of mapping of a GO graph into a chromosome. The mapping of nodes “13”, “4”, “12”, and “15” with the highest term 

similarity score from subgraphs “1”, “2”, “3”, and “4” respectively into chromosome “1”. 68
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5.4.3 Crossover and Mutation Operators 

 

 

In order to keep the genetic similarity algorithm as generic as possible, it uses 

normal crossover and mutation operators. These operators are chosen since they are 

formed effectively with a simple 1D binary string representation and with a fitness 

function that uses the semantic similarity measure. At each generation, the genetic 

similarity algorithm implements the fitness function as criteria to evaluate the 

goodness of each chromosome of the current population to create a new set of 

artificial creatures (a new population). Thence, the fitness value of the best 

chromosome in each generation can be maximized, as shown in example in Figure 

5.6.  

 

The above objective is attained by the crossover and mutation operators that 

try to improve the total fitness value of the current population by fixing the old ones. 

Through the crossover operator, the chromosomes reproduced in the new mating 

pool are matched randomly and afterward each couple of chromosomes, say xa and 

xb, undergoes a cross change. Then, the mutation operator plays a secondary role to 

forbid an irrecoverable loss of potentially useful information which occasionally 

crossover can cause. This operator conducts a random alteration of the allelic value 

of a chromosome. 

 

 

 

 

5.4.4 Fitness Function 

 

 

The fitness function used focuses on maximizing the preferences for term 

similarity score. The decision is inspired by the demand of searching for a set of GO 

terms with higher term similarity score that perfectly match the query GO term. The 

fitness function f(x) for chromosome x is shown below: 

1( ) ( ) ( )2f x t x t xχ δ= × + × , (5.12) 



 

 

 
                     
           

f(x)  
1 2 3 4 5 6 7 8 9 10 11 12

 

 

13 14 15 16 17 18 19 20 value 
Generation 0                      0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 145.77
Generation 10                      0 0 0

 

0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 202.71
Generation 20                      0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 202.71
Generation 30                      0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 202.71

 
Generation 40                      0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 336.54
Generation 50                      0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 336.54

 Generation 60                      0 0 0 1 1 1 1 1 1 0 1 0 0 1 0

 

0 0 0 0 0 337.34
Generation 70                      0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0

 

 

337.34
Generation 80                      0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 337.34
Generation 90                      0 1 0 1 1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 504.72
Generation 100                     0 1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1,005.19

Figure 5.6: An example of the best chromosome produced by mutation and crossover operators. Note that the evolution stopped after a 

convergence occurred at 100 generations, the fitness value of the best chromosome is 1,005.19, and the best chromosome returns {“2”,“4”, “5”, 

“6”, “7”, “8”, “9”, “11”, “13”, “18”} as a set of GO terms that semantically similar to the query GO term “4””. 

 

 

70
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where χ and δ are control parameters so that the contributions given by factors t1(x) 

and t2(x) are harmonious. The value of the fitness function is stated as a positive 

value that is higher for the best chromosome. 

 

The fitness function comprises two factors. The first factor is the sum of the 

term similarity score of the nodes in chromosome x, and is given as follows: 

1( ) ( )
i

i
u x

t x score u
∈

= ∑ , (5.13) 

where score(ui) is the term similarity score between the query GO term and nodes 

that are present in chromosome x. This factor considers the positive effect of having 

as many nodes with high term similarity score as possibly present in a chromosome. 

Nonetheless, a chromosome with many nodes with low score could create a fitness 

value higher than another one with a few good nodes. To avoid this consequence, the 

dimension index t2(x) is introduced as follows: 

2 ( )
( ( ) ) 1

kt x
abs cnt x ID

=
− +

, (5.14) 

where k is the number of nodes in the GO graph, cnt(x) is the number of nodes 

present in chromosome x, and ideal dimension ID is the number of matched GO 

terms that are preferred to be returned to the user. Note that 0 < t2(x) ≤ k since if the 

number of nodes present in chromosome x is exactly equal to the ideal dimension, 

then maximum k is reached. Otherwise, it is rapidly lessened when the number of 

nodes present in chromosome x is smaller or greater than the ideal dimension. 

 

 

 

 

5.4.5 Parallelization Process 

 

 

The major computational challenge of searching a group of semantically 

similar GO terms is the size of the search space of the GO graph because the GO 

graph has almost 23 thousand nodes and almost 2.0 million paths. Moreover, to 

obtain a good solution, it requires a multitude of chromosomes, many generations of 

population, and it undergoes several iterations of the genetic operation by crossover 
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and mutation operators. To overcome these matters, the genetic similarity algorithm 

is parallelized by exploiting the advantages of the island (coarse-grained) model 

[134–136] as shown in Figure 5.7. It is implemented on a low-cost PC cluster using 

message passing interface libraries. The core process of the parallelization is to 

divide the population into equal size subpopulations. Hereafter, each subpopulation 

is assigned to a processor where it evolves independently. During the process, a 

group of best chromosomes called emigrants are transferred to replace a group of 

worst chromosomes among the subpopulations. This migration process is performed 

periodically at certain cycles of generations called isolation time. The rationale for 

implementing the island model is to reduce the execution time by decreasing the 

communication overhead involved in the exchange of chromosomes between 

processors, and to improve the quality of the solutions reached by increasing 

population sizes without increasing the time complexity. 

 

 

 

 

5.5 The basic UTMGO 

 

 

In order to show the practicality of this study, we present the basic UTMGO, 

a tool that uses genetic similarity algorithm to find a group of semantically similar 

GO terms. A screenshot of the basic UTMGO is shown in Figure 5.8 wherein “DNA 

binding” (GO:0003677) is used as an example of the query GO term. A brief 

explanation of the processing behind the basic UTMGO is as follows: 

(i) Public GO data in MySQL and RDF/XML formats are downloaded 

from the GO website. 

(ii) The single humongous GO RDF/XML file is split into smaller files 

(refer to Chapter 4). 

(iii) Corresponding gene products together with protein sequences and 

evidence associations with the GO terms, either based on IEA or non-

IEA evidence code, from the GO MySQL database are inserted into 

the fragmented GO RDF/XML files. 

(iv) The basic UTMGO requires the user to enter a GO term and the 
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number of matched GO terms to be returned Nt. 

