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ABSTRACT 

 

 

 

Understanding proteins functions is a major goal in the post-genomic era. 

Proteins usually work in context of other proteins and rarely function alone. 

Therefore, it is highly relevant to study the interaction partners of a protein in order 

to understand its function. For this reason, the main objective of this thesis is to 

predict protein-protein interactions based only on protein primary structure. Using 

the Support Vector Machines (SVM), different protein features have been studied 

and examined. These features include protein domain structures, hydrophobicity and 

amino acid compositions. The results imply that the protein domain structure is the 

most informative feature for predicting protein-protein interactions. It also requires 

much lower running time compared to the other features. However, using normal 

binary SVM requires positive and negative data samples. Although it is easy to get a 

dataset of interacting proteins as positive examples, there are no experimentally 

confirmed non-interacting proteins to be considered as negative examples. Previous 

researches cope with this problem by artificially generate random set of proteins 

pairs that are not listed in the Database of Interacting Proteins (DIP) as negative 

examples. This approach can be used for comparing features because the error will 

be uniform. In this research, we consider this problem as a one-class classification 

problem and solve it using the One-Class SVM. Using only positive examples 

(interacting protein pairs) in training phase, the one-class SVM achieves accuracy of 

80%. These results imply that protein-protein interaction can be predicted using one-

class classifier with comparable accuracy to the binary classifiers that use artificially 

constructed negative examples. Finally, a Bayesian Kernel for SVM was 

implemented to incorporate the probabilistic information about protein-protein 

interactions that were compiled from different sources. The probabilistic output from 

the Bayesian Kernel can assist the biologist to conduct more research on the highly 

predicted interactions.  
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ABSTRAK 

 

 

Matlamat utama pada akhir era genom ialah memahami fungsi protein. 

Kebiasaannya protein jarang berfungsi sendirian sebaliknya bekerja bersama protein 

yang lain. Justeru, adalah sangat relevan mengkaji interaksi pasangan protein untuk 

memahami fungsi protein tersebut. Maka, objektif utama tesis ini adalah untuk 

meramal interaksi protein-protein berasaskan struktur pertama protein. Dengan 

menggunakan Mesin Sokongan Vektor (SVM), ciri-ciri protein berlainan dapat dikaji 

dan diuji. Ciri-ciri ini termasuklah struktur domain protein, hidrophobisiti dan 

komposisi asid amino. Hasil kajian menunjukan bahawa struktur domain protein 

mengandungi ciri maklumat yang paling berguna untuk meramal interaksi protein-

protein. Tambahan pula, ia memerlukan masa larian yang singkat berbanding ciri-ciri 

yang lain. Namun demikian, penggunaan SVM binari normal memerlukan sampel 

data positif dan negatif. Walaupun set data interaksi protein sebagai sampel positif 

mudah diperolehi, namun tiada pengesahan melalui eksperimen bahawa protein yang 

tidak-berinteraksi dianggap sebagai sampel negatif. Penyelidik terdahulu mengatasi 

masalah ini dengan menjana set data pasangan protein yang tidak terkandung dalam 

Pengkalan Data Interaksi Protein (DIP) secara rawak sebagai sampel negatif. 

Pendekatan ini boleh digunakan untuk membandingkan ciri-ciri interaksi protein 

disebabkan ralat yang seragam. Penyelidikan ini menganggap masalah tersebut 

sebagai masalah pembahagian satu-kelas dan mengatasinya menggunakan SVM 

Satu-Kelas. SVM Satu-Kelas mencapai ketepatan 80% jika hanya menggunakan 

sampel positif (pasangan interaksi protein) dalam fasa latihan. Hasil kajian 

merumuskan bahawa interaksi protein-protein boleh diramal menggunakan 

pembahagian Satu-Kelas dengan lebih tepat berbanding pengelas binari yang 

menggunakan binaan buatan sampel negatif. Seterusnya, Bayesian Kernel untuk 

SVM diimplemetasi bagi menggabungkan kebarangkalian informasi tentang interaksi 

protein-protein yang telah dikumpul dari pelbagai sumber. Kebarangkalian output 

dari Bayesian Kernel dapat membantu ahli biologi untuk mengendalikan lebih 

banyak penyelidikan tentang peramalan interaksi protein.  
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CHAPTER 1  
 

 

 

INTRODUCTION 

 

 

 

Bioinformatics or computational biology is broadly defined as the application 

of computational techniques to solve biological problems. This field has arisen in 

parallel with the development of automated high throughput methods of biological 

and biochemical discovery that yield a huge and variety forms of experimental data, 

such as DNA and protein sequences, gene expression patterns, and chemical 

structures. Major research efforts in bioinformatics include sequence alignment, gene 

finding, genome assembly, protein structure alignment, protein structure prediction 

and prediction of protein-protein interactions. In this thesis, the prediction of protein-

protein interactions from sequences data using machine learning techniques is 

presented. The background of the problem, objectives, importance of the study, and 

the scope of this research is presented and discussed in this chapter. 

 

 

 

1.1 Background of the Problem  

 

The majority of functions in cells are accomplished by proteins. Therefore, 

assigning functions to the proteins encoded by a genome is one of the crucial steps in 

gaining understanding of the organism. Because the function of half of all proteins in 

newly sequenced genomes often is completely unknown, complete genome 

sequencing gives much less insight into the organism than initially hoped for 

(Walhout and Vidal, 2001). Although, most methods annotating protein function 
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utilise sequence homology to proteins of experimentally known function, such a 

homology-based annotation transfer is problematic and limited in scope. Therefore, 

alternative approaches have begun to develop. These approaches include methods 

based on phylogenetic patterns, gene expression, and protein-protein interactions 

data. 

 

The sequencing of entire genomes has moved the attention from the study of 

single proteins or small complexes to that of the entire proteome. Most proteins do 

not function in isolation, but collaborate with other proteins. In this context, 

identifying protein-protein interactions (PPI) is an important goal of proteomics. 

Protein-protein interactions data can help researchers to infer protein's functions 

based on the information available about its partner. Usually, laboratory experiments 

are used such as yeast two-hybrid analysis, protein microarrays and immunoaffinity 

chromatography followed by mass spectrometry. Recently, computational methods 

have been introduced because laboratory experiments are costly, time-consuming 

and suffer from high false positive rates. 

 

Part of the reason why it is difficult to relate the chemical function of a 

protein to its biological purpose using homology-based annotation is that proteins do 

not function alone. To understand the function of a protein, it must be considered in 

its proper cellular context, for example by appreciating how the cell would behave 

without it (Attwood and Miller, 2001). Many proteins are parts of larger complexes, 

which are the functional units that fulfill a role in the cell (Gavin et al., 2002). In this 

regard it can be argued that knowing proteins partners can give important clue about 

its function. Therefore it is highly relevant to study the interaction partners of a 

protein in order to understand its function (Ho et al., 2002) (Deng et al., 2002). 

 

Most protein-protein interactions have been discovered by laboratory 

techniques such as yeast two-hybrid system that can detect all possible combinations 

of interactions. However, these findings can be superfluous and the number of 

experimentally determined structures for protein-protein interactions is still quite 

small. As a result, methods for computational prediction of protein-protein 

interactions are becoming increasingly important. 
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Therefore the aim of this research is to predict protein-protein interactions 

from protein primary structure data using machine learning techniques. Then the 

availability of both the experimental and the predicted protein-protein interactions 

data can be used to construct more reliable dataset for the prediction of proteins 

functions.  

 

 

 

1.2 Problem Statement   

 

The research problem that we are trying to solve in this research can be 

described as following. Given the protein-protein interactions data for the budding 

yeast, Saccharomyces cerevisiae that are listed in the Database of Interacting 

Proteins (DIP) and its protein sequences data, it is a challenging task to accurately 

predict new protein-protein interactions based on that data using machine learning 

techniques. 

 

 

 

1.3 The Research Question 

 

The main research question is: 

 

How can the protein-protein interactions be predicted from protein sequences 

data using machine learning techniques? 

 

Thus, the following issues will arise to answer the main research question 

stated above: 

• How to identify the best protein sequence features that can be used to 

train the learning algorithm? 

• How to overcome the unavailability of confirmed non-interacting proteins 

which is important as negative examples for the training of the learning 

algorithm? 
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• How to incorporate the probabilistic protein-protein interactions 

information to improve the prediction accuracy?  

 

 

 

1.4 The Goal and Objectives     

 

The main goal of this research is to develop a computational technique using 

the Support Vector Machines (SVM) and Bayesian approach to predict protein-

protein interactions form protein sequences data of the budding yeast, 

Saccharomyces cerevisiae.  

 

To achieve this goal the following objectives have been set:  

• To investigate different protein sequence features for the prediction of 

protein-protein interactions using the support vector machines.  

• To formulate the problem of predicting protein-protein interactions as a 

one-class classification problem then solve it using the One-Class SVM  

• To incorporate the probabilistic protein-protein interactions information 

using Bayesian kernel. 

• To test, evaluate, and enhance the prediction system. 

 

 

 

1.5 Importance of the Study 

 

Assigning functions to the proteins encoded by a genome is one of the crucial 

steps in gaining understanding of the organism. Besides, the study of protein function 

is fundamental to the drug discovery process. However, the function of half of all 

proteins in newly sequenced genomes often is completely unknown (Walhout and 

Vidal, 2001). Therefore, assigning function to the newly discovered proteins 

represents a major challenge in the post-genomic era, and could help biologists to 

better understand the molecular mechanisms of biological events. 
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The most common approach to identify protein function is based on sequence 

similarity. However, about 30% to 40% of the newly discovered proteins can not be 

assigned function based on sequence homology or similarity because they do not 

have statistically significant similarity with known protein (Letovsky and Kasif, 

2003).  

 

Inferring protein function can be made via protein-protein interaction studies.  

This is due to the fact that proteins work in a context of other proteins and rarely 

work alone. Hence, the function of unknown protein may be discovered if 

information about its interaction partners of known function is available. For that 

reason, the study of protein interactions has been fundamental to the understanding 

of how proteins function within the cell. Characterizing the interactions of proteins in 

a given cellular proteome will be the next milestone along the road to understanding 

the biochemistry of the cell. As a result, studying protein-protein interactions to gain 

insight on protein functions has become a topic of enormous interest in recent years, 

resulting many efforts devoted to its research. 

 

The interactions between proteins are important for many biological 

functions. Almost all processes in of molecular biology are affected by protein-

protein interactions (Alberts et al. 2002, Lodish et al. 2004). Replication, 

transcription, translation, signal transduction, protein trafficking, and protein 

degradation are all accomplished by protein complexes, often temporally assembled 

and disassembled to accomplish vital processes. In fact, the importance of protein–

protein interactions in the post-genomic era is becoming more noticeable due to the 

huge volume of data that became available. Hence, studying protein-protein 

interactions is crucial to gain insight on protein functions of the newly sequenced 

genomes.  

 

Until recently, information about protein–protein interactions was gathered 

via experiments that were individually designed to identify and validate a small 

number of specifically targeted interactions (Legrain et al., 2001). This type of 

experiments is called small-scale experiments. This traditional source of information 

has been increased recently by the results of high-throughput experiments designed 

to exhaustively explore all the potential interactions within entire genomes. 
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However, the many discrepancies between the interacting partners identified in high-

throughput studies and those identified in small-scale experiments highlight the need 

for caution when interpreting results from high-throughput studies (Salwinski and 

Eisenberg 2003).  

 

These discrepancies represent the need for the development of computational 

methods for data validation. Indeed, the interaction data that have been provided by 

high throughput technologies like the yeast two-hybrid system are known to suffer 

from many false positives.  In addition, in vivo experiments elucidating protein-

protein interactions are still time-consuming and labor-intensive methods. As a 

result, complementary computationally methods capable of accurately predicting 

interactions would be of considerable value. Furthermore, computational methods for 

the prediction of protein interactions will provide more data which will enable 

predicting protein function more precisely since the function of proteins with three or 

more partners can be more accurately predicted. 

 

 

 

1.6 Scope of the Study     

 

This study will focus on predicting protein-protein interactions from protein 

sequence information of the Yeast, Saccharomyces cerevisiae genome. The protein 

interactions dataset was obtained from the Database of Interacting Proteins (DIP) and 

the protein sequences data was obtained from Munich Information Center for Protein 

Sequences (MIPS). The DIP database was developed to store and organize 

information on binary protein–protein interactions that was retrieved from individual 

research articles (Xenarios et al., 2002). The DIP database provides sets of manually 

curated protein-protein interactions in Saccharomyces cerevisiae. The current version 

contains 4749 proteins involved in 15675 interactions for which there is domain 

information. DIP also provides a high quality core set of 2609 yeast proteins that are 

involved in 6355 interactions which have been determined by at least one small-scale 

experiment or at least two independent experiments and predicted as positive by a 

scoring system (Deane et al., 2001). 
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However, it should be noted that protein-protein interactions are sometimes 

confused with metabolic pathways. Metabolic Pathway is a series of enzyme-

catalyzed reactions. Each reaction produces a product which becomes the substrate 

for the next reaction. Although the structures of metabolic pathways and protein 

interaction maps are similar, there are a number of significant differences: While 

metabolic pathways focus on the conversion of small molecules and the enzymes 

responsible for these conversions, protein interaction maps concentrate mainly on 

physical contacts without obvious chemical conversions. Physical interactions are 

certainly of great utility when one studies single proteins or defined biological 

processes, but themselves do not reflect the huge amount of knowledge that has been 

accumulated in the biological literature. In this research we only attempt to predict 

physical protein-protein interactions.  

 

 

1.7 Thesis Outline 

 

The outline and the flow of the contents of this thesis can be described as 

follows: 

  

• The thesis begins with Chapter 1 in which this section is part of it. 

The chapter explains the key concepts, introducing the problem of this 

research, list the objectives, and determine the scope of this work. 

 

• Chapter 2 reviews and explains the basic terms and concepts in the 

molecular biology such as the central dogma of molecular biology, 

DNA, and proteins. It also examines amino acids and proteins in 

terms of their nature, formation, structure and their importance.  

 

• The following is Chapter 3 which discuss and overview protein 

function prediction and protein-protein interactions prediction 

methods. This chapter begins by reviewing several approaches to 

protein function prediction and its relation to protein-protein 

interactions. Then it describes the experimental techniques that are 

being used to discover and identify protein-protein interactions and 
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highlights the need for computational approaches. It also reviews the 

computational methods that have been developed to predict protein-

protein interactions.. 

 

• Chapter 4 describes the overall methodology adopted in this research 

to achieve the objectives of this thesis.  

 

• Chapter 5 presents and discusses the process of using support vector 

machines (SVM) to predict protein-protein interactions for protein 

sequence information. Using SVM, different protein sequence 

features have been studied and examined. These features include 

protein domain structures, hydrophobicity and amino acid 

compositions. At the end of this chapter, the results of studying and 

comparing these features are presented.   

 

• Chapter 6 shows how the problem of predicting protein-protein 

interactions can be modeled as a one-class classification problem. It 

also present the One-Class SVM classifier and its implementation to 

prediction protein-protein interactions as a one-class classification 

problem using only positive examples (interacting protein pairs) in 

training phase. At the end of this chapter, the results of using the One-

Class SVM are presented.  

 

• Chapter 7 describes the implementation of Bayesian Kernel for SVM 

to predict protein-protein interactions. Bayesian Kernel for SVM was 

implemented to incorporate the probabilistic information about 

protein-protein interactions that were compiled from different sources. 

This chapter also shows that the probabilistic output from the 

Bayesian Kernel can assist the biologist to conduct more research on 

the highly predicted interactions 
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• Chapter 9 concludes and summarizes this thesis, highlights the 

contributions and findings of this work, and provides suggestions and 

recommendations for future research. 

 

 

 

1.8 Summary 

 

The aim of this chapter is to give a broad overview of the problem of protein 

functions predictions and protein-protein interactions prediction and the general 

methods to solve it. This chapter serves as an introductory text to the research 

problem addressed in this thesis. The goal, objectives, the scope, and the 

organization of the thesis were presented. However, we have not presented a 

comprehensive review of the methods that have been employed to predict protein-

protein interactions. The next chapter (Chapter 2) describes the basic concepts of 

molecular biology then the following chapter (Chapter 3) surveys the previous 

research that relates most closely to this work in.  



 

 

 

CHAPTER 2 

 

 

 

BASIC CONCEPTS IN MOLECULAR BIOLOGY  

 

 

 

For a better understanding of this research, an introductory chapter to the 

basic concepts and terminology of molecular biology and biological sequence 

analysis is inevitable. This chapter begins with a brief description of the central 

dogma of molecular biology which involves the production of proteins from DNA. 

Then an overview of protein’s definition, nature, structure and its importance is 

presented. The chapter also explains the composition of proteins and its building 

blocks, the amino acids. In addition to this chapter, a glossary of biological terms is 

offered in Appendix A.  

 

 

 

2.1 The Central Dogma of Molecular Biology  

 

The central dogma of molecular biology is based on the assumption that each 

gene in the deoxyribonucleic acid (DNA) molecule carries the information needed to 

construct one protein. DNA is a nucleic acid that contains the genetic instructions for 

the development and function of living organisms (Alberts et al., 2002). All known 

cellular life and some viruses contain DNA. The main role of DNA in the cell is the 

long term storage of information. It is often compared to a blueprint, since it contains 

the instructions to construct other components of the cell, such as proteins and 

ribonucleic acid (RNA) molecules. The DNA segments that carry genetic 

information are called genes, but other DNA sequences have structural purposes, or 

are involved in regulating the expression of genetic information.  
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The central dogma involves two steps: transcription and translation. 

Transcription produces an mRNA (messenger RNA) sequence using the DNA 

sequence as a template. The subsequent process, called translation, synthesizes the 

protein according to information coded in the mRNA (Korf et al., 2003). This 

process is performed by sub cellular elements called ribosomes. Proteins are created 

in the nucleus of all cells in a living organism. The DNA in each cell provides a 

recipe of how and when proteins should be created. The process in which proteins 

are created is called protein synthesis. This process is illustrated in Figure 2.1. 

 

 

 
Figure 2.1: The central dogma of molecular biology (Korf et al., 2003). 
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2.2 The DNA 

 

As mentioned earlier, the hereditary material that carries the blueprint for an 

organism from one generation to the next is called deoxyribonucleic acid (DNA). 

Every time cells divide, the DNA is duplicated in a process called DNA replication. 

The entire DNA of an organism is called its genome. Understanding the various 

organisms’ genomes is one of the most important challenges in the post-genomic era 

(Palsson, 2000). Modern medicine, agriculture, and industry will increasingly depend 

on the knowledge of genomes to develop individualized medicines that select and 

modify the most desirable traits in plants and animals, and understand the 

relationships among species.  

 

The alphabet of the DNA language is simple, consisting of just four 

nucleotides: adenine, cytosine, guanine, and thymine. For simplicity, they are 

abbreviated as A, C, G, and T. DNA usually exists as a double-stranded molecule, 

but generally just one strand at a time is referred. The pairing rule of DNA is that A 

pairs with T, and C pairs with G. Hence, it is very easy to determine the sequence of 

the complementary strand of any DNA sequence. Here's an example of a DNA 

sequence with its complementary sequence:  

 

G A T T A G C T C C A G G A A T 

C T A A T C G A G G T C C T T A 

 

DNA has polarity with its ends are referred to as 5-prime (5´) and 3-prime 

(3´). This nomenclature comes from the chemical structure of DNA. While it isn't 

necessary to understand the chemical structure, the terminology is important. For 

example, "the 5´ end of the gene," means the beginning of the gene. Usually DNA 

sequence is displayed left to right, and the convention is that the left side is the 5´ 

end and the right side is the 3´ end.  

 

A gene is a functional unit of the genome (the full DNA sequence of an 

organism). Most genes contain instructions for producing proteins at a certain time 

and in a certain space. Some genes have very narrow windows of activity, while 

others are everywhere. However, not all genes code for proteins. Some genes 
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produce RNAs that aren't translated into proteins and are therefore called noncoding 

RNAs (ncRNA) (Korf et al., 2003).  

 

DNA doesn't encode proteins on its own. DNA is copied into RNA by a 

protein called RNA polymerase in a process called transcription. Chemically, RNA is 

a lot like DNA except that it uses uracil instead of thymine and it is single stranded 

instead of double stranded. The RNA alphabet is A, C, G, and U, and an RNA 

molecule might look like this:  

 

G A A U U G C U C C A G G A A U 

 

If the RNA transcript from a gene is a transfer RNA (tRNA), ribosomal RNA 

(rRNA), or other ncRNA, it may undergo some chemical modifications, but the gene 

product remains as an RNA molecule. RNAs corresponding to protein coding genes 

are called messenger RNAs (mRNA).  

 

 

 

2.3 The Proteins 

 

A protein is linear polymer of amino acids linked together by peptide bonds. 

There are twenty amino acids that compose the standard chemical alphabet used to 

build proteins. The amino acids are small molecules that share a common motif, of 

three substitute chemical groups arranged around a central carbon atom. One of the 

substitute groups is always an amino group; another is always carboxylic acid group. 

The average protein size is around 200 amino acids long, while large proteins can 

reach over a thousand amino acids.  

 

The protein alphabet contains 20 symbols, A, C, D, E, F, G, H, I, K, L, M, N, 

P, Q, R, S, T, V, W, and Y. The names, abbreviations, and structures of the amino 

acids are shown in Table 2.1. 
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Table 2.1: The amino acids. 

Amino acid Abbreviation Symbol Properties 

Alanine Ala A Hydrophobic 

Cysteine Cys C Neutral; forms disulfide bridges 

Aspartate Asp D Negatively charged 

Glutamate Glu E Negatively charged 

Phenylalanine Phe F Hydrophobic; aromatic 

Glycine Gly G Neutral; smallest amino acid 

Histidine His H Positively charged; aromatic 

Isoleucine Ile I Hydrophobic 

Lysine Lys K Positively charged 

Leucine Leu L Hydrophobic 

Methionine Met M Hydrophobic; start amino acid 

Asparagine Asn N Neutral ; hydrophilic 

Proline Pro P Hydrophobic 

Glutamine Gln Q Neutral ; hydrophilic 

Arginine Arg R Positively charged 

Serine Ser S Neutral; hydrophilic 

Threonine Thr T Neutral ; hydrophilic 

Valine Val V Hydrophobic 

Tryptophan Trp W Hydrophobic; aromatic 

Tyrosine Tyr Y Hydrophobic; aromatic 
 

 

Using one-letter symbols, a protein sequence might be written like this:  

 

M L V G S R A 

 

The sequences of proteins are one-dimensional, but their shapes are three-

dimensional. Proteins can fold into very specific three-dimensional shapes that are 

dependent on their amino acid sequences. Thus, the amino acid sequence determines 

the shape of the protein and the shape determines the function. Therefore, while 
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DNA and RNA are largely used to store and send information, proteins carry out 

almost all processes in the cell. Also, proteins determine the shape and structure of 

the cell, and also serve as the main instruments of molecular recognition and 

catalysis. 

