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ABSTRACT 
 
 
 
 
MATHEMATICAL MODELLING OF THE RECOMBINATION CAPACITY 

OF SYSTEM OF ENZYMES ACTING ON DNA 
 

(Keywords: Modelling, DNA, formal language theory, splicing systems) 
 

This research initiates the connection between formal language theory and the 
study of informational macromolecules. The modelling of a biological splicing system 
has been done mathematically through formal language theory, which is a branch of 
applied group theory and theoretical computer science. The accuracy of how a 
splicing works has been verified through the corresponding biological splicing 
system. 

In this research, different kinds of languages that result from the action of 
restriction enzymes on strings of DNA molecules have been studied. Examples of 
strictly locally testable languages are given. Besides, some theorems related to 
different combination of restriction enzymes in a strictly locally testable language are 
presented. A language is local if every string of a certain length is a constant relative 
to it. Some theorems related to concepts of constant and local are also given. A 
maximal firm subword of a word is discussed, where automata concept is used to 
illustrate the simple splicing system. This research also gives few actual molecular 
considerations for the molecules that will arise from a given initial sets of strings 
using some chosen restriction enzymes. 

This research has brought together the communities of mathematical scientists 
and bio-molecular scientists since each of these sciences can make a contribution to 
the other. The most specific benefit of this research is the application of mathematical 
analysis of questions of which DNA bio-molecules can potentially arise in a test tube 
from the action of specific sets of enzymes acting on the specific sets of DNA 
molecules.  
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ABSTRAK 
 
 
 
 
PEMODELAN MATEMATIK BAGI KAPASITI PENGGABUNGAN SEMULA 

SUATU SISTEM ENZIM-ENZIM YANG BERTINDAK KE ATAS DNA 
 

(Katakunci: Pemodelan, DNA, teori bahasa formal, sistem pemotongan dan 
pencantuman) 

 
Penyelidikan ini mencetuskan kaitan di antara teori bahasa formal dan 

pembelajaran molekul makro yang berinfomasi.  Pemodelan bagi sistem pemotongan 
dan pencantuman secara biologi telah dilakukan secara bermatematik melalui teori 
bahasa formal, iaitu satu cabang dari teori kumpulan berpenggunaan dan sains 
komputer berteori.  Kejituan pemotongan dan pencantuman pula telah disahkan 
melalui sistem pemotongan dan pencantuman secara biologikal. 

Dalam penyelidikan ini, beberapa jenis bahasa yang wujud daripada aksi 
enzim pembatas ke atas jujukan molekul DNA telah diselidiki.  Contoh-contoh bahasa 
bolehuji setempat yang tegas ada dimuatkan.  Selain itu, beberapa teorem tentang 
gabungan berlainan bagi enzim pembatas dalam bahasa bolehuji setempat yang tegas 
juga diberikan.  Suatu bahasa dikatakan tempatan jika setiap jujukan dengan 
kepanjangan tertentu yang relatif kepadanya adalah pemalar.  Beberapa teorem 
berkenaan konsep pemalar dan tempatan telah dinyatakan berserta pembuktiannya.  
Konsep automata juga digunakan untuk menggambarkan sistem pemotongan dan 
pencantuman mudah.  Penyelidikan ini juga memberi beberapa pertimbangan 
bermolekul sebenar untuk molekul yang boleh dihasilkan daripada suatu jujukan 
permulaan dengan menggunakan beberapa enzim pembatas yang dipilih.   

Penyelidikan ini telah menemukan bersama komuniti saintis dari bidang 
matematik dan biomolekul.  Ini disebabkan setiap bidang tersebut dapat memberi 
manafaat antara satu sama lain.  Faedah khusus yang utama terhasil dari penyelidikan 
ini ialah aplikasi analisis matematik berkenaan biomolekul DNA yang akan terhasil 
dalam tabung uji akibat dari aksi set enzim pembatas tertentu yang bertindak ke atas 
set molekul DNA yang dipilih. 