(v) The semantic similarity searching is performed by the genetic 

similarity algorithm. The results return Nt GO terms with higher term 

similarity score to the query GO term. The information displayed to 

the user is the GO terms accession number, followed by a short 

description of the GO term, its category (either cellular component 

(C), molecular function (F), or biological process (P)), and the term 

similarity score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Create initial population 

Divide population into subpopulations 

Distribute subpopulations to processors 

Subpopulation 
1 

Subpopulation 
2

Subpopulation 
n 

Processor      
1 

Processor      
2

Processor      
n 

Perform parallel computation on each processor 

1. Create new subpopulation. 
2. Alter subpopulation by crossover and mutation operators. 
3. Evaluate subpopulation. 
4. Exchange best chromosomes between subpopulations. 

Preprocessing by semantic similarity 
measure algorithm 

Figure 5.7: The parallelization flow of the genetic similarity algorithm. 

 

 



 

 
Figure 5.8: A screenshot of the basic UTMGO. 
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5.6 Testing Preparation and Evaluation Measures 

 

 

The testing is executed using a low-cost PC cluster that consists of 25 

Pentium IV 2.8GHz processors with 512MB memory and 100Mbps network speed. 

The genetic similarity algorithm is compiled using GNU GCC compiler under Fedora 

Core 5 operating system. The low-cost PC cluster is implemented using MPICH2 

libraries [137] developed by the Argonne National Laboratory. The genetic similarity 

algorithm is implemented by enhancing the GAlib C++ libraries [138]. 

 

In this chapter, the GO data released in January 2007, as shown in Table 2.1, 

is explored in the experiments. The full GO graph that consists of 22,954 GO terms 

(1,977 cellular components, 12,903 biological processes, and 8,074 molecular 

functions) is input to the genetic similarity algorithm and it becomes the 

chromosome length. The parameters set for the genetic similarity algorithm are 

depicted in Table 5.1. A total of 250 GO terms in which 20 GO terms from cellular 

components, 140 GO terms from biological processes, and 90 GO terms from 

molecular functions were selected randomly as the query GO terms to evaluate the 

performance of the basic UTMGO and its genetic similarity algorithm.  

 

The effectiveness of the basic UTMGO is validated using standard 

information retrieval measures: recall and precision. Recall is the ratio of the number 

of relevant GO terms retrieved to the total number of relevant GO terms in the GO 

database. Precision is the number of relevant GO terms retrieved to the total of 

irrelevant and relevant GO terms retrieved. These are formulated as: 

100
( )

aRecall
a b

= ×
+

 and (5.15) 

100
( )

aPrecision
a c

= ×
+

, (5.16) 

where a is the number of relevant GO terms retrieved (i.e., the system and the expert 

agree with the matches), b is the number of relevant GO terms not retrieved (i.e., the 

system disagrees with the matches but the expert agrees), c is the number of 

irrelevant GO terms retrieved (i.e., the expert disagrees with the matches but the 
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system agrees), and d is the number of irrelevant GO terms not retrieved (i.e., the 

system and the expert disagrees with the matches).  

 

 

Table 5.1: Parameters of the genetic similarity algorithm. 

Parameter Value 
Size of population 500 
Number of generations 1,000 
Crossover probability 0.6 
Mutation probability 0.05 
Length of chromosome 22,954 
Replacement percentage 0.5 
Type of crossover Two-point crossover 
Type of mutation Swap mutation 
Type of genetic algorithm Steady-state genetic algorithm 
Scaling Sigma truncation scaling 
Fitness function Maximizing preferences 
Isolation time 10 generations 
Number of subpopulations 25 
Number of emigrants 1 
Type of replacement Bad by best 
Type of migration Stepping stone 
Parameter α for depth factor 0.5 
Parameter β for local network density factor 0.3 
Parameter χ for fitness function 1 
Parameter δ for fitness function 0.05 
Ideal dimension for dimension index 20 

 

 

  

 

5.7 Results and Discussion 

 

 

Different semantic similarity measures proposed by Lin (simL) [152], 

Leacock and Chodorow (simLC) [151], and Resnik (simR) [154] are used to assess the 

performance of our semantic similarity measure (simO) that has been built according 

to the Jiang and Conrath semantic similarity measure [153]. The average results of 

the 250 query GO terms, as shown in Table 5.2, show that simO provides the best 

values of recall, precision, and maximum value of fitness function, i.e., 70.35%, 
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83.80%, and 1,034.02 respectively. However, the earliest number of generations to 

converge is obtained by simLC which converged as early as after 470 generations. 

Again, the best processing time (0.10 seconds) is obtained by simLC. Table 5.3 shows 

an example of comparison of different semantic similarity measures in which each 

GO term is matched with “organelle inner membrane” (GO:0019866): the term 

similarity score is given in percentage. GO terms such as “infected host cell surface 

knob” (GO:0020030), “host cell nucleus” (GO:0042025), and “membrane-bound 

organelle” (GO:0043227) are detected by simO whereas these are not detected by the 

other semantic similarity measures. Furthermore, the term similarity score for simO is 

higher than the other semantic similarity measures. 

 

 

Table 5.2: Comparison of genetic similarity algorithm with different semantic 

similarity measures. 

Item simO simL simLC simR
gbest 540 610 470 490 
CPU time 0.13 0.16 0.10 0.11 
max{f(x)} 1,034.02 945.58 889.08 827.10 
Recall 70.35 66.43 64.71 62.50 
Precision 83.80 78.19 74.92 69.93 

 

 

To examine the sensitivity of parameters α and β, different combinations of 

parameters α and β are analyzed. Based on the average results of the 250 query GO 

terms, the results from Table 5.4 confirm that the combination of α = 0.5 and β = 0.3, 

used in this study as shown in Table 5.1, outperform other combinations. In the 

meantime, in order to justify the need for executing the genetic similarity algorithm 

on a low-cost PC cluster, the effect of using different numbers of processors in the 

low-cost PC cluster is analyzed. The effects on the following factors are studied: 

processing time, number of generations to converge, maximum value of fitness 

function, recall, and precision. The average results of the 250 query GO terms, 

shown in Table 5.5, show that a cluster of 25 processors is the ideal solution to 

handle the computational problem. Five factors, particularly the processing time, 

were highly affected if more processors were removed. Otherwise, additional 

processors only slightly affected those factors. 



 

Table 5.3: An example of comparison of different semantic similarity measures. 