 

Although proteins have many different shapes and sizes, if we look closely at 

the structure, we can find recurring structural themes that biologists call secondary 

structure. The most common themes are the α-helix, β-sheet, and random coil. In 

Figure 2.2, these themes are represented as cylinders, arrows, and squiggly lines. 

 

 
 

Figure 2.2: Schematic drawing of protein secondary structure (Punta et al., 2005). 

 

 

When the sequences of primary structures tend to arrange themselves into 

regular formations, these units are referred to as secondary structure. The angles and 

hydrogen bond patterns between backbone atoms are determinant factors in protein 
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secondary structure. Secondary structure is subdivided into three parts: alpha-helix, 

beta-sheet and loop. 

 

Alpha-helix is spiral turns of amino acids while a beta-sheet is flat segments 

or strands of amino acids formed usually by a series of hydrogen bonds. Beta-strands 

are the most regular form of extended polypeptide chain in protein structures. Loops 

usually serve as connection points between alpha-helices and beta-sheets. The do not 

have patterns like alpha-helices and beta-sheets and they could be any other part of 

the protein structure. They are sometimes known as random coil.  

 

 

 

2.4 The Genetic Code 

 

The information in DNA and RNA is translated to protein sequence using a 

complex machine composed of proteins and ncRNAs called the ribosome reads an 

mRNA sequence and writes a protein sequence. The mRNA is read three nucleotides 

at a time. The nucleotide triplets are called codons. Each codon corresponds to a 

single amino acid. The mapping from codons to amino acids is called the genetic 

code. The genetic code is one of the universal laws of molecular biology.  

 

Because codons are three nucleotides long and there are four possible 

nucleotides at each position, it follows that there are 64 (43) possible codons. 

However, there are only 20 amino acids. Therefore there is a redundancy in the 

genetic code. Table 2.2 shows the standard nuclear genetic code. It can be observed 

from Table 2.2 that there is a pattern in the genetic code redundancies. For example, 

the third position of a codon is often insignificant; A, C, G, or T all lead to the same 

translation. When this isn't the case, A and G are usually synonymous, as are C and 

T. A and G belong to the same chemical class, called purines, and C and T belong to 

another class, called pyrimidines. In addition to the amino acids, there are three stop 

codons. When a ribosome catches a stop codon, translation terminates, and the 

protein is released. All proteins start with the amino acid methionine. This has only 

one codon, ATG, and so ATG is often called the start codon. 
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Table2.2: The standard genetic code. 

  Second Position    

  T C A G   

T 

TTT Phe (F) 

TTC Phe (F) 

TTA Leu (L) 

TTG Leu (L) 

TCT Ser (S) 

TCC Ser (S) 

TCA Ser (S) 

TCG Ser (S) 

TAT Tyr (Y) 

TAC 

TAA STOP 

TAG STOP 

TGT Cys (C) 

TGC 

TGA STOP 

TGG Trp (W) 

T 

C 

A 

G 

C 

CTT Leu (L) 

CTC Leu (L) 

CTA Leu (L) 

CTG Leu (L) 

CCT Pro (P) 

CCC Pro (P) 

CCA Pro (P) 

CCG Pro (P) 

CAT His (H) 

CAC His (H) 

CAA Gln (Q) 

CAG Gln (Q) 

CGT Arg (R) 

CGC Arg (R) 

CGA Arg (R) 

CGG Arg (R) 

T 

C 

A 

G 

A 

ATT Ile (I) 

ATC Ile (I) 

ATA Ile (I) 

ATG Met (M) 

ACT Thr (T) 

ACC Thr (T) 

ACA Thr (T) 

ACG Thr (T) 

AAT Asn (N) 

AAC Asn (N) 

AAA Lys (K) 

AAG Lys (K) 

AGT Ser (S) 

AGC Ser (S) 

AGA Arg (R) 

AGG Arg (R) 

T 

C 

A 

G 

F 

i 

r 

s 

t 

 

P 

o 

s 

i 

t 

i 

o 

n 
G 

GTT Val (V) 

GTC Val (V) 

GTA Val (V) 

GTG Val (V) 

GCT Ala (A) 

GCC Ala (A) 

GCA Ala (A) 

GCG Ala (A) 

GAT Asp (D) 

GAC Asp (D) 

GAA Glu (E) 

GAG Glu (E) 

GGT Gly (G) 

GGC Gly (G) 

GGA Gly (G) 

GGG Gly (G) 

T 

C 

A 

G 

T 

h 

i 

r 

d 

 

P 

o 

s 

i 

t 

i 

o 

n 

 

 

 

2.5 Proteins Functions 

 

Proteins are the main players within the cell, known to be carrying out the 

duties specified by the information encoded in genes (Lodish et al., 2004). Proteins 

compose half the dry weight of a cell, while other macromolecules such as DNA and 

RNA compose only 3% and 20% respectively (Voet and Voet, 2004). The total 
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complement of proteins expressed in a particular cell or cell type at a given time 

point or experimental condition is known as its proteome. 

 

The main characteristic of proteins that enables them to carry out their 

diverse cellular functions is their ability to bind other molecules specifically and 

tightly. The region of the protein responsible for binding another molecule is known 

as the binding site and is often a depression or "pocket" on the molecular surface 

(Lodish et al., 2004). This binding ability is mediated by the tertiary structure of the 

protein, which defines the binding site pocket, and by the chemical properties of the 

surrounding amino acids' side chains.  

 

Proteins can bind to other proteins as well as to small-molecule substrates. 

When proteins bind specifically to other copies of the same molecule, they can 

oligomerize to form fibrils. Protein-protein interactions also regulate enzymatic 

activity, control progression through the cell cycle, and allow the assembly of large 

protein complexes that carry out many closely related reactions with a common 

biological function. Proteins can also bind to, or even be integrated into, cell 

membranes. The ability of binding partners to induce conformational changes in 

proteins allows the construction of enormously complex signaling networks. Table 

2.3 summarizes the different proteomic functions. The following paragraphs describe 

some of these functions briefly.  

 

Table 2.3: Proteins functions. 

Protein Function Description  Examples 

Catalytic proteins 

(Enzymes) 

Catalyze reactions in cell Lactase 

Protein kinase 

RNase 

Chymotrypsin 

Regulatory proteins Modulate biological activity Insulin  

DNA-binding proteins 

Defense proteins Protect organism Immunoglobulins 

Antibiotics 
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Transport proteins Bind and carry specific 

molecules or ions 

Hemoglobin 

Structural Proteins Support or strengthen 

biological structures 

Collagen–tendon 

Cartilage  

Leather 

Nutrient/Storage proteins Source of amino acids Ovalbumin–egg white 

Casein–milk 

 

 

 The best-known function or role of proteins in the cell is their duty as 

enzymes, which catalyze chemical reactions. Enzymes are usually highly specific 

catalysts that accelerate only one or a few chemical reactions. Enzymes affect most 

of the reactions involved in metabolism and catabolism as well as DNA replication, 

DNA repair, and RNA synthesis. Some enzymes act on other proteins to add or 

remove chemical groups in a process known as post-translational modification. 

About 4,000 reactions are known to be catalyzed by enzymes (Bairoch, 2000).   

 

Many proteins are involved in the process of cell signaling and signal 

transduction. Some proteins, such as insulin, are extra-cellular proteins that transmit 

a signal from the cell in which they were synthesized to other cells in distant tissues. 

Others are membrane proteins that act as receptors whose main function is to bind a 

signaling molecule and induce a biochemical response in the cell.  

 

Antibodies are protein components of adaptive immune system whose main 

function is to bind antigens, or foreign substances in the body, and target them for 

destruction. Antibodies can be secreted into the extra-cellular environment or 

anchored in the membranes of specialized B cells known as plasma cells. While 

enzymes are limited in their binding affinity for their substrates by the necessity of 

conducting their reaction, antibodies have no such constraints. An antibody's binding 

affinity to its target is extraordinarily high. 
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Many ligand transport proteins bind particular small biomolecules and 

transport them to other locations in the body of a multicellular organism. These 

proteins must have a high binding affinity when their ligand is present in high 

concentrations but must also release the ligand when it is present at low 

concentrations in the target tissues. The canonical example of a ligand-binding 

protein is haemoglobin, which transports oxygen from the lungs to other organs and 

tissues in all vertebrates and has close homologs in every biological kingdom. 

 

Structural proteins confer stiffness and rigidity to otherwise fluid biological 

components. Most structural proteins are fibrous proteins; for example, actin and 

tubulin are globular and soluble as monomers but polymerize to form long, stiff 

fibers that comprise the cytoskeleton, which allows the cell to maintain its shape and 

size. Collagen and elastin are critical components of connective tissue such as 

cartilage, and keratin is found in hard or filamentous structures such as hair, nails, 

feathers, hooves, and some animal shells. 

 

 

 

2.6 Protein-Protein Interactions 

 

Protein-protein interactions refer to the association of protein molecules and 

the study of these associations from the perspective of biochemistry, signal 

transduction and networks. Proteins might interact for a long time to form part of a 

protein complex or a protein may interact briefly with another protein just to modify 

it (for example, a protein kinase will add a phosphate to a target protein). 

 

Protein-protein interactions are essential to virtually every cellular process 

(Phizicky and Fields, 1995). For example, signals from the exterior of a cell are 

mediated to the inside of that cell by protein-protein interactions of the signaling 

molecules. This process, called signal transduction, plays a fundamental role in many 

biological processes and in many diseases (e.g. cancer).  

 

It has been proposed that all proteins in a given cell are connected in a huge 

network in which certain protein interactions are forming and dissociating constantly 
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(Bork et al., 2004). An interaction map of the yeast proteome assembled from 

published interactions is shown in Figure 2.3. The map contains 1,548 proteins 

(boxes) and 2,358 interactions (connecting lines) (Schwikowski et al., 2000).  

 

It is also estimated that even simple single-celled organisms such as yeast 

have their roughly 6000 proteins interact by at least 3 interactions per protein, i.e. a 

total of 20,000 interactions or more. By extrapolation, there may be on the order of 

~100,000 interactions in the human body. 

 

 

 
 

Figure 2.3: The protein-protein interaction network in yeast (Schwikowski et al., 

2000). 
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Any listing of major research topics in biology - for example, DNA 

replication, transcription, translation, splicing, secretion, cell cycle control, signal 

transduction, and intermediary metabolism - is also a listing of processes in which 

protein complexes have been implicated as essential components (Phizicky and 

Fields, 1995). Figure 2.4 shows Ribosomes or RNA polymerases as an example for 

protein-protein interactions in a multi-protein complex. The schematic interaction 

diagram for the 10 subunits in RNA polymerases complex is shown in Figure 2.4 (b).  

 

 
 

(a) (b) 

 

Figure 2.4: (a) Large protein complex and its protein-protein interactions. 

   (b) The schematic interaction (Cramer et al., 2001). 

 

 

Protein-protein interactions can be classified based on the proteins involved 

(structural or functional groups) or based on their physical properties (weak and 

transient vs. strong and permanent). Protein interactions are usually mediated by 

defined domains. Hence interactions can also be classified based on the underlying 

domains.  

 

Experimentally, interactions between pairs of proteins can be detected from 

yeast two-hybrid systems, from affinity purification/mass spectrometry assays, or 

from protein microarrays. In parallel to the experimental determination of the 

protein-protein interactions, computational methods are being developed. Protein-
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protein interaction prediction is a field combining computational techniques and 

structural biology in an attempt to identify and catalog interactions between pairs or 

groups of proteins.  

 

Forces that mediate protein-protein interactions include electrostatic 

interactions, hydrogen bonds, the van der Waals attraction and hydrophobic effects. 

The average protein-protein interface is not less polar or more hydrophobic than the 

surface remaining in contact with the solvent. Water is usually excluded from the 

contact region. Non-obligate complexes tend to be more hydrophilic in comparison, 

as each component has to exist independently in the cell.  

 

It has been proposed that hydrophobic forces drive protein-protein 

interactions and hydrogen bonds and salt bridges confer specificity (Young et al., 

1994). Van der Waals interactions occur between all neighbouring atoms, but these 

interactions at the interface are no more energetically favorable than those made with 

the solvent. However, they are more numerous, as the tightly packed interfaces are 

denser than the solvent and hence they contribute to the binding energy of 

association. 

 

Hydrogen bonds between protein molecules are more favourable than those 

made with water. Interfaces in permanent associations tend to have fewer hydrogen 

bonds than interfaces in non-obligate associations. Interfaces have been shown to be 

more hydrophobic than the exterior but less hydrophobic than the interior of a 

protein. Permanent complexes have interfaces that contain hydrophobic residues, 

whilst the interfaces in non-obligate complexes favour the more polar residues 

(Koike and Takagi, 2003).  

 

Most of the interactions data have been identified by high-throughput 

technologies like the yeast two-hybrid system, which are known to yield many false 

positives (Kim et al., 2002). In addition, in vivo experiments that identify protein-

protein interaction are still time-consuming and labor-intensive; besides, they 

identify a small number of interactions. As a result, methods for computational 

prediction of protein-protein interactions based on sequence information are 

becoming increasingly important. 
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2.7 Summary 

 

In this chapter, various concepts in molecular biology have been presented. 

This is essential to facilitate better understanding of the research discussed in this 

thesis. In conclusion, protein-protein interactions are of central importance for 

virtually every process in a living cell. Information about these interactions improves 

our understanding of diseases and can provide the basis for new therapeutic 

approaches. 

 



 

 

 

 

CHAPTER 3 

 

 

 

LITERATURE REVIEW 

 

 

 

Related research in the field of computational prediction of protein-protein 

interactions is presented in this chapter. This chapter begins by reviewing several 

approaches to protein function prediction and its relation to protein-protein 

interactions. After that it describes the experimental techniques that are being used to 

determine and identify protein-protein interactions and highlights the need for 

computational approaches. Then it reviews the research that has been done to 

computationally predict protein-protein interactions. At the end, a summary of the 

literature review is presented. 

 

 

3.1 Protein Function Prediction 

 

The field of bioinformatics has arisen in parallel with the development of 

automated high throughput methods of biological and biochemical discovery that 

yield a variety of forms of experimental data, such as DNA sequences, gene 

expression patterns, and chemical structures. One of the major challenging tasks in 

bioinformatics is to infer and predict the function of the newly discovered proteins. 

 

Proteins carry out the majority of tasks in organisms, such as catalysis of 

biochemical reactions, transport of nutrients, recognition and transmission of signals. 

The role of any particular protein is referred to as its function. However, protein 

function is not a well-defined term; instead function is a complex phenomenon that is 
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associated with many mutually overlapping levels: biochemical, cellular, organism 

mediated, developmental, and physiological. Thus, the determination of protein 

functions is a complex problem in bioinformatics research. The sequencing of entire 

genomes has moved the attention from the study of single proteins or small 

complexes to that of the entire proteome (Hodgman, 2000).  

 

One of the most fundamental tools in the field of bioinformatics is sequence 

alignment. By aligning sequences to one another, it is possible to evaluate how 

similar the sequences are and identify conserved regions in sets of related sequences. 

This is used extensively to assign function to genes in newly sequenced genomes. 

Although, most methods annotating protein function utilise sequence homology to 

proteins of experimentally known function, such a homology-based annotation 

transfer is problematic and limited in scope. Therefore, researchers have begun to 

develop different methods that predict protein function, including phylogenetic 

patterns, gene expression, and protein-protein interactions. Figure 3.1 shows different 

approaches to infer and predict protein function. 

 

 

 

Protein Sequence 

Protein Structure 

Wet Lab 

Protein Interactions 

Protein Homology 

Protein Function

Phylogenetic patterns

Gene expression 

 

Figure 3.1: Different methods for inferring protein function. 
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The Yeast Protein Database (YPD) lists 6281 proteins with 3854 being 

annotated, assigned to some cellular roles, and 2427 being unannotated (Costanzo et 

al., 2001). A challenging task that lies ahead is to find the functional roles of these 

unannotated proteins. Several research groups have developed methods for 

functional annotation. The classical way is to find homologies between a protein and 

other proteins in protein databases using programs such as FASTA (Pearson, 2000) 

and PSI-BLAST (Altschul et al., 1997), and then predict functions based on 

sequence homologies. Besides, functional predictions have been modeled as pattern 

recognition problems based on sequence homologies and structural information 

(King et al., 2001) as well as phenotype data (Clare and King, 2002). 

 

When function cannot be inferred based on sequences similarity, one must 

rely on true ab initio prediction methods. It is a generally accepted paradigm that the 

function of a protein is determined by its three-dimensional structure, and that the 

structure is determined by the sequence of the protein. Given this paradigm, it would 

be logical to think that ab initio function prediction could be done by first predicting 

the structure of the protein, and subsequently predict the function from the structure. 

However, both steps in this approach are likely to be very difficult to solve.  

 

Knowing the structure of a protein does not mean that it is necessarily 

possible to figure out what the protein does, even though it is of course a big help 

(Norin and Sundstrom, 2002). This is because the function of a protein depends on 

its cellular context. Also, post-translational modifications can profoundly alter the 

function (and structure) of a protein. Predicting the function of a protein from its 

structure may therefore very well turn out to be as difficult as the protein folding 

problem.  

 

However, since proteins collaborate or interact with one another for a 

common purpose, it is possible to deduce functions of a protein through the functions 

of its interaction partners (Deng et al.,2002; Letovsky and Kasif, 2003). The protein-

protein interaction network describes a neighborhood structure among the proteins. If 

two proteins interact, they are neighbors of each others. For an unannotated protein, 

the functions of its neighbors can tell us something about the function of the 



 28

unannotated protein. For a given function, if most of the neighbors of a protein have 

the function, it is more likely to be believed that the protein have the same function.  

 

It should be noted that the interaction partners for a protein may belong to 

different functional categories. It is this complex network of within function and 

cross-function interactions that makes the problem of functional assignments a 

difficult task. Methods based on frequencies of interaction partners having certain 

functions of interest (Schwikowski et al., 2000) and on χ2-statistics (Hishigaki et al., 

2001) have been applied to assign functions to unannotated proteins.  

 

Schwikowski et al. (2000) proposed to infer the functions of an unannotated 

protein based on the frequencies of its neighbors having certain functions. They 

assign k functions to the unannotated protein with the k largest frequencies in its 

neighbors. This approach will be referred as the neighboring counting method. This 

approach does not consider the frequency of the proteins having a function among all 

the proteins. If a function is more common than other functions among all the 

proteins, the probability that an unannotated protein has this function should be 

higher than the probability that it has other functions even if the protein does not 

have interaction partners. 

 

Hishigaki et al. (2001) developed another method to infer protein functions 

based on χ2-statistics. For a protein Pi, let ni(j) be the number of proteins interacting 

with Pi and having function Fj . Let ei(j) = #Nei(i) × πj be the expected number of 

proteins in Nei(i) having function Fj , where #Nei(i) is the number of proteins in 

Nei(i). Define  
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For a fixed k, they assign an unannotated protein with k functions having the 

top k χ2-statistics. Although this approach takes the frequency of the proteins having 

a function into consideration, ni(j) is generally small and the applicability of the χ2-

statistics is questionable. 
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Another approach has been developed by Deng et al. (2002) in which they 

apply the theory of Markov random fields to infer a protein’s functions using protein-

protein interaction data and the functional annotations of its interaction protein 

partners. For each function of interest and a protein, they predict the probability that 

the protein has that function using Bayesian approaches. Unlike in other available 

approaches for protein annotation where a protein has or does not have a function of 

interest, they give a probability for having the function. This probability indicates 

how certain it can be believed about the prediction.  

 

Recently, Letovsky and Kasif (2003) applied a method of assigning functions 

based on a probabilistic analysis of graph neighborhoods in a protein-protein 

interaction network. The method exploits the fact that graph neighbors are more 

likely to share functions than nodes which are not neighbors. A binomial model of 

local neighbor function labeling probability is combined with a Markov random field 

propagation algorithm to assign function probabilities for proteins in the network. 

The method has been applied on a protein-protein interaction dataset for the yeast 

Saccharomyces cerevisiae using the Gene Ontology (GO) terms as function labels. 

The method reconstructed known GO term assignments with high precision, and 

produced putative GO assignments to 320 proteins that currently lack GO annotation, 

which represents about 10% of the unlabeled proteins in Saccharomyces cerevisiae. 

 

Part of the reason why it is difficult to relate the chemical function of a 

protein to its biological purpose is that proteins do not function alone. To understand 

the function of a protein, it must be considered in its proper cellular context, for 

example by appreciating how the cell would behave without it (Attwood and Miller, 

2001). Many proteins are parts of larger complexes, which are the functional units 

that fulfill a role in the cell (Gavin et al., 2002). In this case it can be argued that all 

the proteins that form the complex should also have the same function. Since a 

protein does not perform its function alone but in the context of many other proteins 

as well as other biomolecules, it is highly relevant to study the interaction partners of 

a protein in order to understand its function (Eisenberg et al., 2000; Ho et al., 2002).  
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The previous approaches to infer the unknown function of a class of proteins 

have exploited sequence similarities or clustering of co-regulated genes (Harrington 

et al., 2000), phylogenetic profiles (Pellegrini et al.,1999), protein-protein 

interactions (Uetz et al., 2000; Ito et al., 2000; Schwikowski et al.,2000; Deng et al., 

2002), and protein complexes (Gavin et al., 2002; Ho et al., 2002). Table 3.1 

summarizes different approaches and techniques to infer and predict protein function. 

 

Table 3.1: Computational methods for protein function prediction. 