 
 Penyelidik utama :  

 
Prof Madya Dr. Nor Haniza Sarmin (Ketua) 

Prof Madya Dr. Tahir Ahmad 
Prof Madya Dr. Fahrul Zaman Huyop 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 
1.1 Introduction 

Every living organism has DNA that makes the organism unique.  There are 

more than 200 types of readily available restriction enzymes as listed in the New 

England Biolabs catalog.  These restriction enzymes can cut strings of DNA 

molecules at specific places, resulting in molecules with sticky ends.  New molecules 

then arise when molecules previously cut by restriction enzymes are pasted together 

by a ligase.  Splicing system was defined to model the recombinant action of 

restriction enzyme and a ligase on DNA molecules.  The language which results 

from a splicing system is called a splicing language.  This language contains the 

initial strings of DNA molecules and is closed under the application of splicing rules.  

This splicing language is further studied using formal language theory, which is a 

branch of applied discrete mathematics and theoretical computer science.  It concerns 

with sets of strings called languages and different mechanism for generating and 

recognizing them. 

 

1.2 Research Background 

 This research initiates the connection between formal language theory and the 

study of informational macromolecules.  Previously, these two branches of studies 

are independent of each other.  However, when splicing system is introduced, the 
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generative capacity of system of enzymes acting on a set of DNA molecules is 

established formally using formal language theory.  Different languages can result 

from this recombinant behaviours and are analyzed using concept of languages in 

formal language theory. 

 

1.3 Problem Statement 

 To apply as many restriction enzymes in different splicing languages and to 

introduce new concepts related to splicing language. 

 

1.4 Research Objectives 

The objectives of this research are: 

1) To study the different concepts in splicing systems and to find 

examples to illustrate those concepts. 

2) To study the features of sets of restriction sites of the restriction 

enzymes that will allow formal descriptions of their generative 

capacity. 

3) To study the sites in DNA molecules at which the restriction enzymes 

react. 

4) To introduce new concepts in splicing system to determine 

recombinant behaviour of system of enzymes on DNA molecules. 

5) To provide mathematical proofs for concepts related to splicing 

system. 
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1.5 Scope of the Study 

 This research will involve the study of the sites in DNA molecules at which 

some 200 types of readily available restriction enzymes act and determine features of 

sets of these sites that allow transparent formal descriptions of their generative 

capacity using the concept of formal language theory.  Splicing system, which is 

used to model the recombinant action of restriction enzymes and a ligase on DNA 

molecules, will be studied.  New concepts related to splicing language will also be 

introduced. 

 

1.6 Significance of Findings 

 The very general long-term benefit of this research will be the mutual 

stimulation provided to the communities of mathematical scientists and biomolecular 

scientists since this area of research is fairly new in Malaysia.  Each of these sciences 

can then make a contribution to each other.  Algorithms for new concepts of splicing 

language will be provided.  Research papers regarding this research will be published 

in national and international journals and proceedings. 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 
 
 
 
 

LITERATURE REVIEW 
 
 
 
 
2.1 Literature Review 

The potential effect of sets of restriction enzymes and a ligase that allow 

DNA molecules to be cleaved and reassociated to produce further molecules can be 

found in [1].  The associated languages are analyzed by means of a new generative 

formalism called a splicing system.  A new relationship between formal language 

theory and the study of informational macromolecules was thus initiated.  Formal 

language theory is a branch of applied discrete mathematics and theoretical computer 

science that is devoted to the study of sets of finite strings (called languages) of 

symbols chosen from a prescribed finite set (called an alphabet).  The set of double-

stranded DNA molecules that may arise from an initial set of DNA molecules in the 

presence of specified enzyme activities is represented as a language over the four-

symbol alphabet of deoxyribonucleotide pairs. 

 There are three different splicing models namely Head splicing system [1], 

Paun splicing system [2] and Pixton splicing system [3].  Head’s splicing language is 

always Paun’s splicing language, while Paun’s splicing language is always Pixton’s 

splicing language.  These different splicing models were studied in [4]. 

 Splicing language generated with one sided context is introduced in [5], 

which describes reflexive and symmetric splicing language.  Besides, it gives 

molecular consideration of a splicing system via splicing rules of the full 
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recombinant capacity of a restriction enzyme accompanied by a ligase.  Examples of 

reflexive and symmetric languages are also given in [6]. 