GO term accession number GO term name simO simL simLC simR
GO:0005652 nuclear lamina 5.7 4.0 3.4 2.3
GO:0005787 signal peptidase complex 5.8 4.1 3.6 2.3
GO:0009528  plastid inner membrane 16.1 7.7 6.5 4.3
GO:0009529 plastid intermembrane space 1.6 1.1 0.9 0.5
GO:0009536 plastid 9.1 5.8 2.7 0.5
GO:0016023 cytoplasmic membrane-bound vesicle 6.5 4.3 2.1 0.5
GO:0017090 meprin A complex 5.8 3.0 2.6 2.3
GO:0019815 B cell receptor complex 6.5 3.3 3.0 2.9
GO:0019866 organelle inner membrane 100.0 100.0 100.0 89.0
GO:0019867 outer membrane 7.8 7.5 6.0 4.9
GO:0020006 parasitophorous vacuolar membrane network 4.0 2.3 1.9 1.7
GO:0020007 apical complex 2.2 2.0 1.7 1.1
GO:0020016  flagellar pocket 2.2 1.9 1.0 0.5
GO:0020030 infected host cell surface knob 2.8 0.0 0.0 0.0
GO:0020031 polar ring of apical complex 1.8 1.4 1.3 1.1
GO:0030134 ER to Golgi transport vesicle 3.9 2.8 1.4 0.5
GO:0030386 ferredoxin:thioredoxin reductase complex 1.6 1.1 0.9 0.5
GO:0031090 organelle membrane 12.4 10.1 8.6 3.0
GO:0031300 intrinsic to organelle membrane 8.8 5.5 4.8 3.0
GO:0031471 ethanolamine degradation polyhedral organelle 1.6 1.2 0.9 0.5
GO:0042025 host cell nucleus 5.1 0.0 0.0 0.0
GO:0042601  endospore-forming forespore 1.8 1.6 1.5 1.1
GO:0042995 cell projection 6.4 5.0 4.2 1.1
GO:0043227  membrane-bound organelle 12.7 0.0 0.0 0.0
GO:0043231  intracellular membrane-bound organelle 13.8 8.2 4.0 0.5
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Table 5.4: The effects of different combinations of parameters α and β on the values 

of the recall (r), precision (p), and maximum value of fitness function (f). 

Parameter β for local network density factor Parameter α 
for depth 

factor β = 1.0 β = 0.7 β = 0.5 β = 0.3 β = 0.0 

α = 2.0 
r = 67.97 
p = 81.42 
f = 796.70 

r = 68.19 
p = 81.64 
f = 818.35

r = 68.63 
p = 82.08 
f = 862.61 

r = 68.85 
p = 82.30 
f = 884.79 

r = 67.37 
p = 80.82 
f = 736.53

α = 1.5 
r = 68.88 
p = 82.33 
f = 887.32 

r = 69.79 
p = 83.24 
f = 978.32

r = 69.80 
p = 83.25 
f = 979.31 

r = 70.16 
p = 83.61 
f = 1,015.50 

r = 68.03 
p = 81.48 
f = 802.84

α = 1.0 
r = 69.14 
p = 82.58 
f = 912.77 

r = 69.81 
p = 83.26 
f = 980.03

r = 69.94 
p = 83.39 
f = 993.91 

r = 70.27 
p = 83.72 
f = 1,026.49 

r = 68.40 
p = 81.85 
f = 839.83

α = 0.5 
r = 69.35 
p = 82.80 
f = 934.13 

r = 69.93 
p = 83.38 
f = 992.78

r = 70.04 
p = 83.49 
f = 1,003.12 

r = 70.35 
p = 83.80 
f = 1,034.02 

r = 68.66 
p = 82.11 
f = 865.45

α = 0.0 
r = 67.02 
p = 80.47 
f = 701.46 

r = 67.65 
p = 81.10 
f = 764.67

r = 67.76 
p = 81.21 
f = 775.71 

r = 68.68 
p = 82.13 
f = 867.52 

r = 66.94 
p = 80.39 
f = 693.96

 

 

Table 5.5: The effects of different number of processors used on the performance of 

the genetic similarity algorithm. 

Number of processors Item 5 10 15 20 25 30 
gbest 690 660 610 580 540 540 
CPU time 2,372.37 1,053.85 374.96 68.07 0.13 0.12 
max{f(x)} 717.05 781.18 836.51 898.62 1,034.02 1,034.09 
Recall 67.26 67.72 68.40 69.53 70.35 70.39 
Precision 80.22 81.08 81.69 82.55 83.80 83.86 

 

 

To prove the capability of the basic UTMGO that uses the genetic similarity 

algorithm as its intelligent engine, its output is compared with other GO browsers. 

The comparison is done with keyword-based GO browsers such as AmiGO 

(developed by the GO Consortium), GenNav (developed by the US NLM), QuickGO 

(developed by the EBI), and TAIR Keyword Browser (developed by the TAIR), and 

also with semantic similarity-based GO browsers such as DynGO [105] and 

FuSSiMeG [166]. The performance is shown in Table 5.6 for the average results of 

the 250 query GO terms. Hence, the basic UTMGO showed better recall and 

precision, but the AmiGO gives the best processing time (0.11 seconds) which is 
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0.02 seconds faster than the basic UTMGO. Nevertheless, the AmiGO provides the 

lowest recall (54.96%) and its precision is 21.96% lower than the basic UTMGO. 

The results also show that the semantic similarity-based GO browsers outmatched 

the keyword-based GO browsers in terms of recall and precision. An example of a 

query that is based on “DNA binding” (GO:0003677) as the input GO term is shown 

in Table 5.7 (for the first 10 returned GO terms). Our semantic similarity measure is 

used to calculate the term similarity score: the value is given in percentage. The 

results from Table 5.7 show that all GO terms with term similarity score equal or 

higher than “DNA replication origin binding” (GO:0003688, 8.6%) are returned and 

descendingly sorted by the basic UTMGO. The results generated by the semantic 

similarity-based GO browsers are attractive because they return GO terms that do not 

comprise keywords associated with the query GO term. For example, “transcription 

factor activity” (GO:0003700), “endonuclease activity” (GO:0004519), and “protein 

kinase activity” (GO:0004672) are returned by the basic UTMGO, DynGO, and 

FuSSiMeG respectively. 

 

 

Table 5.6: Comparison of performance between basic UTMGO and other keyword-

based and semantic similarity-based GO browsers. 