Approach Technique Researches 
FASTA  Pearson, 2000 Sequence alignments 
PSI-BLAST Altschul et al., 1997 
BLOCKS Henikoff & Henikoff, 1994 
PRINTS Attwood et al., 1997 

Multiple sequence 
alignments 

PRODOM Sonnhammer & kahn, 1994 
Hidden Markove Models  Karplus et al., 1997 Protein structure 

prediction Nearest-neighbor algorithms Salamov & Solovyev 1995 
Phylogenetic 
patterns 

Statistical methods Pellegrini et al., 1999  

SVM Brown et al., 2000 Gene expression 
data analysis Statistical algorithm Eisen et al., 1998 
Family Identification 
 

Normalized cuts clustering 
algorithm 

Abascal & Valencia,  2003 

n-neighbouring proteins  Hishigaki et al., 2001 
Markov random fields and 
Bayesian networks 

Deng et al., 2002 
 

Global optimization and 
simulated annealing  

Vazquez et al., 2003 
 

Protein-protein 
interaction 

Markov random fields and 
label propagation algorithm 

Letovsky & Kasif 2003 
 

 

 

 

3.2 Methods to study protein-protein interactions 

 

Protein-protein interactions are working at almost every level of cell function, 

in the structure of sub-cellular organelles, the transport machinery across the various 

biological membranes, packaging of chromatin, the network of sub-membrane 

filaments, muscle contraction, and signal transduction, regulation of gene expression, 

to name a few (Donaldson et al., 2003) . Abnormal protein-protein interactions have 



 31

implications in a number of neurological disorders such as Creutzfeld-Jacob and 

Alzheimer's disease. 

 

Because of their importance in cell development and disease, protein-protein 

interactions have gained a lot of attention among researchers for many years. It has 

emerged from these studies that there is a strategy of mixing and matching of 

domains that specify particular classes of protein-protein interactions. There are a 

large number of methods to detect protein-protein interactions. Each of the 

approaches has its own strengths and weaknesses, especially with regard to the 

sensitivity and specificity of the method. A high sensitivity means that many of the 

interactions that occur in reality are detected by the method. A high specificity 

indicates that most of the interactions detected by the screen are also occurring in 

reality. 

 

Co-immunoprecipitation is considered to be the gold standard assay for 

protein-protein interactions, especially when it is performed with endogenous (not 

overexpressed and not tagged) proteins (Gharakhanian et al., 1988). The protein of 

interest is isolated with a specific antibody. Interaction partners which stick to this 

protein are subsequently identified by western blotting. Interactions detected by this 

approach are considered to be real. However, this method can only verify 

interactions between suspected interaction partners. Thus, it is not a screening 

approach to identify unknown protein-protein interactions. 

 

The yeast two-hybrid screen investigates the interaction between artificial 

fusion proteins inside the nucleus of yeast (Bartel and Fields, 1997). This approach 

can identify binding partners of a protein in an unbiased manner. However, this 

method suffers from high false-positive rate which makes it necessary to verify the 

identified interactions by co-immunoprecipitation. 

 

Tandem affinity purification (TAP) detects interactions within the correct 

cellular environment (e.g. in the cytosol of a mammalian cell) (Rigaut et al., 1999). 

This is a big advantage compared to the yeast two-hybrid approach. However, the 

TAP tag method requires two successive steps of protein purification. Thus, it can 

not readily detect transient protein-protein interactions. It is also not efficient to 
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detect physical protein-protein interactions that exist in different cellular 

environment. This is especially important when studying the interaction network in 

the organism’s genome which becomes very significant in the post-genomic era.  

 

Quantitative immunoprecipitation combined with knock-down (QUICK) 

relies on co-immunoprecipitation, quantitative mass spectrometry (SILAC) and RNA 

interference (RNAi). This method detects interactions among endogenous non-

tagged proteins (Selbach and Mann, 2006). Thus, it has the same high confidence as 

co-immunoprecipitation. However, this method also depends on the availability of 

suitable antibodies. 

 

Dual Polarisation Interferometry (DPI) is a method that can be used to 

measure protein-protein interactions. DPI provides real-time, high-resolution 

measurements of molecular size, density and mass. However this method can not be 

used to detect new protein-protein interactions. 

 

 

 

3.3 Predicting Protein-Protein Interactions  

 

Protein-protein interactions play a crucial role in protein function. Hence, the 

ability to computationally recognize protein interaction sites and to identify specific 

interface residues that contribute to the specificity and affinity of protein interactions 

has important implications in a wide range of clinical and industrial applications.  

 

Until recently, information about protein–protein interactions was gathered 

via experiments that were individually designed to identify and validate a small 

number of specifically targeted interactions. This traditional source of information 

has been augmented recently by the results of high-throughput experiments designed 

to exhaustively probe all the potential interactions within entire genomes (Table 3.2). 

However, the many discrepancies between the interacting partners identified in high-

throughput studies and those identified in small scale experiments highlight the need 

for caution when interpreting results from high-throughput studies. 
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Table 3.2: High-throughput experimental approaches to the determination of 

protein-protein interactions. 

Method  References  Features  

Uetz et al., 2000 

Ito et al., 2000  

Newman et al., 2000 

The first comprehensive studies in 
yeast  

 

Boulton et al., 2002  

Yeast two-hybrid  

Walhout et al., 2002  

Combined analysis of yeast two-
hybrid interactions together with 
phenotype and expression data  

Affinity 
purification/mass  

Ho et al., 2002   Purification of overexpressed, epitope-
tagged proteins in yeast  

spectrometric 
identification  

Gavin et al., 2002 TAP purification of complexes 
expressed at physiological levels in 
yeast  

Protein chips  Zhu et al., 2001  High-throughput detection of 
interactions with proteins over-
expressed and immobilized on 
microscope slides to form a proteome 
microarray  

Synthetic lethals  Tong et al., 2001  High-throughput identification of 
synthetic lethal double mutants. 
Synthetic lethal mutants often 
correspond to physically interacting 
protein pairs.  

 

Phage display Tong et al., 2002  Phage display identification of binding 
motifs followed by computational 
identification of potential interacting 
partners and a yeast two-hybrid 
validation step 
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High-throughput experimental techniques enable the study of protein-protein 

interactions at the proteome scale through systematic identification of physical 

interactions among all proteins in an organism. High-throughput protein-protein 

interaction data, with ever-increasing volume, are becoming the foundation for new 

biological discoveries.  

 

A great challenge to bioinformatics is to manage, analyze, and model these 

data. Comparison between experimental techniques shows that each high-throughput 

technique such as yeast two-hybrid assay or protein complex identification through 

mass spectrometry has its limitations in detecting certain types of interactions and 

they are complementary to each other. Moreover the overlap between these high-

throughput experiments is very small as shown in Figure 3.2.  

 

 

 
 

Figure 3.2: The overlap between different high-throughput experiments.  

 

 

The limitations of the experimental methods to identify protein-protein 

interactions highlight the need for computational methods to infer and predict 

protein-protein interactions. As a result, complementary computationally methods 

capable of accurately predicting interactions would be of considerable value. 

Furthermore, computational methods for the prediction of protein interactions will 

provide more data which will enable predicting protein function more precisely since 
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the function of proteins with three or more partners can be more accurately predicted 

than with information about one partner.  

 

It is also important to note that computational methods that use protein 

sequences, domain and structure information to predict protein-protein interaction 

can expand the scope of experimental data and increase the confidence of certain 

protein-protein interaction pairs.  

 

Protein-protein interaction data correlate with other types of data, including 

protein function, subcellular location, and gene expression profile. Highly connected 

proteins are more likely to be essential based on the analyses of the global 

architecture of large-scale interaction network in yeast. The use of protein-protein 

interaction networks, preferably in conjunction with other types of data, allows 

assignment of cellular functions to novel proteins and derivation of new biological 

pathways. 

 

Several approaches have been proposed for predicting protein-protein 

interaction sites from amino acid sequence or from a combination of sequence and 

structural information (see Table 3.3.). For example, based on their observation that 

proline residues occur frequently near interaction sites, Kini and Evans (1996) 

predicted potential protein-protein interaction sites by detecting the presence of 

"proline brackets." Building on their systematic patch analysis of interaction sites, 

Jones and Thornton (1997) successfully predicted interfaces in a set of 59 structures 

using a scoring function based on six parameters. Gallet et al. (2000) identified 

interacting residues using an analysis of sequence hydrophobicity based on a method 

previously developed by Eisenberg et al. (1984) for detecting membrane and surface 

segments of proteins.  
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Table 3.3: Computational methods for protein-protein interactions prediction.  

Approach  Technique References 

Identifying interacting 
sequence motif pairs. 

Statistical Method Wojcik & Schachter, 2001  

Co-occurrence of sequence 
domains.  

Probabilistic model Deng et al., 2002 

 

Gene fusion  Rosetta stone Marcotte et al., 2000 

Threading-based interaction 
energy evaluation.  

Statistical methods Lu et al., 2002 

Phylogenetic profile 
method.  

Statistical methods Pellegrini et al., 1999  

Craig and Liao, 2007 

Gene Ontology Semantic similarity 
search 

Wu et al., 2006 

Ofran & Rost, 2003 SVM 

 

 
Koike & Takagi, 2003 

Identification of  Surface 
residues 

Statistical Method Gallet et al., 2000 

Bock & Gough, 2001 

Dohkan et al., 2003 

Ben-Hur & Noble, 2005  

SVM 

 

Dohkan et al., 2006 

SVM + Attraction-
repulsion model  

Gomez et al., 2003 

Bayesian Networks Jansen et al., 2003 

Lin et al., 2004 

Primary structure based 
prediction 

Set Cover Approach Huang et al., 2007 
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Prediction of interaction sites in proteins of known structure usually focuses 

on the location of hydrophobic surface clusters on proteins. In one study, this method 

predicted the correct interaction site in 25 out of 29 cases (Zhou and Shan, 2001). 

Other methods include solvation potential, residue interface propensity, 

hydrophobicity, planarity, protrusion, and accessible surface area. Among a test set 

of 28 homodimers, the known interface site was found to be amongst the most 

planar, protruding, and accessible patches, and amongst the patches with highest 

interface propensity. Nevertheless, one of the algorithms (PATCH) that uses multiple 

parameters predicted the location of interface sites in known complexes only for 66% 

of the structures. 

 

Based on the idea that domains mediate the interactions between proteins, Ng 

et al. (2003) collected data from three data sources to develop the database of 

interacting domains (InterDom). The first one is the experimentally derived protein 

interaction data from the Database of Interacting Proteins (DIP) (Xenarios et al., 

2002). The second source is the intermolecular relationship data from protein 

complexes and the last one is the computationally predicted data from Rosetta Stone 

sequences. Then they infer putative domain-domain interaction based on the 

collected data. This is very helpful when inferring protein-protein interactions for 

proteins partners that have domain structure. 

 

Another approach is to predict protein-protein interactions from genome 

sequences. Several attempts have been made to achieve that. The major methods are: 

 

• Rosetta stone proteins: Some protein sequences have been found to be 

split into two independent proteins in other organisms. From such 

sequences it has been concluded that the two independent proteins form 

a complex, based on the (covalent) association in the former organism. 

Such fusion proteins are called Rosetta stone proteins (Edward et al., 

1999). Supposedly they predict interactions among related proteins. 

Example: human succinyl CoA transferase is split in E. coli into acetate 

CoA transferases alfa and beta subunits. 
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• Phylogenetic profiles: Some protein pairs are evolutionarily maintained 

together in many different organisms. It has been concluded that such 

“co-evolving” proteins are associated either functionally or even 

physically, i.e. by a protein-protein interactions (Marcotte et al., 2000). 

While the latter is not always true, it has been found to be true in a 

number of cases, such as the yeast proteins Hog1 and Fus3. Also the 

phylogenetic species tree of the reference genomes can be used as a 

guide tree for hierarchical clustering of the orthologous proteins (Craig 

and Liao, 2007). They have shown that the phylogenetic tree can be 

used as a guide to extract intra-matrix correlations in the distance 

matrices of orthologous proteins, where these correlations are 

represented as intermediate distance matrices of the ancestral 

orthologous proteins. 

 

 

By measuring the similarity between two Gene Ontology (GO) terms with a 

relative specificity semantic relation, Wu et al., (2006) proposed a method of 

reconstructing a yeast protein–protein interaction map that is solely based on the GO 

annotations. The method was validated using high-quality interaction datasets for its 

effectiveness. Based on a Z-score analysis, a positive dataset and a negative dataset 

for protein–protein interactions were derived. This analysis could be efficient on 

predicting functional protein-protein interactions based on the GO terms similarity. 

However, it could suffer from high rate of false positive since many protein share 

similar function but are not physically interacting.  

 

In addition to the above methods for predicting protein-protein interactions 

from genome sequence, machine learning methods have been recently applied. It is 

based on the idea that a pattern of interactions can be learned from the available 

protein-protein interactions data. Using machine learning methods and techniques 

could be very useful in terms of producing vast amount of possible protein-protein 

interactions. It could also assist the biologists in pursuing for further analysis on the 

potential interactions.  
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Deng et al. (2002) proposed a probabilistic prediction model for inferring 

domain interactions from protein interaction data. The maximum likelihood 

estimation technique is mainly used in their method. The PFAM database is used to 

extract domain information and the MIPS database is used to test their model, but 

they also take single domain pair as a basic unit of protein interactions. The approach 

taken by Kim et al. (2002) shares this assumption with Deng et al., but they both 

suffer from the low sensitivity and specificity of the predictions. 

 

Also looking only at the sequence information of proteins, Goffard et al. 

(2003) developed IPPRED, a web based server for the inference of proteins 

interactions. IPPRED infers the possibility of the interaction of the two proteins A 

and B by looking if there is an interacting protein pair C and D which are 

homologous to A and B (or B and A). 

 

It has been suggested that protein domains mediate protein-protein 

interactions. Riley et al., (2005) describe domain pair exclusion analysis (DPEA), a 

method for inferring domain interactions from databases of interacting proteins.  

DPEA features a log odds score, Eij, reflecting confidence that domains i and j 

interact. They analyzed 177,233 potential domain interactions underlying 26,032 

protein interactions. In total, 3,005 high-confidence domain interactions were 

inferred, and were evaluated using known domain interactions in the Protein Data 

Bank. DPEA could be useful in guiding experiment-based discovery of previously 

unrecognized domain interactions. 

 

However, DPEA detects only the domain interactions best supported by 

multiple observed protein interactions. Hence, it is expected to suffer from low 

sensitivity and high specificity in the prediction results. DPEA's sensitivity may be 

impaired by the high rate of false negatives in existing interaction datasets, 

particularly in those organisms that have not been probed by high-throughput 

methods. Indeed, using the defined set of known positive and putative negative 

domain interactions in the PDB, they obtained a sensitivity of 6%. However, the 

specificity of 97% in the same test underscores the stringency of the E score. A more 

informative measure of DPEA's accuracy may be its positive predictive value of 
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70%, implying that roughly 2/3 of the high-confidence domain interactions inferred 

by DPEA are true positives; the remaining 1/3 are likely false positives.  

 

Based on the currently available protein-protein interaction and domain data, 

(Huang et al., 2007) described Maximum Specificity Set Cover (MSSC) method for 

the prediction of protein-protein interactions. In this approach, they mapped the 

relationship between interactions of proteins and their corresponding domain 

architectures to a generalized weighted set cover problem. The application of a 

greedy algorithm provides sets of domain interactions which explain the presence of 

protein interactions to the largest degree of specificity.  

 

Utilizing domain and protein interaction data of S. cerevisiae, MSSC enables 

prediction of previously unknown protein interactions, links that are well supported 

by a high tendency of coexpression and functional homogeneity of the corresponding 

proteins. Focusing on concrete examples, they showed that MSSC reliably predicts 

protein interactions in well-studied molecular systems, such as the 26S proteasome 

and RNA polymerase II of S. cerevisiae.  

 

However, MSSC algorithm only allows predictions between proteins with 

well-known domain structure as well as known interactions among the respective 

domains. In this approach, other sequence information is not included but only 

inferring potential domain interactions by counting the occurrence of all possible 

domain pairs that the domain structure of interacting proteins. This implies a method 

that risks an elevated level of noise in the determination of potential domain 

interactions. Accordingly, the error proneness of protein interactions in the respective 

training sets is another source of potential noise, impacting the quality of predictions. 

 

In addition to these approaches, several different methods that rely on 

multiple sequence alignment and exploit conserved residues or correlated mutations 

to detect protein-protein interaction sites have been proposed (Lichtarge et al., 1996; 

Pazos et al., 1997). More recently, methods using a support vector machine (SVM) 

based on primary sequence and associated physicochemical properties have been 

developed to predict protein-protein interactions (Bock and Gough, 2001; Dohkan et 
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al., 2003). The use of SVM for predicting protein-protein interactions will be 

discussed in the next section. 

 

 

 

3.4 Support Vector Machines  

 

The Support Vector Machine (SVM) is a binary classification algorithm. As 

such it is well suited for the task of discriminating between interacting and non-

interacting protein pairs. SVMs have demonstrated high classification ability in the 

field of prediction of protein-protein interaction, functional classification of proteins, 

protein fold recognition, and prediction of subcellular location. SVMs have 

previously been used in the prediction of protein-protein interaction (Bock and 

Gough, 2001) (Dohkan et al., 2003) (Koike et al., 2003) (Chung et al., 2004).  

 

The SVM is based on the idea of constructing the maximal margin 

hyperplane in the feature space (Vapnik, 1995). Suppose we have a set of labeled 

training data {xi, yi}, i = 1,…, n, yi∈{1,-1}, xi ∈ Rd, and have the separating 

hyperplane (w . x) + b = 0, where feature vector: x ∈ Rd, w∈ Rd and b∈ R. In the 

linear separable case the SVM simply looks for the separating hyperplane that 

maximizes the margin by minimizing ||w||2/2 subject to the following constraint: 

 

yi(w . xi + b) ≥ 1 ∀i    (2.2) 

 

In the linear non-separable case, the optimal separating hyperplane can be 

found by introducing slack variables ξi, i = 1,…, n and user-adjustable parameter C 

and then minimizing ||w||2/ 2 + C Σi ξi , subject to the following constraints: 

 

yi(w . xi + b) ≥ 1 - ξi

ξi ≥ 0  ∀      (2.3) .,...,1 ni =

 

The dual optimization is solved here by introducing the Lagrange multipliers 

αi for the non-separable case. Because linear function classes are not sufficient in 
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many cases, we can substitute Φ(xi) for each example xi and use the kernel function 

K(xi,xj) such that Φ(xi).Φ(xj). We thus get the following optimization problem: 
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SVM has the following advantages to process biological data (Bock and 

Gough, 2001): (1) SVM is computationally efficient and it is characterized by fast 

training which is essential for high-throughput screening of large protein datasets. (2) 

SVM is readily adaptable to new data, allowing for continuous model updates in 

parallel with the continuing growth of biological databases. (3) SVM provides a 

principled means to estimate generalization performance via an analytic upper bound 

on the generalization error. This means that a confidence level may be assigned to 

the prediction, and avoids problems with overfitting inherent in neural network 

function approximation.  

 

Recently, SVM has been used to predict protein-protein interactions. For 

example, Bock and Gough (2001) used SVM and physicochemical properties of 

residues such as hydrophobicity and surface tension to predict protein-protein 

interactions. The prediction methodology reported in their paper generates a binary 

decision about potential protein–protein interactions, based only on primary structure 

and associated physicochemical properties. Their results suggest the possibility of 

proceeding directly from the automated identification of a cell’s gene products to 

inference of the protein interaction pairs, facilitating protein function and cellular 

signaling pathway identification. As they mention in their paper, their research 

represents only an initial step in the automated prediction of protein interactions. 

With experimental validation, further development along these lines may produce a 

robust computational screening technique that narrows the range of putative 
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candidate proteins to those exceeding a prescribed threshold probability of 

interaction. 

 

In a recent paper, Dohkan et al. (2003) have proposed a new method to 

predict protein-protein interactions using Support Vector Machines. In their method, 

multiple domain effects and the physicochemical features can be considered all at 

once. They mentioned that the prediction accuracy was clearly improved by adding 

protein features such as amino acid composition and/or localization. Furthermore, 

consideration of combined features domain, amino acid composition, and subcellular 

localization resulted in the best prediction performance: an F-measure of 79%. The 

present predictions seem to be more accurate than those reported previously.  

 

Moreover they applied their method to the unknown protein pairs, and fount 

that high scoring protein pairs were likely to have similar GO annotations. These 

results indicate that the present method is useful inferring likely interactions between 

unknown protein pairs and/or detect reliable protein interaction from high-throughput 

data. Further, the similar GO annotation tendencies indicate the possibility of that the 

biological function may be predicted by the prediction of protein interaction pairs. 

They also evaluated the effects of using only the physicochemical features on the 

prediction of protein-protein interactions. They retrained the SVM without using 

domain information. The results imply that only the use of these physicochemical 

properties is not sufficient to predict interactions accurately, and domain information 

is quite informative.  

 

 

 

3.5 Bayesian Networks 

 

A Bayesian Network (BN) is a graphical model that encodes probabilistic 

relationships among variables of interest. When used in conjunction with statistical 

techniques, the graphical model has several advantages for data analysis (Jensen, 

1996). One, because the model encodes dependencies among all variables, it readily 

handles situations where some data entries are missing. Two, a Bayesian network can 

be used to learn causal relationships, and hence can be used to gain understanding 
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about a problem domain and to predict the consequences of intervention. Three, 

because the model has both a causal and probabilistic semantics, it is an ideal 

representation for combining prior knowledge (which often comes in causal form) 

and data. Four, Bayesian statistical methods in conjunction with Bayesian networks 

offer an efficient and principled approach for avoiding the over fitting of data.  

 

Given a set of variables D = {X1, X2…XN}, where each variable Xi could take 

values from a set Val(Xi), a Bayesian Network describes the probability distribution 

over this set of variables. The capital letters as X,Y are used to denote variables and 

lower case letters as x,y to denote values taken by these variables. Formally, a BN is 

an annotated directed acyclic graph (DAG) that encodes a joint probability 

distribution. A network B can be denoted as a pair B = <G, Θ>, where G is a DAG 

whose nodes symbolize the variables of D, and Θ refers to the set of parameters that 

quantifies the network. G embeds the following conditional independence 

assumption:  

 

Each variable Xi is independent of its non-descendants given its parents. 