 Null context splicing system and strictly locally testable (SLT) languages are 

described in [7].  A procedure is given which, for an arbitrary regular language L, 

determines whether L is in SLT, and when L is in SLT, specifies constructively the 

smallest family in the hierarchy to which L belongs.   

 An example of a regular language which is not a splicing language is given 

by Gatterdam in [8].  This papers shows that not all splicing languages are strictly 

locally testable and hence not persistent.  Local and semilocal languages are 

introduced in [9].  Local language is a splicing language and a splicing language is a 

regular language.  Other types of splicing languages such as simple, semi-simple and 

semi-null splicing languages are defined by Laun in [10]. 

 

2.2 Preliminaries 

 Some main definitions used in this research are listed below.   

Definition 2.1 (splicing system) [1]: 

A splicing system S = (A, I, B, C) consists of a finite alphabet A, a finite set I 

of initial strings in A*, and finite sets B and C of triples (c, x, d) with c, x and d in A*.  

Each such triple in B or C is called a pattern.  For each such triple the string cxd is 

called a site and the string x is called a crossing.  Patterns in B are called left patterns 

and patterns in C are called right patterns.  The language L = L(S) generated by S 

consists of the strings in I and all strings that can be obtained by adjoining to L ucxfq 

and pexdv whenever ucxdv and pexfq are in L and (c, x, d) and (e, x, f) are patterns of 

the same hand.  A language L is a splicing language if there exists a splicing system 

S for which L = L(S). 
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Definition 2.2 (persistent) [1]: 

Let S = (A, I, B, C) be a splicing system.  Then S is persistent if for each pair 

of strings ucxdv, and pexfq, in A* with (c, x, d) and (e, x, f) of the same hand: If y is a 

subsegment of ucx (respectively xfq) that is the crossing of a site in ucxdv 

(respectively pexfq) then this same subsegment y of ucxfq contains an occurrence of 

the crossing of a site in ucxfq. 

Definition 2.3 (null context splicing system) [1]: 

A null context splicing system is a splicing system S = (A, I, B, C) for which 

each cleavage pattern in B and each in C has the form (1, x, 1). 

Definition 2.4 (constant) [1]: 

With respect to a language over A, a string c in A* is a constant if, whenever 

ucv and pcq are in the language, ucq and pcv are also in the language. 

Definition 2.5 (strictly locally testable) [7]: 

A language L is strictly locally testable (SLT) if there is a positive integer k 

for which every factor of L of length k is constant. 

Definition 2.6 (uniform splicing system) [1]: 

A uniform splicing system is a null context splicing system S = (A, I, X, X) for 

which there is a positive integer P such that X = AP.  A language L is a uniform 

splicing language if there is a uniform splicing system S for which L = L(S).  

 

 



 7

Definition 2.7 (n-local, local): 

A language L is n-local, n is a non-negative integer, if every string of length n 

is a constant relative to L.  L is a local language if it is n-local for some non-negative 

integer n. 

The following are some propositions and theorems related to this research. 

Theorem 2.1 (De Luca & Restivo) [1]: 

If for a language L over A all the strings in AP are constants then L is (P+1)-

strictly locally testable. 

Note: For a P-strictly locally testable language L over an alphabet A, all strings in AP 

are constants. 

Theorem 2.2 [1]: 

The following conditions on a language L over an alphabet A are equivalent: 

(i) L is a persistent splicing language; 

(ii) L is a strictly locally testable language; 

(iii) The set of constants for L contains AP for some P; 

(iv) L is a uniform splicing language. 

Proposition 2.3: 

 Let A be a finite alphabet and L in A* a language.  Then L is a null-context 

splicing language if and only if L is local. 
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Proof.  