GO Browser Recall Precision CPU time  
basic UTMGO 70.35 83.80 0.13 
DynGO 67.88 75.04 0.19 
FuSSiMeG 70.26 79.41 0.23 
AmiGO 54.96 61.84 0.11 
GenNav 56.78 60.92 0.16 
QuickGO 57.39 60.43 0.22 
TAIR Keyword Browser 56.08 61.12 0.15 

 

 

 

 

 

 

 

 

 



 

Table 5.7: An example of comparison between basic UTMGO and other keyword-based and semantic similarity-based GO browsers. 

basic UTMGO DynGO FuSSiMeG AmiGO 
Rank GO  term  

accession number SSMO
GO  term 

accession number SSMO
GO  term 

accession number SSMO
GO  term 

accession number SSMO

1   GO:0003677 100.0  GO:0003677 100.0 GO:0003677 100.0  GO:0003680 5.4
2         GO:0003676 52.1 GO:0005524 13.2 GO:0003676 52.1 GO:0050692 1.9
3         GO:0003723 24.6 GO:0005515 13.0 GO:0004672 7.4 GO:0003677 100.0
4         GO:0005524 13.2 GO:0003688 8.6 GO:0003697 11.1 GO:0051880 2.5
5         GO:0005515 13.0 GO:0008534 3.0 GO:0008270 10.3 GO:0003681 4.2
6         GO:0003700 13.0 GO:0003691 3.7 GO:0005515 13.0 GO:0019237 4.6
7         GO:0003684 11.4 GO:0031490 3.6 GO:0019237 4.6 GO:0031490 3.6
8         GO:0003697 11.1 GO:0003681 4.2 GO:0003908 3.3 GO:0003684 11.4
9         GO:0008270 10.3 GO:0050692 1.9 GO:0042162 6.0 GO:0003690 8.6
10         GO:0003688 8.6 GO:0004519 5.7 GO:0003682 5.8 GO:0003691 3.7

basic UTMGO GenNav QuickGO TAIR Keyword Browser 
Rank GO  term  

accession number SSMO
GO  term 

accession number SSMO
GO  term 

accession number SSMO
GO  term 

accession number SSMO

1   GO:0003677 100.0  GO:0003680 5.4 GO:0003677 100.0  GO:0003680 5.4
2         GO:0003676 52.1 GO:0003681 4.2 GO:0006260 3.4 GO:0003677 100.0
3         GO:0003723 24.6 GO:0019237 4.6 GO:0051880 2.5 GO:0003681 4.2
4         GO:0005524 13.2 GO:0031490 3.6 GO:0003899 5.3 GO:0003684 11.4
5         GO:0005515 13.0 GO:0003684 11.4 GO:0003887 5.0 GO:0003690 8.6
6         GO:0003700 13.0 GO:0050692 1.9 GO:0050692 1.9 GO:0003691 3.7
7         GO:0003684 11.4 GO:0003677 100.0 GO:0003908 3.3 GO:0003692 4.6
8         GO:0003697 11.1 GO:0003690 8.6 GO:0003964 6.6 GO:0003695 3.1
9         GO:0008270 10.3 GO:0003691 3.7 GO:0008534 3.0 GO:0000182 4.9
10         GO:0003688 8.6 GO:0051880 2.5 GO:0003886 3.0 GO:0003696 5.2
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The search results have indicated that the basic UTMGO is able to find a 

group of semantically similar GO terms with higher recall and precision and 

reasonable processing time as compared to other semantic similarity-based GO 

browsers such as DynGO [105] and FuSSiMeG [166]. Furthermore, as compared to 

other keyword-based GO browsers such as AmiGO (http://godatabase.org/), GenNav 

(http://mor.nlm.nih.gov/perl/gennav.pl), QuickGO (http://www.ebi.ac.uk/ego/), and 

TAIR Keyword Browser (http://www.arabidopsis.org/servlets/Search?action= 

new_search&type=keyword), the basic UTMGO is capable of finding GO terms that 

do not contain the keyword specified by the user and with higher recall and 

precision. 

 

 

 

 

5.8 Summary 

 

 

A genetic similarity algorithm is introduced in this chapter to find a group of 

semantically similar GO terms. The genetic similarity algorithm combines semantic 

similarity measure algorithm with parallel genetic algorithm. The semantic similarity 

measure algorithm is used to compute the similitude strength between the GO terms. 

Then, the parallel genetic algorithm is employed to perform batch retrieval and to 

accelerate the search in large search space of the GO graph. The genetic similarity 

algorithm is implemented in the GO browser named basic UTMGO to overcome the 

weaknesses of the existing GO browsers which use a conventional approach based 

on keyword matching. The computational results and comparison with other related 

GO browsers are presented to show the effectiveness of the genetic similarity 

algorithm and the basic UTMGO. 



 

 

 

 

CHAPTER 6 

 

 

 

 

extended UTMGO: A GENE ONTOLOGY-BASED  

PROTEIN SEQUENCE ANNOTATION TOOL 

 

 

 

 

6.1 Introduction 

 

 

As outlined by the EBI, annotation of an anonymous protein sequence should 

be inferred from annotations of the nucleotide sequences, analogies with already 

understood proteins, plus references to patterns and motifs as characteristics of 

particular protein functions. Annotation of anonymous protein sequences is 

important for the preservation and reuse of knowledge and for content-based queries. 

The traditional wet-lab methods are labor intensive and prone to human error. On the 

other hand, the sequence-similarity-based tools like BLAST are time intensive and 

require high investment in computing facilities such as cluster server or grid 

computing if being used locally. Furthermore, for remote users, these tools are 

subject to internet stability and speed to access the tools and to get the results online. 

Therefore, a simple and practical method that is capable of producing better results 

and requires a reasonable amount of running time with low computing cost 

specifically for offline usage is needed. 

 

In the last few years, the GO terms have been widely used to annotate various 

protein sets such as in NOPdb [167], a database of nucleolar proteome; SCOPPI 

[168], a database of protein domain-domain interactions; DRTF [169], a database of 
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rice transcription factor; and MolMovDB [170], a database of macromolecular 

motions. In addition, GO terms have been successfully implemented in large-scale 

protein annotation projects involving SWISS-PROT, TrEMBL, and InterPro 

databases [102]. The GO is a project to provide a rich and comprehensive unified 

vocabulary to describe genes and their functions and products. Currently the GO 

comprises more than 22 thousand terms and is updated every 30 minutes, which tally 

with the growth activities in the bioinformatics field. The advantages of using the 

GO are as follows: the GO data is dynamic and constantly evolves according to the 

advances in current state of biological knowledge; the GO data is publicly available 

and can be downloaded at any time from the WWW in MySQL, RDF/XML, 

OBO/XML, and OWL formats that can be understandable and processable by human 

and machine alike; the common GO terms shared by gene and protein sequences in 

multiple organisms in different databases can facilitate uniform queries across them; 

and the association of GO terms with nearly 2.5 million gene products supported by 

the evidence and citation can affirm its reliability for future evaluation and use. The 

link between the GO terms and gene products is provided by the GOA. In the GOA 

project, electronic mappings and manual curation are used to assign the GO terms to 

all proteomes existing in the UniProt, Ensembl, and other organism databases. It 

covers 2.3 million protein sequences from 0.26 million species. 