 

Θ includes information about the probability distribution of a value xi of a 

variable Xi, given the values of its immediate predecessors. The unique joint 

probability distribution over {X1, X2…XN} that a network B describes can be 

computed using: 
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Since large-scale data sets of protein interactions can be very noisy and can 

lead to inaccuracies when trying to identify protein interactions on a genome-wide 

scale and the data in the literature can be incomplete and contradictory, the Bayesian 

Networks can be considered as a candidate approach to cope with this problem. 

 

Jansen et al. (2003) have developed a Bayesian approach for integrating 

weakly predictive genomic features into reliable predictions of protein-protein 

interactions. They constructed protein interaction network for the yeast genome. In 
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this network, they combined four large-scale, highthroughput data sets of protein 

interactions from the literature. This network is known as probabilistic interactome 

experimental (PIE).  

 

PIE is simply taking the existing but noisy interaction data sets and trying to 

integrate them to create an optimal experimental interactome. In constructing the 

network, each source of information is assessed by comparing it against a set of 

“gold standards” of known positive and negative protein interactions. The positives 

are taken from the Munich Information Center for Protein Sequences catalog of 

known protein complexes. The negative protein interactions include proteins that are 

known to be separated in different subcellular compartments. When the network is 

compared to the gold standards, the predicted network turns out to be more accurate 

than the existing experimental data sets. One of the main achievements of their 

research is to predict protein interactions to a well-defined level of accuracy from 

non-interaction information and show that these predictions are essentially as 

accurate, if not more accurate, as directly getting the highthroughput interaction data. 

 

Another research group has conducted an assessment study based on the 

genomic features used in a Bayesian network, random forest and logistic regression 

to predict protein-protein interactions genome-wide in yeast (Lin et al., 2004). The 

non-Bayesian methods do not require prior information needed for the Bayesian 

approach, and can fully utilize the raw data without discretization. They reported that 

the logistic model performs similarly as the Bayesian method in terms of 

classifications and, like the Bayesian method, produces estimated probabilities that 

two proteins interact. As a dichotomous classifier, the random forest method 

outperforms the other methods considered and efficiently uses the information, 

although it is computationally more expensive. In particular, its importance measure 

provides a more objective assessment of different genomic features on predicting 

protein-protein interactions than simply considering contributions to model fitting.  
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3.6 Summary 

 

This chapter has discussed the literature in the field of protein function 

prediction problem. It has showed that it is possible to infer and protein function 

from protein-protein interactions data. Many researchers have used the available 

experimental data of protein-protein interactions to infer and predict protein function 

of the unannotated proteins. However, according to the literature, the experimental 

data is suffering from many false positive and has many discrepancies between 

different experiments results. In the meantime there are many research have been 

proposed to predict the protein-protein interaction using computational methods from 

protein primary structure and associated features. Therefore, it would possible to 

combine and validate the computationally predicted and the experimental protein 

interactions data to construct more reliable dataset for predicting proteins function. 

Hence, this research focuses on predicting protein-protein interactions from protein 

sequence information using the support vector machines and Bayesian approach.  

 

 



 

 

 

 

CHAPTER 4 

 

 

 

THE RESEARCH METHODOLOGY 

 

 

 

Based on the literature review discussed in Chapter 3, the main requirement is 

to develop a machine learning technique that is capable to infer and predict protein-

protein interactions data. Basically, this chapter describes the research methodology 

needed to fulfill the research objective. The datasets that is used in the experiments 

of this research is presented and discussed as well as the evaluation measures of the 

system performance are also discussed. In addition to the methodology, the expected 

outcome at each stage of the investigation will be presented as well. At the end of 

this chapter the assumptions and the limitations of this research will be presented. 

 

 

 

4.1 Research Design     

 

This research is an applied, scientific research using the problem oriented 

approach. It involves several important issues: protein-protein interactions, Support 

Vector Machines and Bayesian Methods. In this work, a machine learning method 

based on a support vector machine (SVM) combined with a kernel function was 

developed for the prediction of protein-protein interactions based only on the primary 

sequences of proteins. The general research framework is presented in the next 

section.  
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4.2 General Research Framework    

 

Applying the conventional methods of machine learning approaches 

including support vector machines without augmentation, to biological data bases 

does not achieve good performance. This is due to the nature of the biological data 

which is dynamic rather than static data conventionally used in patter recognition 

problem solving. In this research, examining and studying different protein sequence 

feature is carried out in order to identify the best feature that can be used to 

accurately predict protein-protein interactions from protein sequences information. 

Including biological information represented in the feature selection is essential for 

successful machine learning approach.   

 

Hence, this research framework is initiated by studying and comparing 

different sequence features for the prediction of protein-protein interactions using the 

support vector machines. Positive and negative datasets are required for training the 

support vector machines. Although, constructing a positive dataset (i.e. pairs of 

interacting proteins) is relatively an easy task by using one of the available databases 

of interacting proteins, there is no data on experimentally confirmed non-interacting 

protein pairs have been made available. To cope with this problem, some researchers 

created an artificial negative protein interaction dataset for Saccharomyces cerevisiae 

by randomly generating protein pairs from this organism that are not described as 

interacting in the Database of Interacting Proteins (DIP) without putting any further 

restrictions on such pairs, as in (Deane et al., 2002; Chung et al., 2004).  

 

One problem with this approach is that in many cases selected non-interacting 

protein pairs will possess features that are substantially different from those typically 

found in the positive interaction set. This effect may simplify the learning task and 

artificially raise classification accuracy for training data. There is no guarantee, 

however, that the generalized classification accuracy will not degrade if the predictor 

is presented with new, previously unseen data which are hard to classify. However, 

this approach could be used for comparing different features or algorithms since the 

error will be uniform among all features or algorithms.    

 



 49

 

 Due to the unavailability of experimentally confirmed non-interacting 

protein pairs, the problem of predicting protein-protein interactions is essentially 

one-class classification problem. Accordingly, the One-Class SVM is proposed in 

this research framework. Different kernels with different parameters are to be studied 

and compared.    

 

In the mean time, several high-throughput experimental methods have been 

developed in efforts to map the interactions among all of the proteins encoded by a 

genome. While the data from these studies has been useful to biologist, it also has 

several shortcomings. In particular, the results from high-throughput interaction 

mappings have low accuracy and suffer from high false positive rate. Estimated error 

rates of high-throughput interaction results range from 41 to 90% (Deane et al., 

2001; von Mering et al., 2002). Therefore, designing and implementing knowledge-

based kernel that incorporate the probabilistic biological information could improve 

the performance of the SVM. In this research framework, a Bayesian kernel is 

proposed.  

 

The general framework for this work is presented in Figure 4.1. The general 

research framework can be divided into four main phases as following:  

 

Phase 1: The development of domain model where the current and previous 

research will be reviewed in order to identify protein sequence features for protein-

protein interactions prediction.  

 

Phase 2: The development of support vector machines to predict protein-

protein interactions from protein sequence information using different features. 

 

Phase 3: The development of the One-Class SVM to predict protein-protein 

interactions using only positive data for training phase. 

 

Phase 4: The development of a Bayesian kernel for SVM to predict protein-

protein interactions by incorporating probabilistic information of the existing 

interactions. It also provides probabilistic output as the likelihood of the interaction. 
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Figure 4.1: The general research operational framework. 
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The motivation behind using Bayesian approach is that they readily 

accommodate missing data and they naturally weight each information source 

according its reliability (Jansen et al., 2003). This will be useful for protein 

interaction data because the overlapped data between different experiments are 

relatively small (Table 4.1).  

 

Table 4.1: The protein interactions of yeast Saccharomyces cerevisiae identified by 

wet lab experiments. 

Proteins Interactions Number of 
Experiments 

Number of 
Interactions 

1 13653 

2 1278 

3 407 

4 167 

5 84 

4749 15675 

6+ 101 

 

 

The feature vector for each protein will be constructed by representing the 

domain structure and the physicochemical features of the protein. An interaction 

between two proteins will represented by the concatenation of these feature vectors 

of each protein, and was then labeled with +1 for positives and -1 for negatives. 

Further details on feature vector representation will be discussed in Chapter 5. 

 

 

 

4.3 Protein Data Sets 

 

Physical interactions between two proteins of Saccharomyces cerevisiae have 

been obtained from the Database of Interacting Protein (DIP) (Xenarios et al., 2002). 

Among them, interactions identified by only high-throughput methods (defined here 

as ones that resulted in more than 100 interactions being reported in a single article, 
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as is described in Deane et al., 2001) will be only considered if they appear in the 

DIP core dataset. The DIP core dataset contains 2609 yeast proteins that are involved 

in 6355 interactions which have been found with more than one different 

experimental method. This procedure will yield 4178 interactions as candidate of 

positive training sets. Negative data will be generated by compiling all possible 

protein pairs that were not recognized as positive (including high-throughput results) 

in the DIP databases. Also all protein pairs that are part of a complex comprising 

more than two proteins will be removed from negative sets, since those pairs have 

the possibility interacting physically each other.  

 

The number of positive protein pairs is quite small compared to that of 

potentially negative pairs. The excessive potentially negative examples in the 

training set lead to yield many false negatives because many of the positive examples 

are ambiguously discriminative from the negative examples in the feature space. On 

the other hand, the insufficient negative examples yield many false positives and lead 

to the fluctuation in the prediction performance, since the number of the training 

samples becomes small.  

 

The Database of Interacting Proteins (DIP) was initially developed to store 

and organize information on binary protein-protein interactions that was retrieved 

from individual research articles (Xenarios et al., 2002). Over the course of the last 4 

years the progress in genome-scale experimental methods has resulted in rapid 

identification of binary protein-protein interactions (Ito et al., 2000) (Uetz et al., 

2000) and multi-protein complexes (Gavin et al., 2002). On one hand, it prompted 

enhancements to the database schema that allow the capture, with increased level of 

detail, of information on the molecular interactions. On the other hand, questions 

about the reliability of the experiments conducted on a genome-wide scale stimulated 

development of data quality assessment methods (Deane et al., 2001).  

 

The DIP database is implemented as a relational database using an open 

source PostgreSQL database management system (http://www.postgresql.org). The 

simplified version of the current database schema is shown in Figure 4.2. The key 

tables - PROTEIN, SOURCE and EVIDENCE - store, respectively, information on 

individual proteins, sources of experimental information and information on 
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individual experiments. The information on protein-protein interactions is stored in 

two tables - INTERACTION and INT_PRT. Such arrangement of the tables enables 

description of binary interactions (two entries in the INT_PRT table for each 

INTERACTION entry) but also of multi-protein complexes (more than two entries in 

INT_PRT for each INTERACTION entry).  

 

The METHOD table provides a list of controlled vocabulary terms, together 

with references to the corresponding PSI ontology entries (Hermjakob et al., 2004), 

which are used to annotate the experiments. When available, information on the 

details of the topology of a molecular complex that was inferred from each 

experiment is stored in the TOPOLOGY and LOCATION tables. The LOCATION 

table describes regions of proteins participating in interactions whereas the 

TOPOLOGY table pairs them into records that describe observed binary interactions. 

It also specifies the type of interaction inferred from each experiment as one of 

aggregate (both partners shown to be present in the same complex but not necessarily 

in direct contact), contact or covalent bond.  

 

 
 

Figure 4.2: A simplified entity-relationship diagram of the DIP database (Xenarios 

et al., 2002). 
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4.4 Evaluation Measures of the System Performance 

 

The performance of the protein-protein interactions system is measured by 

how well the system can accurately predict protein-protein interactions using only 

sequence information. A system can make errors by identifying protein pairs as 

interacting pairs while they are known to be non-interacting or identifying protein 

pairs as non-interacting while they are known to be interacting. For a binary 

classification problem there are two classes {+1,−1}= {interacting, non-interaction}. 

In order to analyze evaluation measures in family classification, we first explain the 

contingency table (Table 4.2). 

 

 

Table 4.2: The contingency table. 

 Interacting Pairs Non-interacting Pairs 

Predicted Interacting True Positive (TP) False Positive (FP) 

Predicted Non-interacting True Negative (FN) True Negative (TN) 

 

 

The entries of the four cells of the contingency table and a number n are 

described as follows:  

 

TP  =  number of interacting pairs predicted interacting 

FP  =  number of non-interacting pairs predicted interacting 

TN   = number of non-interacting pairs predicted non-interacting 

FN  =  number of interacting pairs predicted non interacting 

n      =  TP + FP + TN + FN =      Total number of protein pairs 

 

The information encoded in the contingency table is enough to calculate not 

only the protein-protein interactions prediction evaluation measures, but also the 

evaluation measures for general classification problems. Accordingly, the general 

and widely used evaluation measures for classification problem such as sensitivity, 

specificity, precision, false positive rate (FPR) and receiver operating characteristic 
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(ROC) can be applied in this research to evaluate the performance of the prediction 

system. These measures can be defines as follows.  

 

Sensitivity (Recall) is the probability that the classifier result is positive 

(interacting protein pairs) when the protein pairs are interacting. It can be calculated 

as following:    

 

T PSensitivity Recall
TP FN

= =
+  

(4.1)

 

Specificity is the probability that the classifier result is negative (non-

interacting protein pairs) when the protein pairs are non-interacting. It can be 

calculated as following: 

 

T NSpecificity
T N FP

=
+

 (4.2)

 

Precision is the probability that the protein pairs are interacting when the 

classifier result is positive (interacting protein pairs). It can be calculated as 

following: 

 

T PPrecision
T P FP

=
+

 (4.3)

 

False-positive rate is the probability that the classifier result is positive when 

the protein pairs are non-interacting. It can be calculated as following: 

 

1FPFPR S pecif icity
T N FP

= = −
+

 (4.4)

 

The ROC is a plot of the true positive rate (sensitivity) against the false 

positive rate (1-specificity) for a binary classifier system as its discrimination 

threshold is varied. 

 



 56

 

 

4.5 Summary    

 

This chapter explains a detailed framework of the methodology adopted in 

this research in an attempt to accurately predict protein-protein interactions from 

protein sequence information. It is assumed in this research that the yeast proteins 

sequences and protein interactions data are available publicly via the internet as 

reported in the literature. However, in the following chapters, we are going to present 

more details methods for feature representation of the protein sequence, followed by 

details description of the SVM, One-Class SVM and Bayesian kernel.   

 

 

 



 

 

 

CHAPTER 5 

 

 

 

COMPARISON OF PROTEIN SEQUENC FEATURES FOR THE 

PREDICTION OF PROTEIN-PROTEIN INTERACTIONS USING SUPPORT 

VECTOR MACHINES 

 

 

 

This chapter describes and discusses the method and implementation used to 

study and compare protein sequence features for predicting protein-protein 

interactions using support vector machines. These features are protein domain 

structures and hydrophobicity. The framework of these experiments and the data 

preparation is also discussed in this chapter. At the end of this chapter, the results of 

studying and comparing these features are presented 

 

 

 

5.1 Related Work  

 

Over the past few years, several computational approaches to predict protein-

protein interaction have been proposed. Some of the earliest techniques were based 

on the similarity of expression profiles to predict interacting proteins (Marcotte et 

al., 1999), coordinatation of occurrence of gene products in genomes, description of 

similarity of phylogenetic profiles (Pellegrini et al., 1999) or trees (Pazos and 

Valencia, 2001), and studying the patterns of domain fusion (Enright et al., 1999). 

However, it has been noted that these methods predict protein–protein interactions in 

a general sense, meaning joint involvement in a certain biological process, and not 

necessarily actual physical interaction (Eisenberg et al., 2000).   
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Another recent method has been introduced based on the assumption that 

protein–protein interactions are evolutionary conserved. It involves the use of high-

quality protein interaction map with interaction domain information as input to 

predict an interaction map in another organism (Wojcik and Schachter, 2001). 

 

These methods which are based on genomic information are not universal 

because the accuracy and reliability of these methods depend on information of 

protein homology or interaction marks of the protein partners. 

 

For instance, computational methods such as phylogenetic profiles, predict 

protein-protein interactions by accounting for the pattern of the presence or absence 

of a given gene in a set of genomes (Marcotte et al., 2000; Craig and Liao, 2007). 

The main limitation of these approaches is that they can be applied only to 

completely sequenced genomes, which is the precondition to rule out the absence of 

a given gene. Similarly, they cannot be used with the essential proteins that are 

common to most organisms (Shen et al., 2007). The prediction of functional 

relationships between two proteins according to their corresponding adjacency of 

genes is another popular approach. This method is directly applicable only to 

bacteria, in which the genome order is relatively more relevant (Wojcik and 

Schachter, 2001). 

 

Consequently, predicting protein-protein interactions based only on protein 

sequence features has a significant importance for computational methods. The 

advantage of such a method is that it is much more universal. This is can be done by 

developing computation methods that predict protein-protein interactions by 

associating experimental data on interacting proteins with annotated features of 

protein sequences using machine learning approaches, such as support vector 

machines (SVM) (Bock and Gough, 2001; Chung et al., 2004) and data mining 

techniques, such as association rule mining (Oyama et al., 2002).  

 

The most common sequence feature used for this purpose is the protein 

domains structure. The motivation for this choice is that molecular interactions are 

typically mediated by a great variety of interacting domains (Pawson and Nash, 
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2003). It is thus logical to assume that the patterns of domain occurrence in 

interacting proteins provide useful information for training PPI prediction methods.  

 

In a recent study, the notion of potentially interacting domain pair (PID) was 

introduced to describe domain pairs that occur in interacting proteins more 

frequently than would be expected by chance (Kim et al., 2002). Assuming that each 

protein in the training set may contain different combinations of multiple domains, 

the tendency of two proteins to interact is then calculated as a sum over log odd 

ratios over all possible domain pairs in the interacting proteins. Using cross-

validation, the authors demonstrated 50% sensitivity and 98% specificity in 

reconstructing the training data set. In a similar approach, (Ng et al., 2003) 

developed a scoring scheme which takes into account both experimental protein-

protein interactions data and interaction pairs derived computationally based on 

domain fusion analysis. 

 

Different approach based on domain-domain interactions information has 

been presented in (Gomez et al., 2003). They developed a probabilistic model to 

predict protein interactions in the context of regulatory networks. A biological 

network is represented as a directed graph with proteins as vertices and interactions 

as edges. A probability is assigned to every edge and non-edge, where the probability 

for each edge depends on how domains in two corresponding proteins “attract” and 

“repel” each other. The regulatory network is predicted as the one with the largest 

probability for its network topology. Using the Database of Interacting Proteins 

(DIP) (Xenarios et al., 2002), as the standard of truth and the Protein Families 

Database (PFAM) domains as sequence features, the authors built a probabilistic 

network of yeast interactions and reported an ROC score of 0.818. 

 

Another sequence feature that has been used to computationally predict 

protein-protein interactions is the hydrophobicity properties of the amino acid 

residues. Chung et al., (2004) used SVM learning system to recognize and predict 

protein-protein interactions in the yeast Saccharomyces cerevisiae. They selected 

only the hydrophobicity properties as sequence feature to represent the amino acid 

sequence of interacting proteins. They reported 94% accuracy, 99% precision, and 

90% recall in average.  
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Although they achieved better results than the previous work using only 

hydrophobicity feature, their method of generating a negative dataset (i.e. non-

interacting proteins pairs) is different from the previous work. They constructed the 

negative interaction set by replacing each value of the concatenated amino acid 

sequence with a random feature value. As they mention in their conclusion, this 

approach simplify the learning task and artificially raise classification accuracy for 

training data. However, there is no guarantee that the generalized classification 

accuracy will not degrade if the predictor is presented with new, previously unseen 

data which are hard to classify.  

 

Therefore, in this research we proposed a better and more realistic method to 

construct the negative interaction set. Then we compared the use of domain structure 

and hydrophobicity properties as the protein features for the learning system. The 

choice of these two features is motivated by the above discussed literature.   

 

 

 

5.2 Comparison Experiment Framework 

 

In order to compare two protein sequence features for the prediction of 

protein-protein interactions, we applied the same process on both features, as shown 

in Figure 5.1. This process starts by generating a dataset of interacting and non-

interacting proteins pairs. For the interacting pair, it is simply obtained from the 

Database of Interacting Protein (DIP). But, there is no dataset of experimentally 

identified non-interacting proteins. Therefore we use a random method to generate 

proteins pairs, and then delete all pairs that appear in the DIP. This is acceptable for 

the purposes of comparing the feature representation since the resulting inaccuracy 

will be approximately uniform with respect to each feature representation. The 

Support Vector Machines have been used as the learning system. It has been trained 

to distinguish between interacting and non-interacting protein pairs using domain 

and hydrophobicity training sets. The following sections give some details about the 

methods that were used in this work.    
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Download DIP database of 
interacting protein 

Generate Random protein 
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Delete pairs that appears in 
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Figure 5.1: The framework of comparing protein sequence features. 
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5.3 he Support Vector Machines 

he support vector machine (SVM) is a binary classification algorithm. Thus, 

it is we

 

in 

 is the 

⋅ 〉 + =  (5.1)

 

corresponding to decision function: 

T

 

T

ll suited for the task of discriminating between interacting and non-interacting 

protein pairs. The support vector machine was proposed by Boser et al., (1992). A 

detailed analysis of SVMs can be found in (Vapnik, 1995; Cristianini and Shawe-

Taylor, 2000; Schölkopf and Smola, 2002). The SVM is based on the idea of 

constructing the maximal margin hyperplane in the feature space. This unique

hyperplane separates the data into two categories {−1,+1} with maximum marg

(hard margin). It is also known as the optimal hyperplane. Figure 5.2 shows a 

maximal margin hyperplane, where w is perpendicular to the hyperplane and b

distance of the hyperplane from the origin. A better generalization capability is 

expected from (b). A maximal margin hyperplane is given by: 

 

0w x b〈

 

f ( ) sgn( )x w x b= 〈 ⋅ 〉 +  (5.2)

 

hyperplane with larger margin.   