 Suppose that L is local.  Let n be a non-negative integer for which L is n-

local.  Let R = {w in A*: w has length n}.  Let I = {z in L : no string w of length n 

occurs as many as three times as a factor of z }.  We confirm that L = L(A,R,I): L ⊇ 

L(A,R,I) since L ⊇ I and every w in R is a constant with respect to L since L is n-

local.  Suppose now that L ⊄ L(A,R,I) and let z be a string of least length in L \ 

L(A,R,I).  Then z is not in I, and there must be at least one string w of length n, for 

which w occurs in z at least three times.  Let the specified occurrences of w in the 

three factorizations, z = swt = uwv = xwy, be the first, second and third occurrences 

of w in z.  Thus sw is a proper prefix of uw and uw is a proper prefix of xw.  Let uw 

= swp and xw = uwq.  Since w is a constant with respect to L:  (1) from swt and uwv 

in L we have swv in L; (2) from uwv and xwy in L we have uwy in L.  Each of swv 

and uwy is shorter than z and therefore each is in L(A,R,I).   Since both uwy and swv 

are in L(A,R,I) and w is in R, the contradiction uwv = z is in L(A,R,I) arises.  Thus L 

⊆ L(A,R,I) and L = L(A,R,I) is confirmed. 

 Suppose now that L = L(A,R,I) where both R and I are finite subsets of A*.  

(We do not assume that all strings in R have the same length.)  We confirm that L is 

n-local where n is the length of the longest string in I plus twice the length of the 

longest string in R:  Let L(0) = I and, for each j ≥ 1, let L(j+1) = L(j) ∪{ z in A* \ L(j) 

: z = uwy, where w has length n and there exist v & x for which uwv & xwy are in 

L(j)}.  Then L = ∪ {L(j) : j ≥ 0}.  Suppose that L is not n-local. Note that L(0) is n-

local (in the vacuous sense).  It follows that there is a greatest non-negative integer k 

for which L(k) is n-local.  Then L(k+1) is not n-local and there is string z in 

L(k+1)\L(k) in which a non-constant factor of length n occurs.  Then there are strings 

uwv & xwy in L(k) with w in R and z = uwy.  A contradiction arises as follows:  For 

each occurrence of a factor s of length n in z, one of the following three possibilities 

holds.  (1) s is a factor of uw and is therefore a constant because uwv is in L(k) which 

is n-local.  (2) s = qwp where q is a suffix of u and p is a prefix of y and is therefore a 

constant since w is a constant.  (3) s is a factor of wy and is therefore a constant 

because xwy is in L(k) which is n-local.  From this contradiction it follows that L is n-

local as asserted. 



CHAPTER 3 
 
 
 
 

STRICTLY LOCALLY TESTABLE LANGUAGE  
 
 
 
 
3.1  Introduction 

This chapter highlights some examples of not strictly locally testable 

languages.  Theorems related to different combination of restriction enzymes in 

strictly locally testable languages are proved using definitions, theorems and 

propositions listed in Chapter 2.   

 

3.2  Not Strictly Locally Testable Language 

Two examples of languages that are not strictly locally testable is given 

below.  The first example differs from the second one by the length of the restriction 

sites of the enzymes.  Different restriction enzymes and initial strings are used for 

both the examples to illustrate the cut and paste activities of restriction enzymes and 

a ligase that act on a set of DNA molecules, and the new strings which will arise 

from them.  In these two examples, g, a, t and c denotes [G/C], [A/T], [T/A] and 

[C/G] respectively.  The lines in these two examples refer to the cutting sites by the 

respective restriction enzymes. 
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Example 3.1: 

Let S = (D, I, B, ∅) be a splicing system where I = {ggtacc tctagc tgtaca, 

gctagc tgtacc tctaga} is the set consisting of two initial strings.  The set B = {(G, 

GTAC, C), (T, GTAC, A), (G, CTAG, C), (T, CTAG, A)} is the set of cleavage 

patterns for enzymes Acc65I, BsrGI, NheI and XbaI respectively.  These patterns all 

leave 5' overhangs.   

Considering the first initial string, that is ggtacc tctagc tgtaca.  Using the 

enzyme Acc65I, the following recombination can be seen, where new molecules 

(3.1) and (3.2) will arise. 