 

However, application of the GO terms to annotate anonymous protein 

sequences is not easy, especially for species not yet inserted in public biological 

databases. Furthermore, for bioscientists with little computational knowledge or 

limited facilities it is a hard task to annotate those anonymous protein sequences. The 

difficulties arise because generally the existing GO-based tools are (1) dependent on 

BLAST which is computationally intensive and requires high-cost and high-

specification hardware since sequence alignment is performed to all protein 

sequences but not only to protein sequences that indicate higher similarity, (2) 

dependent on RDBMS which require the user to setup the RDBMS software and to 

import the data or sources into the RDBMS format, and (3) partially based on the GO 

data which requires the user to download the GOA data or protein sequence data sets 

from several sources. 
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Therefore, in this chapter, a new way of applying the GO terms to annotate 

anonymous protein sequences is introduced. The GO-based method consists of three 

main components. In the first component, the single monolithic GO RDF/XML file 

is split into smaller files. It is carried out to avoid dependency on RDBMS format, to 

provide all-in-one source by adding protein sequences and IEA evidence associations 

into the files since they are not included in the original GO RD/XML file, and to 

make the GO data easily accessible and processable. In the second component, the 

main focus of this chapter, semantic similarity search is performed over the smaller 

GO RDF/XML files. The target is to find a group of semantically similar GO terms 

with higher term similarity score to a GO term which is foreseen to have higher 

relationship with the query protein sequence. Lastly, the results obtained from the 

second component are verified by computing sequence alignment score between the 

query protein sequence and all protein sequences attached to those GO terms. With 

this GO-based method, sequence alignment is carried out only to protein sequences 

with higher outguessed similarity. Hence, demand for high computational facilities 

and execution time can be reduced. A GO-based tool named extended UTMGO is 

developed to demonstrate the GO-based method. The extended UTMGO employs a 

GO browser named basic UTMGO (refer to Chapter 5) for implementing the second 

component. The JAligner engine (http://jaligner.sourceforge.net/) that uses the 

Smith-Waterman algorithm has been integrated and modified to perform the 

sequence alignment and to comply with the extended UTMGO. The flow of the 

extended UTMGO can be summarized as shown in Figure 6.1. 

 

The rest of this chapter is organized as follows. Section 6.2 presents existing 

tools for annotating anonymous protein sequences. Section 6.3 gives the step-by-step 

description of the extended UTMGO. Section 6.4 explains the testing environment 

and evaluation measures used to validate the extended UTMGO. Section 6.5 presents 

experimental results and discussion and is followed by summary in Section 6.6. 
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Input:  
Anonymous 

protein sequence 

The basic UTMGO for searching 
a group of semantically similar 
GO terms. The GO terms are 
returned together with their 

associated protein sequences. 

The JAligner engine to verify the 
results returned by the basic 

UTMGO. The verification is done 
by computing and then analyzing 

the sequence alignment score 
between the query anonymous 

protein sequence and all protein 
sequences attached to the returned 

GO terms. 

Output:  
Predicted GO terms 
that can be used for 

annotation of the 
query anonymous 
protein sequence 

All-in-one source that includes 
protein sequences and IEA and non-
IEA evidence associations. Note that, 
the original single GO RDF/XML file 
comes without protein sequences and 

IEA evidence associations. 

Database:  
A set of smaller 
GO RDF/XML 

files

End

Start 

Figure 6.1: The flowchart of the extended UTMGO. 

 

 

 

 

6.2 Related Work 

 

 

Several tools have been developed in recent years to annotate anonymous 

protein sequences in accordance with the GO terms. The generally used tools 

include:  

(i) GoFigure [171] is a tool that accepts an unknown DNA or protein 

sequence as an input and then uses BLAST to predict the GO terms by 

identifying homologous sequences in the GO annotated databases. 
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(ii) GOtcha [172] is a tool that provides a prediction of a set of GO terms 

for a given query sequence (DNA or protein). BLAST is used to get 

the initial score of each GO term and the scores are calibrated against 

term-specific probability (P-score) to give higher accuracy. 

(iii) GOPET [173] is an automated annotation tool for assigning the GO 

terms to cDNA or protein query sequences. It uses BLAST to perform 

homology searches against GO-mapped protein databases, and 

support vector machines for the prediction and the assignment of 

confidence values. 

(iv) JAFA [174] is a meta-server that uses several function prediction 

programs such as GoFigure, GOtcha, GOblet [175], Phydbac [176], 

and InterProScan [177]. It accepts a protein sequence and returns the 

predicted GO terms with prediction score that is based on the ratio of 

agreeing servers. 

However, as mentioned earlier in the previous section, for offline usage, these tools 

are difficult to configure and use, especially by bioscientists. The tools also require 

an expensive high performance computing environment. Whereas, for online usage, 

they depend on internet stability and speed. 

 

 

 

 

6.3 The extended UTMGO 

 

 

The operation of the extended UTMGO is divided into two cases: with 

(Option 1) or without (Option 2) a GO term entered by the user as shown in Figure 

6.2 and 6.3 respectively. An example of the query anonymous protein sequence used 

to demonstrate the extended UTMGO is as follows: 

MVRGKTQMKRIENPTSRQVTFSKRRNGLLKKAFELSVLCDAEVALIV

FSPRGKLYEFASASTQKTIERYRTYTKENIGNKTVQQDIEQVKADADG

LAKKLEALETYKRKLLGEKLDECSIEELHSLEVKLERSLISIRGRKTKL

LEEQVAKLREKEMKLRKDNEELREKCKNQPPLSAPLTVRAEDENPDR

NINTTNDNMDVETELFIGLPGRSRSSGGAAEDSQAMPHS 
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This protein sequence belongs to “MADS50” (MADS-box transcription factor 50, 

GR:Q9XJ60), an Oryza sativa species obtained from the Gramene database. The 

extended UTMGO, as shown in Figure 6.1, consists of the following steps: 

(i) Get an anonymous protein sequence, the number of GO terms to be 

returned Nt, a term similarity threshold, the number of protein 

sequences associated with each GO term to be returned Ns, and 

optionally a GO term from the user.  