 
Figure 5.2: (a) A separating hyperplane with small margin. (b)A separating 

(a) (b) 

0w x b〈 ⋅ 〉 + =
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To find a maximal margin hyperplane, one has to solve a Convex Quadratic 

Optimization Problem (CQOP). CQOP is usually decomposed to reduce the training 

cost (O

es

Figure 5.2 illustrates a binary classification problem

being s  a threshold b such that 

ly to 

suna et al., 1997; Hsu and Lin, 2002).  

 

Given a set of linearly separable instanc  1 1 2 2{( , ),( , ), , ( , )},n nx y x y x y…  

. Provided that the problem 

eparable, there exists a weight vector w and

( ) 0,iy w x b⋅ 〈 ⋅ 〉 + >  ( 1, , ).i n= …  Note that the margin measured perpendicular

the hyperplane, equals 2
1w

. This can be seen by considering two points x and 2x  

on the opposite side of the margin. 

The value of the margin can

 

 be derived as follows: 

(5.3)

⋅ 〉 + = −  (5.4)

r anyx x w

 

1 1w x b〈 ⋅ 〉 + = +  

2 1w x b〈

(5.5)1 2 , foλ λ= +  

 

From Equation (5.3) 

1

 

2( ( ))w x w bλ⋅ + + = +  

2( )w x w w b 1λ⋅ + ⋅ + =  

1

⇒

2( )w x b w wλ⇒ ⋅ + + ⋅ =  

2
w w

λ⇒ =
⋅

 
(5.6)

 

The margin can be calculated as:  

 

(5.7)
1 2Mar x x= −  
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From Equations (5.6) and (5.7), we get:  

 

2 2( )Mar x w xλ= + −  

Mar w w wλ λ= = ⋅  ⇒

2 2Mar w w
w w w

⇒ = ⋅ =
⋅

 
(5.8)

 

To construct this optimal hyperplane (Figure 5.2), one has to solve the 

following optimization problem: 

 

1
2

Minimize w w⋅  (5.9)

 

Subject to: 

 

1 1,iif y≥ + = +  iw x b⋅ +

1 1i iw x b if y⋅ + ≤ − = −  ,

1, , .for all i n= …  

 

Putting the above two constraints together, we can write 

 

( ) 1 1,2, .i iy w x b for i n⋅ + ≥ = …  (5.10)

 

o obtain a solution, we need to introduce the Lagrangian L and Lagrange 

multipliers .

 

T

iα  

 

( )( )
1

1( ,L w , ) 1
2

n

i i i
i

b w w y w x bα α
=

= ⋅ − ⋅ ⋅ + −∑  (5.11)

 

Minimization of a convex quadratic optimization problem is equivalent

maximization of its dual. The dual of the above equation is found by taking the 

 to 
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derivate of Lagrangian L with respect to the primal variables w and b. At the solution 

point (s nt 

mber λ is an eigenvalue of X if and only if, for some nonzero n ×1 matrix É 

(5.12)

ow,  

addle point) these derivatives vanish. Saddle point is defined as a fixed poi

for which the stability matrix has eigenvalue. The eigenvalue can be defined as 

follows: 

 

Let Ą be a n × n matrix of real or complex numbers. A real or complex 

nu

 

Ą É = λ É 

 

N

 

1

( , , ) 0,
n

i i i
i

L w b w y x∂ α α
=

= − =∑  (5.13)
w∂

1

( , , ) 0,
n

i i
i

L w b y
b

α α
=

∂
= =

∂ ∑  (5.14)

 

Before substituting these relations into the Lagrangian L, we will analyze 

them in detail. The following conditions must be satisfied 

The solution vector w is given by 

 

xα=∑  (5.16)

 

It is clear that the weight vector is a linear combination of the training 

instances. Karush-Kuhn-Tucker (Kuhn and Tucker, 1951) conditions state that the 

solution must satisfy the following: 

 

 

1
0, 0 1, ,

n

i i i
i

y and for i nα α
=

= ≥ =∑ …  (5.15)

 

n

1
i i i

i =
w y
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( )( )1 0i i iy w x bα ⋅ ⋅ + − =  

 

(5.17)

ces for which The instan 0iα ≠  are known as support vectors and have 

margin 1. The removal of all other instances does not affect the solution. In other 

words, iα  is a measure of the importance of an instance for the solution. 

 (5.11 L , 

 

By substituting Equations ), (5.13), and (5.16) into the Lagrangian 

we obtain 

 

( ) ( )( )2

12 i i i
i =

1 1
n

y w x bα αL w= − ⋅ ⋅ + −∑  

( )2

1

1 1
2

n

i i i i
i

w y w x yα
=

b= − ⋅ ⋅ +∑  −

2

1 1

1
2

n n

i i i i i i
i i

w y w x y b
1

n

i
α α α

= =

= − ⋅ ⋅ + −∑ ∑  
=
∑ (5.18)

A B C D= − + −  

 

From Equations (5.13) and (5.14), B = 0 and C = 0. Simplifying, we have, 

 

( )
1 , 1

1
2

n n

i i j i j i
i i j

L yα α α α
= =

jy x x= − ⋅∑ ∑  (5.19)

 other words, the problem that must be solved is 

 

 

In

1 , 1

1
2

n n

i i j i j i
i i j

jMaximize y y x xα α α
= =

− ⋅∑ ∑  (5.20)

,ubject to i n

 

S : 0, 1,iα ≥ = …  

1
0

n

i i
i

yα
=

=∑  
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The equivalent kernel version is as follows: 

 

1 , 1

1
2

n n

i i j i j i
i i j

jMaximize y y k x xα α α
= =

− ⋅∑ ∑  (5.21)

,ubject to i n

 

S : 0, 1,iα ≥ = …  

1
0

n

i i
i

yα
=

=∑  

 

By replacing the value of w from Equation (5.16), we can write the 

classification function in Equation (5.2) as 

 

1
( ) sgn i i i

i

n

f x y x x b
=

α⎛ ⎞
= ⋅ + (5.22)

he equivalent kernel version is given by 

 

⎜ ⎟
⎝ ⎠
∑  

 

T

1
( ) sgn

n

i i i
i

f x y k x xα
=

⎛ ⎞b= ⋅ +⎜ ⎟
⎝ ⎠
∑  (5.23)

The only unknown value here is b which can be calculated using 

 

 

 

( )( )1 0, 0.i i iy w x b for some i withα⋅ + − = ≠  (5.24)

 

5.3.1 Soft Margin Optimal Hyperplane 

he maximal margin hyperplane fails to generalize well when there is a high 

level of oise in the data. The presence of noise is not uncommon in real world 

 hyperplane may be hard to achieve in 

 

 

 

T

 n

classification problems. The maximal margin
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the presence of noise. The constraints ( ) 1,i iy w x b⋅ + ≥  become too restrictive. 

Figure 5.3 shows the hard margin and soft margin solution when the data contain

noise. 

 

s 

cing 

(a) (b) 

 
Figure 5.3: (a) Hard margin solution when data contain noise. (b) Soft margin 

solution when data contain noise.  

 

In order to overcome this problem, the constraints are relaxed by introdu

some non-negative variables iζ  known as the slack variables (Cortes and Vapnik, 

1995). In other words, some margin errors are allowed, hence achieving a soft 

margin instead of a hard margin (no margin errors). 

 

1 1i i iw x b if yζ⋅ + ≥ + − = +  

 

(5.25)

1 1i i ib if yζ⋅ + ≥ − + = −  (5.26)w x

0, 1, ,ifor i nζ ≥ = …  

 

These two equations can be put together as: 

 

( ) 1 , 1, ,i i iy w x b i nζ⋅ + ≥ − = …  (5.27)
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The generalization performance is imp aintaining the right ba

between the capacity (soft-margin parameter) and error. There exist bounds on 

general

roved by m lance 

ization errors which minimize the selected (1 or 2) norm of the slack 

variables (Cristianini and Shawe-Taylor, 2000). The objective function is therefore 

changed to, 

 

1

1 w
2

n
p

i
i

w C ζ
=

⋅ + ∑  (5.28)

 

 

where p n integer. For p = 1, we get the 1-norm soft margin optimization problem 

and for  = 2, we get the 2-norm soft margin optimization problem. C is a trade-off 

 

 is a

p

parameter. A right value of C produces a classier with good generalization. A 

hyperplane which tolerates training errors is known as a generalized optimal 

hyperplane. The corresponding optimization problem is: Given a set of training

instances 1 1 2 2{( , ),( , ), , ( , )},n nx y x y x y…  

 

1

1
2

n

i
i

inimize w w C ζ
=

⋅ + ∑M  (5.29)

 

Subject to: 

( ) 1

0, 1, ,
i i i

i

y w x b

for all i n

ζ

ζ

⋅ + ≥ −

≥ = …
 

 

The corresponding dual is given by 

 

1 , 1

1
2

n n

i i j i j i j
i i j

Maximize yα α α−∑ ∑ y x x
= =

⋅  (5.30)

 

Subject to: 

, ,
1

0

0 1

n

i i
i

i

y

C for all i n

α

α
=

=

≤ ≤ =

∑
…
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It is similar to the optimal hyperplane except there is an upper bound on the 

value of  We can give the general kernel version: .iα

 

1 , 1

1
2

n n

i i j i j i
i i j

jMax x  (5.30)

Subject to: 

, ,

 

Note that the threshold b is related to the constraint We will 

describe a simple on-line SVM algorithm (Friess et al

equal to
i =

imize y y k xα α α
= =

− ⋅∑ ∑

 

1
0

0 1

n

i i
i

i

y

C for all i n

α

α
=

=

≤ ≤ =

∑
…

 

1
0.

n

i i
i

yα
=

=∑

., 1998) by fixing the threshold 

 zero in the case the constraint 0
n

i iyα
1

=∑  is not ne

 

 

eded. 

 

5.4 eatures Representation 

he construction of an appropriate feature space that describes the training 

 machine learning system. In the context of 

protein-protein interactions, it is believed that the likelihood of two proteins to 

interact  

e 

 and 

 

) 

otein 

F

 

T

data is essential for any supervised

 with each other is associated with their structural domain composition (Kim

et al., 2003; Pawson and Nash, 2003; Ng et al., 2003). It is also assumed that th

hydrophobic effects drive protein-protein interactions (Chung et al., 2004; Uetz

Vollert, 2005). For these reasons, this study investigates the applicability of the 

domain structure and hydrophobicity properties as protein features to facilitate the

prediction of protein-protein interactions using the support vector machines. 

 

The domain data was retrieved from the database of protein families (PFAM

database. PFAM is a reliable collection of multiple sequence alignments of pr
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families and profile hidden Markov models (Bateman et al., 2004). The current 

version

d 

red in all the yeast proteins. The 

feature vector for each protein was thus formulated as: 

 10.0 contains 6190 fully annotated PFAM-A families. PFAM-B provides 

additional PRODOM-generated alignments of sequence clusters in SWISSPROT an

TrEMBL that are not modeled in PFAM-A.  

 

When the domain information is used, the dimension size of the feature 

vector becomes the number of domains appea

 

( ) { }1 2, , , , ,i nx p d d d d= … …  

 

(5.31)

where when the protein p has m pieces of domain , and  otherwise.  

 

his formula allows the effect of multiple domains to be taken into account. 

lc

ase  can be calculated as following:  

(5.32)

 

where  is the score of he domain i in the location j, and k is the number of the 

occurrence of domain i in the protein p. In order to scale the feature value to the 

terval [-1,1], we use the following formula. 

 

      

In the same manner, the amino acid hydrophobicity properties can be used to 

construct the feature vectors for SVM. The amino acids hydrophobicity properties 

are obt icity features can be 

represe

id m= id 0id =

T

Another representation is by using domain scores that is ca ulated by PFAM. In this 

 id

 

,
1

k

i i j
j

d S
=

= ∑  

c

,i jS  t

in

,
1

(6 (ln ( 0 .1))
k

i i j
j

d S
=

= − +∑  (5.33)

 

ained from (Hopp and Woods, 1981). The hydrophob

nted in feature vector as: 
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( ) { }1 2, , , , ,i rx p h h h h= … …  (5

 

.34)

where r s the number of amino acid in the protein p i , 1ih =  when the amino acid is 

hydrophobic and  when the amino acid is hydrophilic. We also consider the 

case where the hydrophobicity scale can be included in the feature vector by 

 four 

hobicity with 

ale). Each training example is a pair of interacting proteins (positive example) or a 

pair of 

5.5 aterials and Implementations 

he performance of our technique will be tested on dataset obtained from the 

arios et al., 2002). In the following 

subsections, we will describe in details this dataset used in this research as well as 

the exp

5.5.1 ata Sets 

he DIP database was developed to store and organize information on binary 

eractions that was retrieved from individual research articles. The 

DIP database provides sets of manually curated protein-protein interactions in 

Saccha

e 

1ih =

replacing the amino acid with its correspondent hydrophobicity value. 

  

Using the above described four feature representations, we constructed

training set (domains, domains with scores, hydrophobicity, and hydrop

sc

proteins known or presumed not to interact (negative example).  

 

 

 

M

 

T

database of interacting proteins (DIP) (Xen

eriment data preparation processes.  

 

 

 

D

 

T

protein–protein int

romyces cerevisiae. It combines information from a variety of sources to 

create a single, consistent set of protein-protein interactions. The data stored within 

the DIP database were curated, both, manually by expert curators and also 

automatically using computational approaches that utilize the knowledge about th
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protein-protein interaction networks extracted from the most reliable, core s

the DIP data. 

 

At the 

ubset of 

time of experiments, DIP contains 4749 proteins involved in 15675 

interactions for which there is domain information. DIP also provides a high quality 

core se

protein pairs. The first column gives the DIP ID of the first protein pair. The letter N 

at the e

h 

t of 2609 yeast proteins that are involved in 6355 interactions which have 

been determined by at least one small-scale experiment or at least two independent 

experiments and predicted as positive by a scoring system (Deane et al., 2002).  

 

The data format is shown in Figure 5.4. It describes the interactions between 

nd of the ID is refereeing to “node” where the proteins in the interactions 

network are the nodes. It is followed by the protein standard and systematic name. 

Then the other protein in the pair is described similarly in the followed three 

columns. The last column represents the DIP ID for this interactions and it ends wit

the letter E, referring to “edge” in the interactions network. 

 

 
 

Figure 5.4: Part of the protein-protein interactions list from DIP. 
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Using a Perl program, this file was transformed to a format of interacting 

protein as shown in Figure 5.5 The first column is the sequence name for the first 

protein   in the interactions pair and the second column is the sequence name for the

second protein in the interactions pair. 

 

 
 

Figure 5.5: Part of the protein-protein interactions list with sequences name only. 

he proteins sequence information is needed in this research in order to 

elucidate the domain structure of the proteins involved in the interaction and to 

represe

tabase 

t was 

 

 

T

nt the amino acid hydrophobicity in the feature vectors. The proteins 

sequences files were obtained for the Saccharomyces Genome Database (SGD) 

(Hong et al., 2005). The SGD project collects information and maintains a da

of the molecular biology of the yeast Saccharomyces cerevisiae. This database 

includes a variety of genomic and biological information and is maintained and 

updated by SGD curators. Figure 5.6 shows part of the protein sequence file tha

obtained from SGD. It uses the FASTA format. FASTA format is a text-based 
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format for representing either nucleic acid sequences or protein sequences, in which 

base pairs or protein residues are represented using single-letter codes. The form

also allows for sequence names and comments to precede the sequences.      

 

at 

 
 

Figure 5.6: Part of the protein sequence file. 

 

 

5.5.2 ata Preprocessing 

s are highly informative for the protein-protein 

interaction, we used the domain structure of a protein as the main feature of the 

sequen ch is a 

e 

s 

03) 

 

D

 

Since proteins domain

ce. We focused on domain data retrieved from the PFAM database whi

reliable collection of multiple sequence alignments of protein families and profil

hidden Markov models (Bateman et al., 2004). In order to elucidate the PFAM 

domain structure in the yeast proteins, we first obtain all sequences of yeast protein

from SGD. Given that sequence file, we then run InterProScan (Mulder et al., 20

to examine which PFAM domains appear in each protein. We used the stand-alone 

version of InterProScan. Part of the result file is shown in Figure 5.7. 
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Figure 5.7: Part of the protein domains file. 

 

rom the output file of InterProScan, we list up all PFAM domains that 

appear  

d 

t 

he next step is to construct a feature vector for each protein. For example, if 

a prote

sed 

y 1 if 

<protein id="Q0065" length="544" crc64="A77CD9ADBDCA6465" > 

ref="IPR004677"/> 

1" dbname="PFAM"> 
" 

"IPR001982" name="Homing endonuclease, LAGLIDADG/HNH" 

<interpro id="IPR000883" name="Cytochrome c oxidase, subunit I" 
type="Family"> 
    <child_list> 

r_        <rel_ref ip
    </child_list> 

F00115" name="COX    <match id="P
        <location start="5" end="339" score="8.2e-67" status="T
evidence="HMMPfam" /> 
    </match> 
</interpro> 
<interpro id=
type="Domain"> 
    <match id="PF00961" name="LAGLIDADG_1" dbname="PFAM"> 
        <location start="316" end="403" score="6.4e-22" status="T" 
evidence="HMMPfam" /> 
        <location start="422" end="515" score="3.2e-11" status="T" 
evidence="HMMPfam" /> 
    </match> 
</interpro> 
</protein> 

F

in yeast proteins and index them. The order of this list is not important as

long we keep it through the whole procedure. The number of all domains listed an

indexed in this way is considered the dimension size of the feature vector, and the 

index of each PFAM domain within the list now indicates one of the elements in a 

feature vector. Figure 5.8 shows an example of protein domains that appears in yeas

genome. The first column represents a protein whereas the following columns 

represent the domains that appear in the protein. 

 

T

in has domain A and B which happened to be indexed 12 and 56 respectively 

in the above step, then we assign "1" to the 12th and 56th elements in the feature 

vector, and "0" to all the other elements. Next we focus on the protein pair to be u

for SVM training and testing. The assembling of feature vector for each protein pair 

can be done by concatenating the feature vectors of proteins constructed in the 

previous step. When hydrophobicity is used, each amino acid will be replaced b
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it is hydrophobic and 0 if it is hydrophilic. Two separate training sets for domain and 

hydrophobicity features have been constructed.  Figure 5.9 shows part of the final 

file where the feature vectors are in SVM format.  

 

 
Figure 5.8: Part of the protein domains structure for the yeast genome. 

 

 

 
Figure 5.9: Part of the training data file. 
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5.6 esults and Discussion 

e developed programs using Perl for parsing the DIP databases, control of 

random

e 

 using 

onstructing a negative interaction set is not an easy task. This is due to the 

fact tha

 

by 

his random approach can generate as many as 20202318 potentially 

negativ  

e 

of 

t for 

R

 

W

ization and sampling of records and sequences, and replacing amino acid 

sequences of interacting proteins with its corresponding feature. To make a positiv

interaction set, we represent an interaction pair by concatenating feature vectors of 

each proteins pair that are listed in the DIP-CORE as interacting proteins. For the 

domain feature we include only the proteins that have structure domains. The 

resulting positive set for domain feature contains 1879 protein pairs. But when

hydrophobicity feature, all protein in DIP-CORE were included which yielded 3002 

protein pairs.  

 

C

t there are no experimental data in which protein pairs have confirmed to be 

non-interacting pairs. As a result, using a random approach to construct the negative

data set is an avoidable at this moment. Furthermore, for the purposes of comparing 

prediction algorithms or feature representation, the resulting inaccuracy will be 

approximately uniform with respect to each computational method or feature 

representation. For these reasons, the negative interaction set was constructed 

generating random protein pairs. Then, all protein pairs that exist in DIP were 

eliminated.  

 

T

e candidates. Hence, the number of positive protein pairs is quite small

compared to that of potentially negative pairs. The excessive potentially negativ

examples in the training set may lead to yield many false negatives because many 

the positive examples are ambiguously discriminative from the negative examples in 

the feature space. For this reason, a negative interaction set was constructed 

containing the same number of protein pairs as for the positive interaction se

domain and hydrophobicity features.       
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In this study, we used the LIBSVM software developed by Chang and Lin, 

(2001) as a classification tool. The standard radial basis function (RBF) as available 

in LIBSVM was selected as a kernel function. The RBF kernel is stated as following:  

 
2

( )( , ) , 0i jx x
i jK x x e γ γ−= > .  (5.35)

 

 

We choose the RBF kernel because it nonlinearly maps samples into a higher 

dimensional space, so it, unlike the linear kernel, can handle the case when the 

relation between class labels and attributes is nonlinear (Keerthi and Lin 2003). In 

addition, the RBF kernel has less numerical difficulties (Chang and Lin, 2001). 

 

Different values of γ in the RBF were systematically tested to optimize the 

balance between sensitivity and specificity of the prediction. Ten-fold cross-

validation was used to obtain the training accuracy. The entire set of training pairs 

was split into 10 folds so that each fold contained approximately equal number of 

positive and negative pairs. Each trial involved selecting one fold as a test set, 

utilizing the remaining nine folds for training our model, and then applying the 

trained model to the test set. Then the cross-validation accuracy is calculated as in 

Equation 5.36. Then the average is calculated for the 10 folds. 

 

TP TNAccuracy
TP FP TN FN

+
=

+ + +
 (5.36)

 

 

From Table 5.1 to Table 5.4, the performance of the SVM classifier is 

presented in respect to a variant threshold. The shadowed row represents the best 

performance achieved in terms of cross-validation accuracy. The sensitivity and 

specificity was calculated using Equations (4.1) and (4.2) respectively.  
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Table 5.1: The classifier performance on domain structure feature using 10-fold 

cross validation with variant threshold. 

Threshold Sensitivity  Specificity Cross-Validation Accuracy  

0.1 0.13 0.98 0.47 

0.2 0.23 0.95 0.57 

0.3 0.39 0.91 0.69 

0.4 0.51 0.87 0.75 

0.5 0.74 0.81 0.79 

0.6 0.83 0.73 0.77 

0.7 0.89 0.56 0.73 

0.8 0.94 0.43 0.70 

0.9 0.97 0.23 0.61 
 

 

 

Table 5.2: The classifier performance on domain structure with scores feature using 

10-fold cross validation with variant threshold. 

Threshold Sensitivity  Specificity Cross-Validation Accuracy  

0.1 0.12 0.93 0.52 

0.2 0.25 0.88 0.55 

0.3 0.38 0.85 0.61 

0.4 0.53 0.83 0.69 

0.5 0.68 0.76 0.72 

0.6 0.81 0.72 0.76 

0.7 0.83 0.61 0.73 

0.8 0.87 0.53 0.70 

0.9 0.89 0.33 0.61 
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Table 5.3: The classifier performance on hydrophobicity feature using 10-fold cross 

validation with variant threshold. 

Threshold Sensitivity  Specificity Cross-Validation Accuracy  

0.1 0.15 0.94 0.52 

0.2 0.27 0.89 0.55 

0.3 0.41 0.83 0.61 

0.4 0.55 0.81 0.69 

0.5 0.67 0.77 0.72 

0.6 0.82 0.75 0.78 

0.7 0.85 0.61 0.73 

0.8 0.89 0.55 0.72 

0.9 0.92 0.43 0.67 
 

 

Table 5.4: The classifier performance on hydrophobicity with scale feature using 10-

fold cross validation with variant threshold. 

Threshold Sensitivity  Specificity Cross-Validation Accuracy  

0.1 0.27 0.94 0.60 

0.2 0.38 0.91 0.64 

0.3 0.51 0.87 0.69 

0.4 0.63 0.85 0.74 

0.5 0.77 0.83 0.79 

0.6 0.80 0.75 0.77 

0.7 0.85 0.66 0.75 

0.8 0.88 0.57 0.72 

0.9 0.92 0.38 0.65 
 

 

The receiver operating characteristic (ROC) is also used to evaluate the 

results of our experiments. It is a graphical plot of the sensitivity (true positives rate - 

TPR) vs. 1-specificity (false positives rate- FPR) for a binary classifier system as its 

discrimination threshold is varied. The area under the ROC curve is called ROC 

score.  
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The results of the experiments are summarized in Table 5.5. All experiments 

reported in this work, run in Redhat Enterprise Linux AS release 3.2 on 1.8 GHz 

SMP CPUs with 2 GB of memory.  

 

 

Table 5.5: The overall performance of SVM for predicting PPI using domain and 

hydrophobicity features. 

Feature Accuracy  ROC score Running time 

Domain 79.4372 % 0.8480 34 seconds 

Domain Scores 76.397 % 0.8190 38 seconds 

Hydrophobicity 78.6214 % 0.8159 20,571 seconds (5.7 hours)

Hydrophobicity Scales 79.1375 % 0.7716 34,602 seconds (9.6 hours)

 

 

When only domain structure was considered as the protein feature without 

information on domain appearance score, the cross-validation accuracy and ROC 

score were respectively 79.4372% and 0.8480. When domain scores were included 

the cross-validation accuracy and ROC score were decreased to 76.397% and 0.8190 

respectively. These results indicate that it is not significant to include the domains 

score information to the feature representation of the protein pairs. It is informative 

enough to consider only the existence of domains structure in the protein pairs. It is 

important here to note that the performance of the prediction algorithm is far better 

than an absolute random approach which has ROC score of 0.5. This indicates that 

the difference between interacting and non-interacting protein pairs can be learned 

from the available data. 

 

In the case of hydrophobicity dataset, the cross-validation and ROC score 

were respectively 78.6214% and 0.8159. We can see from these results that both 

domain dataset and hydrophobicity dataset have little difference in terms of cross-

validation accuracy. On the other hand, ROC score indicates that domain structure is 

noticeably better than hydrophobic properties (see Figure. 5.10). Another aspect is 
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the running time for both features. Clearly, when domain structure used, the data set 

is much smaller than the data set for the hydrophobic properties. Consequently, the 

running time required for domain structure training data is much less than the 

running time required for the hydrophobic training data as shown in Table 5.1.  

 

 
Figure 5.10: The ROC curves and scores for predicting protein-protein interactions. 

 

 

These results are better and came aligned with the results that have been 

obtained by Gomez et al., (2006) who reported ROC score of 0.818. Whereas our 

predictor achieved ROC score of 0.848 for domains feature dataset. However, Chung 

et al. (2004) reported accuracy of 94% using hydrophobicity as the protein feature. 

The reason behind this big difference between our result and their results lies in the 

approach of constructing the negative interaction dataset. They assign random value 

to each amino acid in the protein pair sequence. This leads to get new pairs that 

considered negative interacting pairs and greatly different from the pairs in the 
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positive interaction set. This leads to simplify the learning task and artificially raise 

classification accuracy for training data. There is no guarantee, however, that the 

generalized classification accuracy will not degrade if the predictor is presented with 

new, previously unseen data which are hard to classify. In our work we constructed 

the negative interactions set by randomly generating non-interacting protein pairs 

which would be more difficult to distinguish from the positive set than entirely 

randomizing features values. This makes the learning problem more realistic and 

ensures that our training accuracy better reflects generalized classification accuracy. 

 

 

 

5.7 Summary  

 

The prediction approach explained in this chapter generates a binary decision 

regarding potential protein-protein interactions based on the domain structure or 

hydrophobicity properties of the interacting proteins. One difficult challenge in this 

research as discussed in this chapter is to find negative examples of interacting 

proteins, i.e., to find non-interacting protein pairs. For negative examples of SVM 

training and testing, we use a randomizing method. However, finding proper non-

interacting protein pairs is important to ensure that prediction system reflects the real 

world. In conclusion the result in this chapter suggests that protein-protein 

interactions can be predicted from domain structure with reliable accuracy and 

acceptable running time. Consequently, these results show the possibility of 

proceeding directly from the automated identification of a cell’s gene products to 

inference of the protein interaction pairs, facilitating protein function and cellular 

signaling pathway identification. 



 

 

 

CHAPTER 6 

 

 

 

ONE-CLASS SUPPORT VECTOR MACHINES FOR PROTEIN-

PROTEIN INTERACTIONS PREDICTION 

 

 

The One-Class Support Vector Machines is proposed in this chapter for the 

prediction of protein-protein interactions from protein sequence information. Based 

on the fact that there are no experimentally confirmed non-interacting proteins data, 

the problem is essentially a one class classification problem. Only one class of data is 

available and sampled well which is the positive data (interacting proteins). Details 

on the implementation of the one-class SVM to predict protein-protein interactions 

are presented in this chapter. At the end of this chapter, the performance of the one-

class SVM is presented and discussed.  

 

 

 

6.1 Related Work 

 

The completion of the Human Genome Project (HGP) (1990-2003) brought a 

revolution in biological and bioinformatics research. Currently, researchers have in 

hand the complete DNA sequences of genomes for many organisms—from microbes 

to plants to humans. Proteomics research is emerging as the “next step” of genomics. 

 

The proteomics research is extensively concerned with the elucidation of the 

structure, interactions, and functions of proteins that constitute cells and organisms. 

Genomics research has already produced a massive quantity of molecular interaction 

data, contributing to maps of specific cellular networks. In fact, large-scale attempts 



 86

have explored the complex network of protein interactions in the Saccharomyces 

cerevisiae (Ito et al., 2000; Uetz et al., 2000; Newman et al., 2000).   

 

In the last few years, the problem of computationally predicting protein-

protein interactions has gain a lot of attention. Methods based on the machine 

learning theory have been proposed (Bock and Gough, 2001; Chung et al., 2004; 

Dohkan et al., 2004). Most of these methods address this problem as a binary 

classification problem. Although, constructing a positive dataset (i.e. pairs of 

interacting proteins) is relatively an easy task by using one of the available databases 

of interacting proteins, there is no data on experimentally confirmed non-interacting 

protein pairs have been made available.  

 

To cope with the unavailability of non-interacting protein pairs, researchers 

create an artificial negative protein interaction dataset for Saccharomyces cerevisiae 

by randomly generating protein pairs from this organism (Bock and Gough, 2001; 

Huang et al., 2004; Chung et al., 2004). The problem with this approach is that in 

many cases selected “non-interacting” protein pairs will possess features that are 

substantially different from those typically found in the positive interaction set. This 

effect may simplify the learning task and artificially raise classification accuracy for 

training data. There is no guarantee, however, that the generalized classification 

accuracy will not degrade if the predictor is presented with new, previously unseen 

data which are hard to classify. This effect is clearly observed in Chung et al., (2004) 

work. Using negative dataset that was generated randomly by altering amino acid 

sequences, they reported 94% prediction accuracy. While Bock and Gough, (2002) 

and Huang et al., (2004) using different random approach to generate negative 

dataset, reported 80% and 79% respectively. This shows that constructing the 

negative dataset is a critical problem to be addressed in order to get an accuracy that 

reflects the reality and does not degrade when presented with unknown data.   

 

Recently, other researchers started to recognize this problem and proposed 

several solutions to cope with it. Dohkan et al., (2004) suggested generating the 

negative dataset by compiling all possible protein pairs that were not recognized as 

positive including high-throughput results. All protein pairs that were part of a 

complex comprising more than two proteins were removed from negative sets, since 
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those pairs have the possibility interacting physically each other. This filtering 

yielded 20202318 potentially negative candidates. The number of positive protein 

pairs is small compared to that of potentially negative pairs. The excessive 

potentially negative examples in the training set lead to yield many false negatives 

because many of the positive examples are ambiguously discriminative from the 

negative examples in the feature space. On the other hand, the insufficient negative 

examples may yield many false positives and lead to the fluctuation in the prediction 

performance, since the number of the training samples becomes small. Several data 

sets positive/negative ration were tried, and finally randomly sampled negative 

examples that were four times as positive data were used.  

 

Two more requirements to the negative data have been suggested by Huang 

et al. (2004). One of the requirements is that both proteins in each pair should be 

known to participate in at least one interaction. This requirement was motivated by 

the assumption that a negative training example where proteins are not known to 

interact with each other but are both involved in other interactions is harder to 

separate from positive examples because the proteins in question do possess some 

sequence or structure features relevant for protein-protein interactions. By contrast, 

randomly generated protein pairs where one or both proteins are not known to be 

involved in any interaction have a high chance to lack such features and thus be 

easier to distinguish from true interactions. The second requirement is that for every 

positive training example, with high probability, there should be a negative training 

example possessing the same number of non-zero components in its feature vectors. 

This is achieved by finding one negative training example (Pi, Pk) for each positive 

training example (Pi, Pj) where Pk is a randomly chosen interacting protein selected 

among the proteins with the same number of properties as Pj. If such Pk cannot be 

found then there will be no negative training example corresponding to (Pi, Pj). 

 

However, all the suggested solution to cope with the unavailability of 

experimentally non-interacting proteins still needs the artificially random generated 

negative dataset. In this research, we proposed to deal with problem of predicting 

protein-protein interactions as a one-class classification problem. This is due to the 

fact that only data of interacting proteins pairs (positive data) are available and 
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sampled well. In this respect, we propose a recent method, the one-class support 

vector machines for the prediction of protein-protein interactions. 

 

 

 

6.2 One-Class Classification Problem 

 

The one-class classification problem is a special case from the binary 

classification problem where only data from one class are available and sampled 

well. This class is called the target class. The other class which is called the outlier 

class, can be sampled very sparsely, or can be totally absent. It might be that the 

outlier class is very hard to measure, or it might be very expensive to do the 

measurements on these types of objects. For example, in a machine monitoring 

system where the current condition of a machine is examined, an alarm is raised 

when the machine shows a problem. Measurements on the normal working 

conditions of a machine are very cheap and easy to obtain. On the other hand, 

measurements of outliers would require the destruction of the machine in all possible 

ways. It is very expensive, if not impossible, to generate all faulty situations (Shin 

2005). Only a method trained on just the target data can solve the monitoring 

problem.   

 

Although the problem of classification is far from solved in practice, the 

problem of data description or one-class classification is also of interest. The 

problem in one-class classification is to make a description of a target set of objects 

and to detect which (new) objects resemble this training set. The boundary between 

the two classes has to be estimated from data of only the normal, genuine class. The 

task is to define a boundary around the target class, such that it accepts as much of 

the target objects as possible, while it minimizes the chance of accepting outlier 

objects. Figure 6.1 shows an illustration of the target and outlier classes in the one-

class classification problem. 
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Target 
Class 

Outlier 
Class 

 
Figure 6.1: Target and outlier classes in the one-class classification problem.  

 

 

Different terms have been used for the one-class classification problem in the 

literature. The term one-class classification originates from Moya et al., (1993). 

However, other terms such as outlier detection (Ritter and Gallegos, 1997), novelty 

detection (Bishop, 1994) or concept learning (Japkowicz, 1999) were used. The 

reason behind the use of different terms originates from the different applications to 

which the one-class classification can be applied.  

 

An obvious application for data description is outlier detection, to detect 

uncharacteristic objects from a dataset, examples which do not resemble the bulk of 

the dataset in some way (Ritter and Gallegos, 1997). These outliers in the data can be 

caused by errors in the measurement of feature values, resulting in an exceptionally 

large or small feature value in comparison with other training objects. In these cases 

outlier detection should first be used to detect and reject outliers to avoid unfounded 

confident classifications. 

 

 

Another application for data description is for a classification problem where 

one of the classes is sampled very well, while the other class is severely 



 90

undersampled. The measurements on the undersampled class might be very 

expensive or difficult to obtain. For instance, in a machine monitoring system where 

the current condition of a machine is examined, an alarm is raised when the machine 

shows a problem. Measurements on the normal working conditions of a machine are 

very cheap and easy to obtain. On the other hand, measurements of outliers would 

require the destruction of the machine in all possible ways. It is very expensive, if not 

impossible, to generate all faulty situations (Japkowicz, 1995). Only a method 

trained on just the target data can solve the monitoring problem. 

 

The problem of predicting protein-protein interactions exhibit the 

characteristics of the one-class classification problem. Several small scale and high-

throughput experiments have been developed to detect and identify protein-protein 

interactions. As a result data on interacting protein are available and sampled well. 

On the other hand, there are no experiments have been designed to identify proteins 

that do not interact. This is due to the fact that biologist are not interested in 

identifying non-interacting proteins because they do not have significant effect on 

biological processes. Consequently, the data of interacting proteins can be considered 

the target class and the data of non-interacting proteins can be considered the outlier 

class.   

 

 

 

6.3 One-Class Support Vector Machines 

 

The support vector machines (SVM), which can perform binary 

classification, has been commonly used as a binary classifier to predict protein-

protein interactions. A description of SVM has been presented earlier in Chapter 5. A 

particular advantage of SVM over other learning algorithms is that it can be analyzed 

theoretically using concepts from computational learning theory and at the same time 

can achieve good performance when applied to real problems (Schölkopf and Smola, 

2002). SVM has been widely used for several classification problems in the field of 

computation biology.  
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The goal of the SVM is to find optimal hyperplane by minimizing an upper 

bound of the generalization error through maximizing the margin between the 

separating hyperplane and the data. SVM uses the preprocessing strategy in learning 

by mapping input space, X to a high-dimensional feature space, F via a mapping 

function ( i )xφ . By this mapping, more flexible classifications are obtained. A 

separating hyperplane is found which maximizes the margin between the separating 

hyperplane and the nearest training points.  

 

The aim of feature mapping is to find a way of computing the inner product 

( ) ( )i jx xφ φ⋅  in feature space directly as a function of the original input points 

(Cristianini and Shawe-Taylor, 2000). The feature space is very high-dimensional 

space where linear separation becomes much easier than input space.  

 

In general, a pattern classifier uses a hyperplane to separate two classes of 

patterns based on given examples:  

 

( ){ } { }
1

, , 1
n

i i ii
S x y y

=
= ∈ , 1− +  (6.1)

 

The hyperplane is defined by ( ),w b ,  where w is a weight vector and b a bias. 

The SVMs solution is obtained through maximizing the margin between the 

separating hyperplane and the data. The linear function of hyperplane can be written 

as: 

 

( )
1

n

i i
i

f x w x b w x
=

= ⋅ + = +∑ b  (6.2)

 

Using a Lagrangian, this optimization problem can be converted into a dual 

form that is a quadratic programming (QP) problem where the objective function is 

solely dependent on a set of Lagrange multipliers .iα  The optimization problem is as 

follows: 
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21
2

Minimize w  (6.3)

 

Subject to:   ( )T 1 1,2i i iy w x b for i n+ ≥ = …, . (6.4)

 

 

We can get the maximal margin hyperplane with geometric margin. And then 

the Lagrangian is as follows: 
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: 0, 1,iSubject to i nα ≥ = …  (6.6)
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i i
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=

=∑  (6.7)

 

 

The Lagrangian is has to be maximized with respect to .iα  The iα is Lagrange 

multiplier and the support vectors lie only close to the hyperplane that have 0iα > . 

All others points have 0iα = . These support vectors contribute the computing of 

objective function. 

 

Unlike the standard binary SVM, the one-class SVM treats the origin as the 

only member of the outlier class (see Figure 6.2). Then using relaxation parameters, 

it separates the members of the target class from the origin. Then the standard binary 

SVM techniques are employed. 
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Outlier 
Class 

 
Figure 6.2: Classification in the one-class SVM.  

 

The one-class SVM algorithm works similarly to SVM by mapping input data 

into a high dimensional feature space (via a kernel) and iteratively finds the maximal 

margin hyperplane which best separates the training data from the origin.  

 

The feature space points ( ) ( ),i nx xφ φ…  are all separable. The distance of 

the hyperplane is ( )iw xφ ρ⋅ ≥  and 0ρ > . The solution of  

 

21
2w FMinimize w∈  (6.8)

 

( ): ,iSubject to w x i nφ ρ⋅ ≥ = …1, ,  (6.9)

 

gives the unique hyperplane such that it is closer to the origin than all data and its 

distance to the origin is maximal among all such hyperplanes. However, not all 

datasets are linearly separable and it is too difficult to find a canonical hyperplanes 

quickly. There may be no hyperplane that splits the positive examples from negative 

examples.  

 

Therefore, error limits ν  is to be introduced before the preprocessing of input 

data. Although this is not canonical hyperplane, it gives acceptable solutions very 

quickly. In the formulation above, the nonseparable case would correspond to an 

Target 
Class 

Input space 
Target 
Class 

Outlier 
Class 

Feature space 

The 
Origin 

( )ixφ   
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infinite solution. By solving for a given constraint ( ]0,1ν ∈ with slack variable ,iζ  

most of the data should be separated from the origin by a large margin. Then the new 

optimization problem can be stated as:  

 

( )2

, , 1

1
2

n

iw i
Minimize w

ζ ρ
ζ νρ

=

+ −∑  (6.10)

 

( ): ,i iSubject to w x i nφ ρ ζ⋅ ≥ − = …1, ,  (6.11)

 

Equation (6.11) can be incorporated into Equation (6.10) by introducing 

Lagrange multipliers and constructing the Lagrangian with the Lagrange multipliers 

0iα ≥  and 0iη ≥ . 

 

( ) ( ) ( )( )2

1 1

1, ,
2

n n n

i i i i
i i i

L w w w x
1

i iζ ρ ζ νρ α ρ ζ φ
= = =

= + − + − − ⋅ −∑ ∑ ∑η ζ  (6.12)

 

For optimality, we have to compute the partial derivatives of L with respect 

to w, ζ , and ρ . 
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0
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α φ
=

∂
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Then substitute Equations (6.13) and (6.14) into L and using kernel function 

, we obtain the dual problem of Equation (6.10). ( ) ( ) (,i j i jK x x x xφ φ= ⋅ )
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∑  (6.16)

 

: 0 1, 1, ,iSubject to i nα≤ ≤ = …  (6.17)

1

n

i
i

nα ν
=

=∑  (6.18)

 

 

The upper bound in the inequality, Equation (17) limits the influence of 

objects on the final solution. From the above description the outliers are points ix  

which fall on the wrong side of the hyperplane and support vectors are points with 

0.iα >  Consequently, ν  has two properties. Firstly, at least nν  points stay on or 

beyond the margin and at most ( )1n ν−  points stay on the right side of the margin. 

Secondly, the fraction of outliers is equal to the fraction of support vectors.  

 

 

 

6.4 Datasets and Implementation  

 

The construction of an appropriate feature space that describes the training 

data is essential for any supervised machine learning system. In the context of 

protein-protein interactions, it is believed that the likelihood of two proteins to 

interact with each other is associated with their structural domain composition (Kim 

et al., 2002; Pawson et al., 2003; Ng et al., 2003). It is also believed that 

hydrophobicity properties of the protein sequence play an important role in 

mediating protein-protein interactions (Chung et al., 2004; Uetz and Vollert, 2005). 

For these reasons, the implementation of the feature vectors is made using the two 

features separately. The domain data was retrieved from the PFAM database. The 

description of the PFAM database is given in Chapter 5 as well as the preparation of 

domain and hydrophobicity feature vector.  

 

An overview of the implementation framework of the one-class SVM 

classifier for predicting protein–protein interaction is shown in Figure 6.3. The figure 
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shows the implementation framework for domain feature, however, similar 

framework is used for the hydrophobicity feature. Experimentally found protein 

interactions obtained from Database of Interacting Proteins (DIP) are used for 

training the one-class SVM classifier. Interaction partners, ‘protein A’ and ‘protein 

B’, are converted to feature vectors based on domain structure or hydrophobicity 

properties. Then, predicting if two proteins can interact is done by passing their 

feature vectors into the one-class SVM classifier which generates the prediction 

output . 

 

 

 Protein Protein 
Sequence 'A' Sequence ' B'  

Domain Structure Domain Structure 
Feature extraction Feature extraction  

 
Figure 6.3: The implementation framework for the one-class SVM.  

 

 

The majority of DIP entries are obtained from combined, non-overlapping 

data mostly obtained by systematic two-hybrid analyses. More details of DIP 

datasets is given in Chapter 5. The proteins sequences files were obtained for the 

Saccharomyces Genome Database (SGD). The SGD project collects information and 

 

Concatenation   

One -Class Support 
Vector Machine 

Classifier   

Output: +1 interacting proteins  
-1 non -interacting proteins   
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maintains a database of the molecular biology of the yeast Saccharomyces 

cerevisiae. The proteins sequence information is needed in this research in order to 

elucidate the domain structure of the proteins involved in the interaction and to 

represent the amino acid hydrophobicity in the feature vectors . 