(ii) If the GO term is null, then go to step (iii), otherwise, go to step (vi). 

(iii) Get the input from the user for appropriate species, matrix type either 

Blocks Substitution Matrix (BLOSUM) or Point Accepted Mutations 

(PAM), and open and extend gap penalties to restrict the search. 

(iv) Perform the sequence similarity search for the query anonymous 

protein sequence from step (i). The search is carried out for protein 

sequences from the fragmented GO RDF/XML files that are related to 

the molecular function terms. The output is a protein sequence with 

the highest sequence alignment score. The JAligner engine is used to 

perform the sequence similarity search. 

(v) Select a molecular function term with the highest association with the 

protein sequence obtained in step (iv) for the next step. If there is 

more than one term, the user has to make the selection. 

(vi) Submit the GO term either from step (i) or step (v) to the basic 

UTMGO and then perform semantic similarity search. 

(vii) Return Nt GO terms with the term similarity score higher than the 

term similarity threshold, as set in step (i), together with protein 

sequences associated with them. 

(viii) Calculate sequence alignment score between the query anonymous 

protein sequence and all protein sequences for each GO term obtained 

from the previous step using the JAligner engine. The information 

displayed to the user is the same as in the basic UTMGO: the GO 

term accession number and its short description, category, and term 

similarity score. Additional information given is arithmetic mean, 

standard deviation, and the largest value of the sequence alignment 

score of Ns number of protein sequences with higher sequence 

alignment score that is attached to the GO term. 



 

 
Figure 6.2: A screenshot of the extended UTMGO with a GO term entered by the user (Option 1). 89



 

 
Figure 6.3: A screenshot of the extended UTMGO without a GO term entered by the user (Option 2). 90
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6.4 Testing Preparation and Evaluation Measures 

 

 

The GO data released in January 2007 as shown in Table 2.1 is used to test 

the extended UTMGO. The computer used is a low-cost PC cluster, HP d530 with 25 

processors. The low-cost PC cluster is implemented using MPICH2 libraries under 

Fedora Core 2 running on Pentium IV 2.8GHz of processor, 512MB of memory, and 

100Mbps of network speed. This setup is the minimum requirement for offline usage 

if the user wants to install and use the extended UTMGO locally. However, for 

online usage, the extended UTMGO can be accessed remotely via the internet like 

other online bioinformatics tools. But currently these tools are not ready for online 

usage and will be opened for public soon. 

 

In case of data sets, a total of 200 protein sequences from the GO annotated 

databases were used as input. These protein sequences were selected randomly with 

50 protein sequences from Gramene, a database of Oryza sativa; 50 protein 

sequences from Ensembl, a database of Homo sapiens; 50 protein sequences from 

SGD, a database of Saccharomyces cerevisiae; and 50 protein sequences from TAIR, 

a database of Arabidopsis thaliana. Same as with the basic UTMGO, the extended 

UTMGO uses recall (refer to Equation 5.15) and precision (refer to Equation 5.16) to 

validate its effectiveness. 

 

 

 

 

6.5 Results and Discussion 

 

 

The comparison between the extended UTMGO and the other GO-based 

protein sequence annotation tools such as GoFigure [171], GOtcha [172], GOPET 

[173], and JAFA [174] is shown in Table 6.1. The comparison is based on the 

average results of the 200 query protein sequences that are selected randomly from 

the GO annotated databases as mentioned earlier in Section 6.4. Thus, the extended 

UTMGO provides a better precision (90.32%) and the JAFA offers a better recall 
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(88.80%) which is just 0.87% higher than the extended UTMGO. However, the 

JAFA provides the slowest processing time (518.22 seconds) and its precision is 

3.55% lower than the extended UTMGO. The best processing time is 163.79 seconds 

that is taken by the extended UTMGO. An example query that is based on 

“MADS50” (MADS-box transcription factor 50, GR:Q9XJ60) as the input protein 

sequence is shown in Table 6.2 (for the top 10 predicted GO terms). The average and 

the maximum values of the sequence alignment score (avg and max) for the protein 

sequences associated with the predicted GO terms are used as an indicator to assess 

these tools, because quality of the results depends on the sequence alignment score 

between the query anonymous protein sequence and the protein sequences associated 

with the predicted GO terms. Thus, higher is better. As depicted in Table 6.2, all the 

GO terms with the average sequence alignment score equal or higher than “RNA 

polymerase II transcription factor activity” (GO:0003702, avg = 175.4) are returned 

by the extended UTMGO. However, even though the average sequence alignment 

scores for “flower development” (GO:0009908, avg = 113.0) and “cytoplasm” 

(GO:0005737, avg = 93.8) are higher than “actin binding” (GO:0003779, avg = 

87.8), they are out of the extended UTMGO radar since their term similarity scores 

are 0.9% and 0.6% respectively. These term similarity scores are lower than the term 

similarity threshold (1.0%) set for this testing session. Moreover, as shown in Table 

6.2, all GO terms with the highest value of the maximum of sequence alignment 

score (1,153) are returned by the extended UTMGO. Note that although GO terms 

such as “positive regulation of transcription from RNA polymerase II promoter” 

(GO:0045944, max = 153), “DNA bending activity” (GO:0008301, max = 153), and 

“regulation of transcription from RNA polymerase II promoter” (GO:0006357, max 

= 151) have the maximum of sequence alignment score higher than “actin binding” 

(GO: 0003779, max = 92), but they are not ranked as the predicted GO terms by the 

extended UTMGO. The reason is that their average sequence alignment score is 

lower than the value for “actin binding” (GO: 0003779). 

 

 The experimental results have shown that the extended UTMGO has the 

capability of annotating anonymous protein sequences with higher precision and 

recall with quicker processing time as compared to other GO-based protein sequence 

annotation tools such as GoFigure [171], GOtcha [172], GOPET [173], and JAFA 

[174]. The protein sequences associated with the predicted GO terms that are 
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returned by the extended UTMGO also have higher sequence alignment score to the 

query anonymous protein sequence. In addition, the extended UTMGO does not 

depend on BLAST and RDBMS and is fully based on the GO data. 

 

 

Table 6.1: Comparison of performance between extended UTMGO and other GO-

based protein sequence annotation tools. 

GO-based protein 
sequence 

annotation tool 
Recall Precision CPU time 

extended UTMGO 87.93 90.32 163.79 
GoFigure 83.15 84.09 195.48 
GOtcha 83.62 84.63 302.11 
GOPET 86.39 85.31 270.82 
JAFA 88.80 86.77 518.22 

 

 

 

 

6.6 Summary 

 

 

The GO terms have been actively used to annotate various protein sets. 

SWISS-PROT, TrEMBL, and InterPro are protein databases that are annotated 

according to the GO terms. However, direct implementation of the GO terms for 

annotation of anonymous protein sequences is not easy, especially for species not 

commonly represented in biological databases. Therefore, in this chapter, the 

structure of the basic UTMGO is extended to develop a GO-based protein sequence 

annotation tool named extended UTMGO. The objective of developing the extended 

UTMGO is to provide a simple and practical tool that is capable of producing better 

results and requires a reasonable amount of running time with low computing cost 

specifically for offline usage. The extended UTMGO uses the GO terms together 

with protein sequences associated with the terms to perform the annotation task. 

Other GO-based protein sequence annotation tools such as GoFigure, GOtcha, 

GOPET, and JAFA have been used to compare the performance of the extended 

UTMGO. 



 

Table 6.2: An example of comparison between extended UTMGO and other GO-based protein sequence annotation tools. 

extended UTMGO GoFigure GOtcha 
Rank GO  term 

accession number 
Sequence 

alignment score 
GO  term 

accession number 
Sequence 

alignment score 
GO  term 

accession number 
Sequence 

alignment score 

1  GO:0003700 avg = 694.8 
max = 1,153 GO:0003700 avg = 694.8 

max = 1,153 GO:0003677 avg = 577.6 
max = 1,153 

2  GO:0006355 avg = 686.0 
max = 1,153 GO:0003677 avg = 577.6 

max = 1,153 GO:0030528 avg = 0.0 
max = 0 

3  GO:0005634 avg = 604.0 
max = 1,153 GO:0007275 avg = 0.0 

max = 0 GO:0003700 avg = 694.8 
max = 1,153 

4  GO:0003677 avg = 577.6 
max = 1,153 GO:0009908 avg = 113.0 

max = 565 GO:0006139 avg = 0.0 
max = 0 

5  GO:0005739 avg = 526.4 
max = 1,153 GO:0006350 avg = 0.0 

max = 0 GO:0006350 avg = 0.0 
max = 0 

6  GO:0005515 avg = 441.4 
max = 537 GO:0006355 avg = 686.0 

max = 1,153 GO:0006355 avg = 686.0 
max = 1,153 

7  GO:0042802 avg = 244.8 
max = 382 GO:0005634 avg = 604.0 

max = 1,153 GO:0005622 avg = 38.6 
max = 101 

8    GO:0003713 avg = 195.6 
max = 204 - - GO:0008233 avg = 29.6 

max = 148 

9    GO:0003702 avg = 175.4 
max = 204 - - GO:0005215 avg = 17.0 

max = 85 

10    GO:0003779 avg = 87.8 
max = 92 - - GO:0005737 avg = 93.8 

max = 134 
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extended UTMGO GOPET JAFA 
Rank GO  term 

accession number 
Sequence 

alignment score 
GO  term 

accession number 
Sequence 

alignment score 
GO  term 

accession number 
Sequence 

alignment score 

1  GO:0003700 avg = 694.8 
max = 1,153 GO:0006355 avg = 686.0 

max = 1,153 GO:0045944 avg = 86.4 
max = 153 

2  GO:0006355 avg = 686.0 
max = 1,153 GO:0003677 avg = 577.6 

max = 1,153 GO:0006657 avg = 0.0 
max = 0 

3  GO:0005634 avg = 604.0 
max = 1,153 GO:0003700 avg = 694.8 

max = 1,153 GO:0004402 avg = 0.0 
max = 0 

4  GO:0003677 avg = 577.6 
max = 1,153 GO:0006139 avg = 0.0 

max = 0 GO:0008362 avg = 0.0 
max = 0 

5  GO:0005739 avg = 526.4 
max = 1,153 GO:0006350 avg = 0.0 

max = 0 GO:0007144 avg = 0.0 
max = 0 

6  GO:0005515 avg = 441.4 
max = 537 GO:0045944 avg = 86.4 

max = 153 GO:0007129 avg = 36.2 
max = 92 

7  GO:0042802 avg = 244.8 
max = 382 GO:0006357 avg = 85.2 

max = 151 GO:0007020 avg = 19.0 
max = 95 

8  GO:0003713 avg = 195.6 
max = 204 GO:0003936 avg = 0.0 

max = 0 GO:0007004 avg = 0.0 
max = 0 

9  GO:0003702 avg = 175.4 
max = 204 GO:0008301 avg = 57.4 

max = 153 GO:0007015 avg = 20.2 
max = 101 

10    GO:0003779 avg = 87.8 
max = 92 - - GO:0006430 avg = 16.6 

max = 83 
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CHAPTER 7 

 

 

 

 

CONCLUSION 

 

 

 

 

7.1 Concluding Remarks 

 

 

Protein sequence annotation is pivotal for the understanding of its function. 

Accuracy of manual annotation provided by curators is still questionable by having 

lesser evidence strength and yet a hard task and time consuming. A number of 

computational methods including tools have been developed to tackle this 

challenging task. However, particularly for offline usage, these tools are difficult to 

configure and use, especially by bioscientists. The tools also require an expensive 

high performance computing environment, require the user to setup the RDBMS 

software and to import the data or sources into the RDBMS format every time the 

data is updated, require the user to download relevant data from multiple sources, 

and depend on time intensive and blind sequence similarity search like BLAST. 

Whereas, for online usage, they depend on internet stability and speed. Therefore, the 

goal of this study is to introduce a new computational method for assigning highly 

correlated GO terms of annotated protein sequences to partially annotated or newly 

discovered protein sequences. This computational method is fully based on GO data 

and annotations. Two problems were identified to achieve this GO-based method. 