 

The feature vectors files for the domain feature and hydrophobicity feature 

was developed as described in Section 5.5. In the case of one-class SVM, only 

positive data was used in the training phase. The classifier should then be used to 

predict protein-protein interactions from a set of unknown protein pairs. However for 

testing purpose, we separated a part of the training data to be considered unknown to 

the classifier. This testing data was also combined with a similar number of random 

protein pairs that are not included in the DIP. 

 

 

 

6.5 Results using Domain Feature 

 

We developed programs using Perl for parsing the DIP databases, sampling 

of records and sequences, and replacing amino acid sequences of interacting proteins 

with its corresponding feature. To make a positive interaction set, we represent an 

interaction pair by concatenating feature vectors of each proteins pair that are listed 

in the DIP-CORE as interacting proteins. Since we use domain feature we include 

only the proteins that have structure domains. The resulting positive set for domain 

feature contains 1879 protein pairs . 

 

In our computational experiment, we employed the LIBSVM (Chang and 

Lin, 2001) (version 2.5) software and modified it to train and test the one-class SVM 

proposed in this chapter. This is an integrated software tool for support vector 

classification, regression, and distribution estimation, which can handle one-class 

SVM. In order to train the one-class SVM, we examine out the following four 

standard kernels finding appropriate parameter values:  

 

• Linear Kernel:  
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T( , )i j i jK x x x x=  (6.19)

 

• Polynomial Kernel 
T( , ) ( ) , 0d

i j i jK x x x x rγ γ .= + >  (6.20)

 

• Radial Basis Function (RBF) Kernel:  
2

( )( , ) , 0i jx x
i jK x x e γ γ−= > .

)

 (6.21)

 

• Sigmoid  : 
T( , ) (i j i jK x x tahn x x rγ= +  (6.22)

 

where γ  (gama), r, and d are kernel parameters to be set for a specific problem. We 

carried out our experiments using the above mentioned kernels. 

 

The results of these experiments are given in Figures 6.4 - 6.7. These results 

indicate that it is informative enough to consider the existence of domains feature in 

the protein pairs to facilitate the prediction of protein-protein interactions. These 

results also indicate that the difference between interacting and non-interacting 

protein pairs can be learned from the available positive data using one-class classifier 

where no negative data to be randomly generated for the training phase. It is also 

important to note that the choice of the parameters has a clear impact on the classifier 

performance. Varying the parameters gives very different predictions accuracy. This 

suggests that the one-class SVM is very sensitive to the choice of kernel parameters 

and the error parameter ν (Nu). In addition, the performance on the RBF kernel with 

=64γ achieved the best performance and it is steadier than the other kernel     
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Domain Feature with Linear Kernel
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Figure 6.4: The one-class SVM performance using domain feature with the linear 

kernel.  

 

 

Domain Feature with Polynomial Kernel
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Figure 6.5: The one-class SVM performance using domain feature with the 

polynomial kernel.  
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Domain Feature with RBF Kernel
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Figure 6.6: The one-class SVM performance using domain feature with the RBF 

kernel.  

 

 

 

Domain Feature with Sigmoid Kernel
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Figure 6.7: The one-class SVM performance using domain feature with the sigmoid 

kernel.  
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The results are also summarized in Table 6.1. The results show that the best 

performance is achieved by the RBF kernel for the domain feature.  

 

Table 6.1: One-Class performance using different kernel with the domain feature. 

 Sensitivity Specificity Prediction Accuracy  

Linear Kernel 0.67 0.83 0.76 

Polynomial Kernel  0.71 0.86 0.79 

RBF Kernel 0.79 0.80 0.80 

Sigmoid Kernel 0.76 0.73 0.74 

  

 

 

 

6.6 Results using Hydrophobicity Feature 

 

We developed programs using Perl for parsing the DIP databases, sampling 

of records and sequences, and replacing amino acid sequences of interacting proteins 

with its corresponding hydrophobicity feature. To make a positive interaction set, we 

represent an interaction pair by concatenating feature vectors of each proteins pair 

that are listed in the DIP-CORE as interacting proteins. Since we use hydrophobicity 

feature all protein pairs that is listed in the DIP-CORE is included. The resulting 

positive set for domain feature contains 3003 protein pairs . 

 

In our computational experiment, we employed the LIBSVM (version 2.5) 

software as in the previous experiment and modified it to train and test the one-class 

SVM proposed in this chapter. In order to train the one-class SVM, we examine out 

the four standard kernels as described in the previous section and the finding 

appropriate parameter values.  
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The results of these experiments that use hydrophobicity feature are given in 

Figures 6.8 - 6.11. These results indicate that protein-protein interactions can be 

predicted using one-class SVM from hydrophobicity feature with acceptable 

prediction accuracy. These results also indicate that the difference between 

interacting and non-interacting protein pairs can be learned from the available 

positive data using one-class classifier where no negative data to be randomly 

generated for the training phase. It is also important to note that the choice of the 

parameters has a clear impact on the classifier performance. Varying the parameters 

gives very different predictions accuracy. This suggests that the one-class SVM is 

very sensitive to the choice of kernel parameters and the error parameter ν (Nu).  

 

 

Hydrophobicity Feature with Linear Kernel
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Figure 6.8: The one-class SVM performance using hydrophobicity feature with the 

linear kernel.  
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Hydrophobicity Feature with Polynomial Kernel
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Figure 6.9: The one-class SVM performance using hydrophobicity feature with the 

polynomial kernel.  

 

 

 

Hydrophobicity Feature with RBF Kernel
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Figure 6.10: The one-class SVM performance using hydrophobicity feature with the 

RBF kernel.  
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Hydrophobicity Feature with Sigmoid Kernel
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Figure 6.11: The one-class SVM performance using hydrophobicity feature with the 

sigmoid kernel.  

 

 

The results of the hydrophobicity feature are also summarized in Table 6.2. 

The results show that the best prediction accuracy for the hydrophobicity feature was 

achieved by the polynomial, RBF and sigmoid kernels.  

 

 

Table 6.2: One-Class performance using different kernel with the domain feature. 

 Sensitivity Specificity Prediction Accuracy  

Linear Kernel 0.55 0.72 0.66 

Polynomial Kernel  0.69 0.72 0.71 

RBF Kernel 0.70 0.71 0.71 

Sigmoid Kernel 0.72 0.69 0.71 
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6.7 Discussion  

 

Appropriate parameters for one-class SVM with different four kernels are set 

by the cross-validation process. We can see from this validation process that it is 

important to choose the appropriate parameters. As shown in Figures 6.4 -6.7, the 

one-class SVM is very sensitive to the choice of parameters. However, since one-

class SVM with linear kernel does not have the parameter γ (gama), we executed the 

cross-validation process only for parameter ν  (Nu). Then the cross-validation 

accuracy is calculated in each run as the number of corrected prediction divided by 

the total number of data ((TP+TN)/(TP+FP+TN+FP)). Then the average is calculated 

for the 10 folds. 

 

The best results were achieved by the RBF kernel (Figure 6.6). Even though, 

RBF kernel could give as low accuracy as 29% with unsuitable choice of parameters, 

it achieves around 80% with proper choice of parameters. These results are 

comparable to the results that have been obtained by Bock and Gough, (2001) and 

Dohkan et al., (2004) with slightly better accuracy.  

 

However, (Chung et al., 2004) reported accuracy of 94% using 

hydrophobicity as the protein feature. The reason behind this big difference between 

our result and their results lies in the approach of constructing the negative 

interaction dataset. They assign random value to each amino acid in the protein pair 

sequence. This leads to get new pairs that considered negative interacting pairs and 

greatly different from the pairs in the positive interaction set. Consequently, this 

leads to simplify the learning task and artificially raise classification accuracy for 

training data. There is no guarantee, however, that the generalized classification 

accuracy will not degrade if the predictor is presented with new, previously unseen 

data which are hard to classify. In our work we used only positive data in the training 

set. In this case we don’t need any artificially generated negative data for the training 

phase. We believe this approach will make the learning problem more realistic and 

ensure that our training accuracy better reflects generalized classification accuracy. 

In general, good classification of the training objects is not the main goal, but good 

classification of new and unseen data is.  
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6.8 Summary 

 

The problem of predicting protein-protein interactions possesses the features 

of one-class classification problem where only data from target class (i.e. interacting 

proteins) are available and sampled well. In this chapter, we have presented the one-

class SVM for solving the problem of predicting protein-protein interactions using 

protein sequence information. Experiments performed on real dataset show that the 

performance of this method is comparable to standard binary SVM using artificially 

generated negative set. Of course, the absence of negative information entails a price, 

and one should not expect as good results as when they are available.  



 

 

 

CHAPTER 7 

 

 

 

BAYESIAN KERNEL FOR PROTEIN-PROTEIN INTERACTIONS 

PREDICTION 

 

 

Kernel functions play an important role for a successful machine learning 

technique. Choosing the appropriate kernel function can lead to a better accuracy in a 

binary classifier such as the support vector machines. In this chapter we describe a 

Bayesian kernel for the support vector machine to predict protein-protein 

interactions. The use of Bayesian kernel can improve the classifier performance by 

incorporated the probability characteristic of the available experimental protein-

protein interactions data.  As shown in this chapter the accuracy of the classifier has 

been improved using the Bayesian kernel compared to the standard SVM kernels.  

 

 

 

7.1 Related Work 

 

Several recent studies have investigated the applicability of Bayesian 

approaches for the prediction of protein-protein interactions. The Bayesian networks 

have been successfully applied to predict proteins that are in the same protein 

complex (Jansen et al., 2003). This means that their goal is to predict whether two 

proteins are in the same complex, not whether they necessarily had direct physical 

interaction. Having the problem of protein-protein interactions simplified to protein 

complexes prediction, the construction of gold standard data is feasible by taking the 

positives from the MIPS catalog of known protein complexes and building the 

negatives from proteins that are known to be separated in different subcellular 

compartments. However, to apply Bayesian networks on predicting physical protein-
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protein interactions in genome-wide scale, a time complexity and negative examples 

unavailability will be arisen.  

 

In an attempt to resolve the issues in Bayesian networks approach to predict 

protein-protein interaction, Yu et al., (2005) proposed combining decision trees and 

Bayesian networks. Their results show that Gene Ontology (GO) annotations can be 

a useful predictor for protein-protein interactions and that prediction performance 

can be improved by combining results from both decision trees and Bayesian 

networks. However, to get a higher quality and more complete interaction map, more 

types of data have to be combined, including gene expression, phenotype, and 

protein domains.  

 

In another recent study a method based on the concept of Bayesian inference 

and implemented via the sum-product algorithm is applied for predicting domain-

domain and protein-protein interactions by computing their probabilities conditioned 

on the measurement results (Sikora et al., 2007). The task of calculating these 

conditional probabilities are formulated as a functional marginalization problem, 

where the multivariates function to be marginalized naturally factors into simpler 

local functions. This framework enables the building of probabilistic domain-domain 

interactions to predict new potential protein-protein interactions based on that 

information. However, the Bayesian inference approach performance in real data is 

characterized by low specificity rate. The reason for this limitation of the Bayesian 

inference with sum-product algorithm, as mentioned by the author, is the higher 

sensitivity to assumed values of false positive rate (FPR), false negative rate (FNR), 

and a priori domain-domain interactions probability. 

 

Although Bayesian networks have been applied successfully in a variety of 

applications, they are an unsuitable representation for complex domains involving 

many entities that interact with each other (Koller, 1999). Bayesian networks for a 

given domain involves a pre-specified set of random variables, whose relationship to 

each other is fixed in advance. Hence, Bayesian networks cannot be used to deal with 

domains where we might encounter several entities in a variety of configurations.  
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In order to incorporate the advantages of Bayesian approach in predicting 

protein-protein interactions and to avoid its time complexity drawback, Bayesian 

kernel is introduced in the literature. In the following sections, a discussion on 

Bayesian approaches and kernel methods is presented.  

 

 

 

7.2 Bayesian Approach 

 

To understand Bayesian kernel and Bayesian related learning techniques, it is 

important to understand the Bayesian approach to probability and statistics. In this 

section, we present a brief introduction to the Bayesian approach to probability and 

Bayesian learning techniques. 

 

 

 

7.2.1 Bayesian Probability 

 

Bayesian probability is an interpretation of probability suggested by Bayesian 

theory, which holds that the concept of probability can be defined as the degree to 

which a person believes a proposition. Bayesian theory also suggests that Bayes’ 

theorem can be used as a rule to infer or update the degree of belief in light of new 

information 

 

In brief, the Bayesian probability of an event A is a person’s degree of belief 

in that event. Whereas a classical probability is a physical property of the world (e.g., 

the probability that a coin will land heads), a Bayesian probability is a property of the 

person who assigns the probability (e.g., person’s degree of belief that the coin will 

land heads) (Heckerman, 1998).  

 

The Bayesians probability essentially considers conditional probabilities as 

more basic than joint probabilities. It is easy to define P(A|B) without reference to the 

joint probability P(A,B). To see this, the joint and conditional probability formulas 

can be written as following: 
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( , ) ( | ) ( ) ( | ) ( )P A B P A B P B P B A P A= =  (7.1)

 

It follows that: 

 

( | ) ( )( | )
( )

P B A P AP A B
P B

=  (7.2)

 

Equation (7.2) represents the Bayes’ Rule. It is common to think of Bayes 

rule in terms of updating our belief about a hypothesis A in the light of new evidence 

B. Specifically, our posterior belief P(A|B) is calculated by multiplying our prior 

belief P(A) by the likelihood P(B|A) that B will occur if A is true. 

 

 

 

7.2.2 Bayesian Networks 

 

Bayesian inference is a statistical inference in which evidence or observations 

are used to update or to newly infer the probability that a hypothesis may be true. 

One of the most common techniques to perform Bayesian inference is the Bayesian 

Networks. 

 

The Bayesian network is a directed acyclic graph which represents 

independencies embodied in a given joint probability distribution over a set of 

variables. Nodes can represent any kind of variable such as measured parameters, 

latent variables or hypothesis. In the Bayesian network graph, nodes correspond to 

variables of interest and edges between two nodes correspond to a possible 

dependence between variables. 

 

Over the last decade, the Bayesian network has become a popular 

representation for encoding uncertain expert knowledge in expert systems (Larrañaga 

et al., 1997). Recently, researchers started to develop methods for learning Bayesian 

networks from data. The techniques that have been developed are new and still 



 111

evolving, but they have been shown to be remarkably effective for some data 

analysis problems (Niculescu and Mitchell, 2006).  

 

The Bayesian Networks can be represented by a set of variables 

1{ , , }2X x x= "  that encodes a set of conditional independence between these 

variables. A set P of local probability distributions associated with each variable 

should be defined. The conditional independence and the local probability define the 

joint probability distribution for X. The variable and its corresponding node in the 

network are denoted by ix and the parents of node ix are denoted by .ipa  Given 

these notations, the joint probability distribution for X is given by 

 

1

( ) ( | )
n

i i
i

P x P x pa
=

=∏  (7.3)

 

The probabilities set by a Bayesian networks can be a Bayesian or physical. 

When prior knowledge is used alone, then the probabilities will be Bayesian. But 

when learning these networks from data, the probabilities will be physical.   

 

 

 

7.3 Kernel Methods 

 

Kernel methods in general and support vector machines in particular have 

been successfully applied to a number of real-world problems and are now 

increasingly used to solve various problems in computational biology. They offer 

different tools to process, analyze, and compare many types of data, and offer state-

of-the-art performance in many cases (Vert et al., 2004).   

 

During recent years, the machine learning community has shown great 

interest in Kernel-Based Methods (KM). These methods give state-of-the-art 

performance by offering an alternative solution by projecting the data into a high 

dimensional feature space to increase the computational power of the linear learning 

machines. The support vector machine (SVM) (Vapnik, 1995; Cristianini and 
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Shawe-Taylor, 2000) is a well known example. However, kernel method is not 

restricted to SVM. Indeed, it has been pointed out that it can be used to develop 

nonlinear generalizations of any algorithm that can be cast in terms of dot products, 

such as principal component analysis (PCA) (Schölkopf et al., 1999). 

 

The kernel methods provide a unified framework for machine learning 

algorithms that enables them to act on different type of data (e.g. strings, vectors, 

text, etc.) and search for different type of relations (e.g. classifications, regressions, 

rankings, clusters, etc.). Any kernel method solution comprises two parts: a module 

that performs the mapping into the embedding or feature space and a learning 

algorithm designed to discover linear patterns in that space (Shawe-Taylor & 

Cristianini, 2004).  

 

The building block of these methods is the kernel. The non-dependence of 

these methods on the dimensionality of the feature space and the flexibility of using 

any kernel make them a good choice for different classification tasks especially for 

bioinformatics applications. The learning process of these methods consists of the 

following stages: 

 

• Map the input data into some higher dimensional space through a 

nonlinear mappingφ . The mapped space is known as the feature space an 

its denoted by F and the mapping is given by: 

 

: X Fφ →  (7.4)

 

 

• The mapping φ  may not be known explicitly but can be accessed via the 

kernel function described later in this chapter.  

 

Figure 7.1, shows the basic idea of kernel methods in which it maps the 

training data nonlinearly into a higher-dimensional feature space throughφ , and 

construct a separating hyperplane with maximum margin there. This yields a 

nonlinear decision boundary in the input space. The use of a kernel function, allows 
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the computing of the separating hyperplane without explicitly carrying out the map 

into the feature space.  

 

φ  

Input Space  Feature Space 
(Separable datasets) (Non-separable datasets) 

 
Figure 7.1: Illustration of mapping input data to a feature space.  

 

 

• Construct a linear classier f in the feature space as given by  

 

( ) ( )f x w xφ b= ⋅ +  (7.5)

 

Here w is the weight vector learned during the training phase and b is a bias 

term. The weight vector is a linear combination of training instances. In other words 

 

( )
1

n

i i i
i

w yα φ
=

=∑ x  (7.6)

 

where α  is a Lagrange multiplier. Substituting the value of w yields, 

 

( ) ( ) ( )
1

n

i i i
i

f x y x xα φ φ
=

b= ⋅ +∑  (7.7)

 

Hence the classifier is constructed only using the inner products between the 

mapped instances. The kernel trick provides an efficient way to construct such a 
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classier by providing an efficient method of computing the inner product between 

mapped instances in the feature space. One does not need to represent the input 

instances explicitly in the feature space. The kernel function computes the inner 

product by implicitly mapping the instances to the feature space. 

 

Kernel functions are the basic component shared by all kernel methods. They 

provide a general framework to represent data. The kernel functions also define how 

the learning algorithm deals with the data. The kernel function is defined in (Vert et 

al., 2004) as following:  

 

A function  is called a positive definite kernel iff it is 

symmetric, that is, 

:k X X× → \

),(),( xxkxxk ′=′ for any two objects ,, Xxx ∈′  and positive 

definite, that is,  

 

∑∑
= =

≥
n

i

n

j
jiji xxkcc

1 1
0),(  (7.8)

 

for any   any choice of n objects ,0>n ,,...,1 Xxx n ∈  and any choice of real numbers 

  1,..., .nc c ∈\

 

In particular, the kernel function have been widely viewed as a function that 

calculates the inner product between the mapped examples into a feature space is a 

kernel function that is for any mapping 

 

: X Fφ → , 

( , ) ( ) ( )i j i jk x x x xφ φ= 〈 ⋅ 〉  (7.9)

 

where ,i j ,x x X∈  and F is any feature space. It can be noted that the kernel 

computes this inner product by implicitly mapping the examples to the feature space.  
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The n n×  matrix with entries of the form , ( , )i j i jk k x x=  is known as the 

Kernel Matrix (KM). Each entry of this matrix represents the inner product between 

the pairs of the mapped examples. This matrix contains all the information required 

by the kernel methods. For example, given a kernel k and set of n vectors the 

polynomial construction is given by 

 
T( , ) ( ) , 0d

poly i j i jk x x x x rγ γ= + .>  (7.10)

 

where d is the positive integer and γ  is a constant. In this case, the feature space 

corresponding to a degree d polynomial kernel includes all products of at most d 

input features. Hence,  create images of examples in feature spaces 

having huge numbers of dimensions. 

( ,poly i jk x x )

 

Furthermore, Gaussian kernels defined feature space with finite number of 

dimensions and it is given by:  

 

( )
2

2

, exp
2
i j

gauss i j

x x
k x x

σ

⎛ ⎞− −⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (7.11)

 

where σ  is scaling parameter.  

 

A Gaussian kernel allows an algorithm to learn a linear classifier in an 

infinite dimensional feature space. Defining a kernel function for an input space is 

frequently more natural than creating a complicated feature space. Before this route 

can be followed, however, one must first determine what properties of a function 

 are necessary to ensure that it is a kernel for some feature space. In fact, 

any function  that creates a symmetric, positive definite kernel matrix 

 is a valid kernel. In other words, the following Mercer’s condition 

has to be satisfied (Cristianini and Shawe-Taylor, 2000; Schölkopf and Smola, 

2002): 

( , )i jk x x

( , )i jk x x

, ( , )i j i jk k x x=
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( , ) ( ) ( )i i
i

k x y x yφ φ=∑  (7.12)

 

if and only if, for any ( )g x such that  

 

( )2 is finiteg x dx∫  (7.13)

 

then, 

 

( ) ( ) ( ), 0k x y g x g y dxdy ≥∫  (7.14)

 

New kernels can be designed from given kernel functions. This is because 

kernel functions are closed under addition and multiplication with a positive 

constant. The process of designing new kernels by combining simple kernels 

(Cristianini & Shawe-Taylor, 2000) can be illustrated as following: 

 

Let  and  be kernels over1k 2k , ,nX X X c +× ⊆ ∈\ \

′

. Then the following 

functions are kernels: 

 

•  1 2( , ) ( , ) ( , )k x x k x x k x x′ ′ ′= + (7.15)

 

•  1( , ) ( , )k x x ck x x′ ′= (7.16)

 

•  1 2( , ) ( , ) ( , )k x x k x x k x x′ ′= (7.17)

 

Two points can be drawn from the above discussion. Firstly, the 

representation of the data as an inner product square matrix does not depend on the 

nature of the objects to be analyzed. They can be images, molecules, or sequences, 

and the representation of a data set is always a real-valued square matrix. This 

suggests that an algorithm developed to process such a matrix can analyze images as 

well as molecules or sequences, as long as valid kernel functions k can be defined. 