The first problem relates to splitting the monolithic GO RDF/XML file into a set of 

smaller files that can be easy to assess and process. Thus, these files can be enriched 

with protein sequences and IEA evidence associations. This automatic clustering 
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problem has been solved by the genetic split-merge algorithm. The second problem 

involves searching for a group of semantically similar GO terms that match to the 

query GO term. The genetic similarity algorithm has been proposed to resolve this 

semantic similarity searching problem. The GO-based protein sequence annotation 

tool namely extended UTMGO has been introduced to demonstrate the capabilities of 

the proposed GO-based method. Furthermore, its basic version which is a GO 

browser that is based on semantic similarity search has also been introduced. 

 

As mentioned earlier in Chapter 3, the methodology of this study is structured 

in three phases. In the first phase, as discussed in Chapter 4, the monolithic GO 

RDF/XML file is split into smaller files in order to reduce difficulties in maintaining, 

publishing, validating, and processing the file. To split the GO RDF/XML file, the 

GO terms have been grouped into a number k of clusters. Thence, this study has 

shown that clustering the GO terms can be modeled as the GPP. The GPP has been 

solved by the genetic split-merge algorithm that combines the parallel genetic 

algorithm and the split-and-merge algorithm. The parallel genetic algorithm has been 

used to find the best combination of node-cluster. On the other hand, the split-and-

merge algorithm has been applied to identify the best number k of clusters kbest. 

During the clustering process, the genetic split-merge algorithm has employed 

cohesion-and-coupling metric as a criterion to measure the goodness of the generated 

clusters. The dependency index γ has been introduced to avoid the genetic split-

merge algorithm from producing problematic clusters with either undersized or 

oversized number of elements. Unlike any other clustering algorithm, the proposed 

algorithm with the split-and-merge strategy can automatically find the best number k 

of clusters kbest. Compared to other automatic clustering algorithms, the genetic split-

merge algorithm is capable of producing balanced clusters. The experimental results 

have shown that the genetic split-merge algorithm requires reasonable amount of 

execution time and the generated clusters have better DBI and F-measure values 

compared to the existing algorithms. Furthermore, the users are allowed to set the 

minimum number k of clusters kmin they wish to maintain. 

 

In the second phase, as discussed in Chapter 5, the basic UTMGO is based on 

the genetic similarity algorithm. It is a combination of genetic and semantic 

similarity search, and has been presented as an alternative way of searching the GO 
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terms. The search is done by determining a group of semantically similar GO terms 

that are related to the query GO term. The semantic similarity search is not based on 

keyword matching but is based on the degree of relationships between the GO terms. 

A gene product that is associated with one or more GO terms is used as a foundation 

to compute the amount of information the GO terms share in common that gives the 

degree of relationships. In the meantime, the genetic search plays the main role in 

finding a set of GO terms from the large GO graph. The search results have indicated 

that the basic UTMGO is able to find a group of semantically similar GO terms with 

higher recall and precision and reasonable processing time as compared to other 

existing GO browsers. 

 

Lastly, in the third phase, as discussed in Chapter 6, the usefulness of the 

basic UTMGO has been shown by its extended version. The extended UTMGO has 

the capability of annotating anonymous protein sequences with higher precision and 

recall with quicker processing time. The protein sequences associated with the 

predicted GO terms that are returned by the extended UTMGO also have higher 

sequence alignment score to the query anonymous protein sequence. In addition, the 

extended UTMGO does not depend on BLAST and RDBMS and is fully based on 

the GO data. 

 

 

 

 

7.2 Contributions 

 

 

As described earlier in the previous section, the contributions of this study 

can be summarized as follows: 

(i) In Chapter 4, the genetic split-merge algorithm has been introduced as 

an automatic clustering algorithm. The algorithm is specifically 

designed for ontology clustering by combining the parallel genetic 

algorithm with the split-and-merge algorithm. 

(ii) In Chapter 5, the genetic similarity algorithm has been introduced as a 

semantic similarity searching algorithm. The algorithm is specifically 
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designed for ontology searching by combining the parallel genetic 

algorithm with the semantic similarity measure algorithm. 

(iii) In Chapter 5, the basic UTMGO has been developed as a semantic 

similarity-based GO browser. The tool is specifically developed for 

finding a group of semantically similar GO terms for a given query 

GO term. 

(iv) In Chapter 6, the extended UTMGO has been developed as a GO-

based protein sequence annotation tool. The tool is specifically 

developed for finding a group of GO terms which are predicted to 

have higher relationship with the query anonymous protein sequence 

that can be used for annotation of the query anonymous protein 

sequence. 

 

 

 

 

7.3 Future Works and Constraints 

 

 

Future work for the genetic split-merge algorithm and the genetic similarity 

algorithm is to develop an adaptive mechanism that is capable of automatically 

determining the optimal values of genetic algorithm parameters such as crossover 

probability, mutation probability, and replacement percentage. This is due to the fact 

that the most suitable combination of parameters for one problem or data set is not 

always optimal for others. Therefore, these parameters should be tuned whenever the 

problem or data set changes. Particularly for the genetic split-merge algorithm, an 

improvement to be considered is to use semantic similarity measure during the 

calculation of the degree of interaction between GO terms by the cohesion-and-

coupling metric. On the other hand, for the genetic similarity algorithm, further 

improvement includes taking the known correlations among GO terms into 

consideration in the calculation of the conceptual distance.   

 

Future improvements in the basic and extended UTMGO are to provide the 

user with free text typing during entering the GO term and to develop a thesaurus for 
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the user to check the predicted annotation. Specifically for the basic UTMGO, future 

development direction is to implement it to predict protein function and protein-

protein interactions. For extended UTMGO, additional enhancement includes the 

ability to support more than one protein sequence per query and to accept DNA 

sequence as an input. 

 

 Some constraints identified in this study are as follows: Determining which 

GO terms are relevant using Equations 5.15 and 5.16 from over 20 thousand GO 

terms is not an easy task to execute, especially when what is relevant can be very 

subjective. A ranking function that determines the ordering of the query results, in 

order to determine how relevant a GO term is, is required for a basic calculation to 

accurately estimate the recall and precision. In the meantime, as the size of the GO 

increases, additional computing resources are required to provide faster results. 

Understanding of the GO terms and their properties by the users is also required in 

order for them to use the basic and the extended UTMGO efficiently. 

 

 

 

 

7.4 Summary 

 

 

In this chapter, we concluded our study and presented the contributions to 

solve the problems of browsing the GO terms and annotating the protein sequence. 

The chapter ended with proposing some directions for further research works.  
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