 117

Secondly, a complete modularity exists between the design of a function k to 

represent data on the one hand, and the design of an algorithm to process the data 

representations on the other hand. These properties turn out to be of utmost 

importance in fields like computational biology, where data of different nature need 

to be integrated and analyzed in a unified framework. 

 

 

 

7.4 Bayesian Kernels 

 

The Bayesian kernel exhibits some differences with respect to the standard 

kernels of SVM. Firstly, in the Bayesian kernel, the prior knowledge can be 

incorporated into the process of estimation. Secondly, in contrast to the standart 

kernels of SVM, which simply returns a binary decision, yes or no, a Bayesian kernel 

returns the probability, , that an object x belongs to the class of interest 

indicated by the binary variable y. The probability result is more desirable than a 

simple binary decision as it provides additional information about the certainty of the 

prediction.  

( 1|P y x= )

 

The Relevance Vector Machines (RVM) has been introduced by Tipping 

(2000) which is a probabilistic sparse kernel method identical in functionality to the 

SVM. In RVM, a Bayesian approach to learning is adopted. The RVM does not 

suffer from significant limitations of the SVM. These limitations of the SVM are:   

 

• Predictions are not probabilistic. 

 

• It is necessary to estimate the error or margin trade-off parameter ‘C’. 

This generally entails a cross-validation procedure, which is wasteful 

both of data and computation 

 

However, the main disadvantage of RVM is in the complexity of the training 

phase (Tipping, 2000). For large datasets, this makes training considerably slower 

than for the SVM. Given this fact, designing Bayesian kernel for the SVM would 
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exhibit the advantages of the Bayesian approach and at the same time avoids the 

complexity problem of the RVM.  

 

Recently, a Bayesian kernel for the prediction of neuron properties from 

binary gene profiles has been developed by Fleuret and Gerstner (2005). They 

provided an analysis of the probabilistic model of the gene amplification process. 

This analysis yields a similarity measure between two strings of amplified genes that 

takes the asymmetry of the amplification process into account. This similarity 

measure was implemented in the form of Bayesian kernel.  

 

This kernel was designed based on the probability of the expressed genes to 

be the same in both neurons. Given two strings ix and jx  of amplified gene, the 

similarity between the strings is quantified as the probability for the expressed genes 

to be the same in both neurons and it is expressed as following:  

 

( ) ( ), | ,i j i j i i j jk x x P Z Z X x X x= = = =  (7.18)

 

Here, X refers to the random variables on { }0,1 N standing for the string of 

amplified genes (measurement), and Z the string of expressed genes (hidden truth). 

The value 1 stands for “expressed” or “amplified” while 0 stands for “non expressed” 

or “non amplified”. The only information available here is the value of X, and it is 

required to infer some property of Z from the stochastic relation between X and Z. 

 

The value of Equation (7.18) can be evaluated with the Bayesian rule. It is 

given that iX  and jX  are independent, and that iZ  and jZ  are independent too. 

Also, according to amplification model in (Fleuret and Gerstner, 2005), the ( )l
iX  are 

conditionally independent. Then:  

 

( ) ( ) ( )( )
1

, ,
N

l l
i j l i j

l

k x x x xκ
=

=∏  (7.19)

 

with, 
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( ) ( ) ( )( ) ( ) ( )( )
{ }0,1

, | |l l l l
l i i j

c
a b P Z c X a P Z c X bκ

∈

= = = =∑ j =  (7.20)

 

The can be interpreted as a similarity measure between neurons based on 

the presence or absence of the l-th gene alone. It will take into account the high false 

negative rate and the absence of false positive. Refer to (Fleuret and Gerstner, 2005) 

for more details on the Bayesian kernel for the prediction of neuron properties from 

binary gene profiles.  

lκ

 

 

 

7.5 Bayesian Kernel for Protein-Protein Interactions Prediction 

 

The development of a Bayesian kernel for protein-protein interactions 

prediction will facilitate incorporating the prior knowledge via the kernel function. 

The Bayesian learning is based on the Bayesian rule. In the following, uppercase 

letters will be used to represent variables and lowercase letters to represent 

realization. In predicting protein-protein interactions, each observation may be 

represented by a vector { }1, , ,m ,Z X X Y= …  where { }1, , mX X X= …  is the m-

dimensional input variable, and Y is the output variable taking{ }0,1 . Then dataset is 

represented by:  

  

{ }
1 1 1 1
1 2

1

1 2

, ,
m

n

n n n n
m

x x x
D Z Z

y

x x x

⎛ ⎞
⎜ ⎟

= = ⎜
⎜ ⎟
⎝ ⎠

"
… # # # # #

" y
⎟  (7.21)

 

The conditional probability of given iY iX can be represented as  
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 (7.22)

 

and  

 

( ) ( )10 | , , 1 1| , ,i i i i i
m mP Y X X P Y X X= = − =" 1

i"

)

 (7.23)

 

where  is the prior probability of taking value and the distribution 

for the conditional probability 

( i iP Y y= iY iy

( )1 , , |i i
mP X X Y" i

i

 can be estimated from the 

dataset.  

 

Assuming that the input variables are independent for protein-protein 

interactions dataset, Equation (7.22) can be described as follows:  

 

( )1 11| , ,i i i i
m mP Y X x X x= = ="  

( ) ( ) ( )
( ) ( ) ({ } )
1 1

1 10,1

| 1 | 1 1

| |

i i i i i i i
m m

i i i i i i i
m my

P X x Y P X x Y P Y

P X x Y y P X x Y y P Y y
=

= = = = =
=

= = = = =∑
"

"
 (7.24)

  

 

In a similar approach to (Fleuret and Gerstner, 2005) as described in 

Equations (7.19) and (7.20), we define a Bayesian kernel for protein-protein 

interactions prediction as:  

 

( ) ( )
1

, ,
m

i j i j
l l l

l

k x x x xκ
=

=∏  (7.25)

 

with, 
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( ) ( ) ( )
{ }0,1

, | |i j i i i j j j
l l l l l l l

y
x x P Y y X x P Y y Xκ

∈

= = = =∑ x=  (7.26) 

 

The can be interpreted as a similarity measure between protein pairs based 

on the l-th position of the feature vector. In this experiment we used the domain 

structure as the protein feature for the representation of the feature vector. For the 

prior and conditional probability of domains features to facilitate the protein-protein 

interactions we used the Appearance Probability matrix that was introduced in (Han 

et al., 2004).  

lκ

 

The domain combinations and the appearance frequency information of 

domain combinations are obtained from the interacting and non-interacting sets of 

protein pairs. The obtained information is stored in the form of a matrix called the 

Appearance Probability (AP) matrix. When there are n different proteins 

{ }1 2, , , np p p… in a given set of protein pairs and the union of domain combinations 

of proteins contains m different domain combinations, { }1 2, , , md d d… , and then the 

 AP matrix is constructed. The element A  in the matrix represents the 

appearance probability of domain combination 

m m× Pij

,i jd d< >  in the given set of protein 

pairs. Then the conditional probability in Equation (7.26) can be obtained by:  

 

( )1| APi i i
l lP Y X x= = = il  (7.26) 

 

 

 

7.6 Results and Discussion 

 

In this section, the performance of the SVM classifier with the Bayesian 

kernel is discussed. The dataset and materials used in this experiment are the same as 

described earlier in Section 5.5 but only for domain feature.   
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For constructing the positive interaction set, we represent an interaction pair 

by concatenating feature vectors of each proteins pair that are listed in the DIP-

CORE as interacting proteins. Since we use domain feature we include only the 

proteins that have structure domains. The resulting positive set for domain feature 

contains 1879 protein pairs.  

 

As described in Section 5.6, constructing a negative interaction set using a 

random approach to construct the negative data set is an avoidable at this moment. 

Furthermore, for the purposes of comparing different kernel methods, the resulting 

inaccuracy will be approximately uniform with respect to each kernel method. For 

these reasons, the negative interaction set was constructed by generating random 

protein pairs. Then, all protein pairs that exist in DIP were eliminated. A negative 

interaction set was constructed containing the same number of protein pairs.  

 

In our computational experiment, we employed the LIBSVM (version 2.5) 

software and modified it to use the Bayesian kernel defined in Section 7.5. The 

performance of the SVM with the Bayesian kernel is compared to the other four 

standard kernels described in Section 6.5.  

 

Table 7.1 shows the performance of the SVM with Bayesian kernel using 

domain feature with varied threshold. It shows that there is always a trade off 

between the sensitivity and specificity. The best cross-validation accuracy is 

achieved with threshold of 0.5. The specificity is higher than the sensitivity when 

choosing to have best cross-validation accuracy. This means that the Bayesian kernel 

can detect the non-interacting protein pairs with a reliable accuracy.  

 

 

 

 

 

 

 

 

 



 123

 

 

 

Table 7.1: Bayesian Kernel performance with varied threshold using domain feature. 

Threshold Sensitivity Specificity Cross-Validation Accuracy 

0.1 0.044 0.991 0.5175 

0.2 0.243 0.967 0.605 

0.3 0.459 0.941 0.7 

0.4 0.621 0.899 0.76 

0.5 0.774 0.839 0.8065 

0.6 0.844 0.727 0.7855 

0.7 0.906 0.596 0.751 

0.8 0.954 0.461 0.7075 

0.9 0.989 0.253 0.621 

 

 

The performance of the Bayesian kernel compared to the other four standard 

kernels is presented in Table 7.2. The Bayesian kernel has significantly improved the   

prediction accuracy compared to the linear and polynomial kernel. It also has slightly 

improved the prediction accuracy compared to the RBF and sigmoid kernel. 

However, it is important to note the Bayesian kernel has the advantage of the 

probabilistic output over the RBF and sigmoid kernel. It help biologist to conduct 

further analysis on the predicted interacting proteins pairs with high probability.   
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Table 7.2: Bayesian Kernel performance compared to the standard kernels using 

domain feature. 

Kernel Sensitivity Specificity Cross-Validation accuracy  

Linear Kernel 0.726 0.764 0.768 

Polynomial Kernel 0.731 0.787 0.772 

RBF Kernel 0.742 0.811 0.793 

Sigmoid Kernel 0.751 0.805 0.791 

Bayesian Kernel 0.774 0.839 0.8065 

 

 

The ROC curve is also used to compare the performance of the Bayesian 

kernel against the standard kernel. Figure 7.2 shows the ROC curve with ROC score 

for each kernel. The Bayesian kernel perform better than the standard kernels and has 

higher ROC score.  

 

 

Figure 7.2: The ROC curve for the Bayesian kernel and the standards kernel. 
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The distribution of the probabilistic output for the Bayesian kernel is shown 

in Figure 7.3. The Bayesian kernel output a scalar value showing its belief in 

classification decision. Each protein pair that was predicted either interacting pair or 

non-interacting pair is assigned a likelihood of the predicted value.  
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Figure 7.3: The distribution of the probabilistic output for the Bayesian kernel 

 

 

From Figure 7.3, we can see that the number of protein pairs that have been 

predicted as interacting pairs with likelihood bigger than 89% is less than 100 pairs 

which is very small number compared to number interacting protein in the training 

dataset (1879). However, biologist can carry out experiments to validate the results 

for the protein pairs that were predicted as interacting pairs with high likelihood. It is 

time-consuming and costly to carry out experiments to validate the results of all 

predicted protein pairs.    

 

Comparing protein-protein interaction prediction systems with the other 

existing systems is always a difficult task. The reason is that, most of the authors 

used different type of data, experimental setup, and evaluation measures. 
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Several research studies in the literature reported higher accuracy than it is 

achieved in this research. The main reason behind these different performances is the 

construction of the negative dataset for protein-protein interactions. There is no 

experimentally confirmed non-interacting protein pairs made available by biologist. 

This contributes to the unavailability of benchmark data that facilitate the 

comparison of different algorithms. For instance, Chung et al. (2004) reported 

accuracy of 94% by using hydrophobicity as the protein feature. The reason for this 

high accuracy lies in the approach of constructing the negative interaction dataset. 

They assign random value to each amino acid in the protein pair sequence. This leads 

to get new pairs that considered negative interacting pairs and greatly different from 

the positive interacting pairs in the training dataset. This effect leads to simplify the 

learning task and artificially raise classification accuracy for training data. There is 

no guarantee, however, that the generalized classification accuracy will not degrade 

if the predictor is presented with new, previously unseen data which are hard to 

classify.  

 

In Table 7.3 we compare the performance of the Bayesian kernel developed 

in this study with some of cited literature that use same datasets and use similar 

approach in constructing the negative interactions. 

 

Table 7.3: Performance comparison with the cited literature. 

Reference Method Accuracy ROC score 

Bock & Gough, (2001) SVM 0.8096 — 

Gomez et al., (2003) attraction-repulsion model — 0.818 

Dohkan et al., (2004) SVM 0.788 — 

Huang et al., (2004) SVM 0.7957 — 

Our Approach Bayesian Kernel 0.8065 0.8670 
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As shown in Table 7.3, the Bayesian kernel outperforms most of the related 

cited literature in terms of ROC score. However, it should be noted that some of the 

cited literature did not report an ROC score for their method performance. Also in 

term of prediction accuracy the Bayesian kernel achieve a comparable and slightly 

better accuracy than most of the cited work. 

 

 

 

7.7 Summary 

 

This chapter reports the development and application performance of the 

Bayesian kernel for the prediction of protein-protein interactions. The Bayesian 

kernel was developed based on the Bayes’ Rule. The performance results of the 

Bayesian kernel outperformed most of the cited related work with ROC score of 

0.8670. However, the comparison with some other works is not feasible due to the 

fact that different datasets were used. In addition, constructing negative set of non-

interacting proteins is still the source of the varied reported accuracy. This is 

because, until now there is no experimentally confirmed non-interacting proteins 

dataset. Different cited work use different random method to generate non-

interacting protein pairs. In conclusion, the Bayesian kernel provide a better 

performance as well as probabilistic output that could help biologist to carry out 

further analysis.  

 

 

 



 

 

 

CHAPTER 8 

 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

This chapter draws general conclusion of the review of literature, 

methodology, experimental work, analysis, and the discussion of this research work. 

The output and results of the developed methods for protein-protein interactions 

prediction are concluded and summarized in this chapter. This chapter also presents 

the findings and the contributions of this research. In addition, potential future work 

is suggested and presented in this chapter.  

 

 

 

8.1 Conclusion  

 

It has been established that the rapid development of molecular biology and 

achievements of modern technology have raised many questions of great 

bioinformatics interest and there is a growing need to develop, apply and analyze 

effective and efficient learning methods to improve managing and annotating the 

novel biological sequences. 

  

Predicting protein-protein interactions is one of the key topics in the post-

genomic era. The interactions between proteins are important for many biological 

functions. Almost all processes in of molecular biology are affected by protein-

protein interactions. Therefore, useful methodologies and algorithms for prediction 

of protein-protein interactions have to be developed and implement. In this thesis 

several problems of protein-protein interactions prediction have been investigated. 
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The first objective of this research is to study and investigate different protein 

sequence feature for the prediction of protein-protein interactions using the support 

vector machines. In chapter 5 we compare the use of the domain structure and 

hydrophobicity properties as protein sequence features. This is motivated by several 

related work in the literature as discussed in chapter 5. In this experiment we 

consider four features, namely: domain, domain with score, hydrophobicity, and 

hydrophobicity with scale. The results show that domain feature achieves cross-

validation accuracy of 79.4372% and ROC score of 0.8480. This is slightly better 

accuracy than when using hydrophobicity scale feature. However, domain feature 

prediction performance is much better in terms ROC score and running time. For 

domain feature only around 34 seconds is need for the cross-validation experiment 

while hydrophobicity scale feature takes around 9.6 hours. Other results show that 

domain score is not important and it is informative enough to consider only the 

existence of domains structure in the protein pairs. However, hydrophobicity scale 

feature achieve slightly better accuracy than the hydrophobicity feature but with 

more running time. It is important here to note that the performance of the prediction 

system is far better than an absolute random approach which has ROC score of 0.5. 

This indicates that the difference between interacting and non-interacting protein 

pairs can be learned from the available data. 

 

The prediction approach reported in Chapter 5 generates a binary decision 

regarding potential protein-protein interactions based on training set consists of 

positive dataset (interacting proteins) and negative dataset (non-interacting proteins). 

Based on the fact that information about protein-protein interactions has been 

accumulated by various experimental techniques, constructing a dataset of 

interacting protein is feasible and straight forward. However, there are no 

experimentally confirmed non-interacting protein pairs. Hence, constructing non-

interacting pairs for training the learning system is a challenge. In Chapter 5 

experiment, we use a randomizing method to generate negative dataset. This is 

acceptable for comparing features or algorithms since the error will be uniform on 

the different features or algorithms. 
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 Given the fact that only information about interacting proteins (positive 

dataset) are available and sampled well, the problem of predicting protein-protein 

interaction is essentially one-class classification problem. In Chapter 6, using only 

positive examples (interacting protein pairs) in training phase, the one-class SVM 

was implemented and applied. It achieves accuracy of about 80% using the domain 

features with the RBF kernel. These results indicate that the difference between 

interacting and non-interacting protein pairs can be learned from the available 

positive data using one-class classifier. It is also important to note that the choice of 

the parameters has a clear impact on the classifier performance. 

 

Appropriate parameters for the one-class SVM with the standard four kernels 

are set by the cross-validation process. The results show that the one-class SVM is 

very sensitive to the choice of parameters. Even though, the best results were found 

by the RBF kernel, it could give as low accuracy as 29% with unsuitable choice of 

parameters. 

 

The results of applying the one-class SVM imply that protein-protein 

interaction can be predicted using one-class classifier with comparable accuracy to 

the binary classifiers that use artificially constructed negative dataset. When using 

randomly generated negative dataset, there is no guarantee that the generalized 

classification accuracy will not degrade if the predictor is presented with new, 

previously unseen data which are hard to classify. In our work we used only positive 

data in the training set. In this case we don’t need any artificially generated negative 

data for the training phase. We believe this approach makes the learning problem 

more realistic and ensure that our training accuracy better reflects generalized 

classification accuracy. 

 

SVM gives its classification output as a binary decision. However, it is 

desirable to have a probabilistic approach that output a scalar value showing its belief 

in the classification decision. The Bayesian kernel for SVM gives its output as 

probabilities. Besides, the Bayesian kernel can improve the classifier performance by 

incorporated the probability characteristic of the available experimental protein-

protein interactions data. Each protein pair that was predicted either interacting pair 

or non-interacting pair is assigned a likelihood of the predicted value. 
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The development and implementation of the Bayesian kernel for the SVM 

was presented in Chapter 7. The Bayesian kernel performs better than the standard 

kernels and has higher ROC score of 0.8670. The Bayesian kernel outperforms most 

of the related cited literature in terms of ROC score. However, it should be noted that 

some of the cited literature did not report an ROC score for their method 

performance. Also in term of prediction accuracy the Bayesian kernel achieve a 

comparable and better accuracy compared to most of the cited work. 

 

The overall results indicate that it is informative enough to consider the 

existence of domains structure in the protein pairs to facilitate the prediction of 

protein-protein interactions. The Bayesian kernel results with probabilistic output 

could help biologist to conduct further analysis on the predicted interacting proteins 

pairs with high likelihood score. 

 

In conclusion the result of this research suggests that protein-protein 

interactions can be predicted from domain structure and hydrophobicity properties as 

protein sequence features. Consequently, these results show the possibility of 

proceeding directly from the automated identification of a cell’s gene products to 

inference of the protein interaction pairs, facilitating protein function and cellular 

signaling pathway identification. 

 

 

 

8.2 Research Contributions 

 

This research focuses on predicting protein-protein interactions with reliable 

accuracy. The contributions of this research are summarized as follows:  

 

• Investigating and comparing the two main protein sequence features for 

the prediction of protein-protein interactions using the support vector 

machines.  
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• Modeling and solving the problem protein-protein interactions a one-class 

classification problem using the one-class support vector machines.  

 

• Developing and implementing the Bayesian kernel for SVM to 

incorporate the probabilistic information about the protein-protein 

interaction and provide a probabilistic output in the classification 

decision.   

 

 

 

8.3 Future Work  

  

Hopefully, the output of the research can be a motivation for further 

investigation in the field of protein-protein interactions predictions. In this thesis, 

protein-protein interactions prediction task successfully performed. In this research 

some new directions and some important and useful contributions to the efforts to 

predict protein-protein interactions have been presented. In this section we will 

outline some of the possible future work directions.  

 

Based on the important issue of feature selection in machine learning, 

automated methods have to be developed. Suitable features would not only be 

computationally efficient for the techniques presented in this thesis but will also be a 

useful contribution in general classification problems. For the sequence features 

presented and compared in Chapter 5, further investigation of the other possible 

sequence features is significantly important.  

 

The issue of constructing negative dataset (non-interacting proteins) is a 

difficult task. This is due to the fact that there are no experimentally confirmed non-

interacting proteins have been made available. Hence, investigating different 

approach to construct the negative set for binary classifiers represent a big challenge. 

Several methods have been recently investigated in the literature. However, a reliable 

assessment of the classifiers performance using different approaches for negative 

dataset construction is needed.  
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It is also important to note that the available protein-protein interactions data 

are collected using different experimental techniques. The overlaps between these 

data are very small. Therefore there is a need for a development of computation 

techniques that validate the experimental results and assess the reliability of the 

experimental techniques.  

  

Similar methods of prediction and classification in fields rather than 

Bioinformatics can successfully utilize variety of techniques and tools used in this 

research such as the one-class SVM and the Bayesian kernel approach.   

 

Since the research in Bioinformatics field in general and the protein 

secondary structure prediction domain in particular is increasing rapidly, the need for 

a “utility and statistical package for Bioinformatics” that successfully arranges data 

for input and helps in the analysis and assessment of the output becomes crucial. This 

will save considerable time for the research in Bioinformatics. 

 

 

 

8.4 Closing 

 

This chapter concludes and summarizes the research work discussed in this 

thesis. The chapter also presents and highlights the contributions and findings of this 

research. Recommendations for further work and future research directions in the 

domain of this work are also coined and proposed in this chapter. Hopefully this 

research gives an idea and spreading knowledge in the research field, especially in 

bioinformatics.  
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