G|GTACC TCTAGC TGTACA 
CCATG|G AGATCG ACATGT 

 

TGTACA GCTAGA G|GTACC 
ACATGT CGATCT  CCATG|G 

 

GGTACC         (3.1) 
CCATGG 
 

TGTACA GCTAGA GGTACC TCTAGC TGTACA   (3.2) 
ACATGT CGATCT CCATGG AGATCG ACATGT  

Using the enzyme BsrGI, the following recombination can be seen, where 

new molecules (3.3) and (3.4) will arise. 

GGTACC TCTAGC T|GTACA 
CCATGG AGATCG ACATG|T 

 

T|GTACA GCTAGA GGTACC 
ACATG|T CGATCT  CCATGG 

 

TGTACA         (3.3) 
ACATGT 
 

GGTACC TCTAGC TGTACA GCTAGA GGTACC   (3.4) 
CCATGG AGATCG ACATGT CGATCT  CCATGG 
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Using both the enzymes Acc65I and BsrGI, the following recombination can 

be seen, where new molecules (3.6), (3.7), (3.8) and (3.9) will arise. 

G|GTACC TCTAGC TGTACA 
CCATG|G AGATCG ACATGT 

 

       GGTACC TCTAGC T|GTACA   (3.5) 
CCATGG AGATCG ACATG|T 

 

GGTACA         (3.6)  
CCATGT 
 
G|GTACC  TCTAGC TGTACC TCTAGC  TGTACA   (3.7) 
CCATG|G AGATCG ACATGG AGATCG ACATGT 
 

GGTACC TCTAGC  TGTACC      (3.8) 
CCATGG AGATCG ACATGG 
 

TGTACC  TCTAGC TGTACA      (3.9) 
ACATGG AGATCG ACATGT 

Moreover, when the enzymes Acc65I and BsrGI are applied to the molecules 

marked (3.5) and (3.7), the following new string of molecule will arise: 

GGTACC TCTAGC  TGTACC  TCTAGC  TGTACC TCTAGC  TGTACA 
CCATGG AGATCG ACATG G AGATCG ACATGG AGATCG ACATGT. 

Continuing in this manner, the molecules which will result from the first 

initial string using the enzymes Acc65I and BsrGI can be summarized as 

GGTACC TCTAGCTGTACC TCTAGCTGTACA
: 0

CCATGG AGATCGACATGG AGATCGACATGT

n

n
⎧ ⎫⎛ ⎞⎪ ⎪≥⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
. 

Now, considering the second initial string, that is gctacg tgtacc tctaga.  Using 

the enzyme NheI, the following recombination can be seen, where new molecules 

(3.10) and (3.11) will arise. 

G|CTAGC TGTACC TCTAGA 
CGATC|G ACATGG AGATCT 
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TCTAGA GGTACA G|CTAGC 
AGATCT CCATGT CGATC|G 

 

GCTAGC         (3.10) 
CGATCG 
 

TCTAGA GGTACA GCTAGC TGTACC TCTAGA   (3.11) 
AGATCT CCATGT CGATCG ACATGG AGATCT 

Using the enzyme XbaI, the following recombination can be seen, where new 

molecules (3.12) and (3.13) will arise. 

GCTAGC TGTACC T|CTAGA 
CGATCG ACATGG AGATC|T 

 

T|CTAGA GGTACA GCTAGC 
AGATC|T CCATGT CGATCG 

  

TCTAGA         (3.12) 
AGATCT     
 

GCTAGC TGTACC  TCTAGA GGTACA GCTAGC   (3.13) 
CGATCG ACATGG AGATCT CCATGT CGATCG 

Using both the enzymes NheI and XbaI, the following recombination can be 

seen, where new molecules (3.15), (3.16), (3.17) and (3.18) will arise. 

G|CTAGC TGTACC TCTAGA 
CGATC|G ACATGG AGATCT 

 

       GCTAGC TGTACC T|CTAGA   (3.14) 
CGATCG ACATGG AGATC|T 

 

GCTAGA         (3.15) 
CGATCT 
 

G|CTAGC TGTACC  TCTAGC TGTACC TCTAGA    (3.16) 
CGATC|G ACATGG AGATCG ACATGG AGATCT 
 

TCTAGC TGTACC  TCTAGA      (3.17) 
AGATCG ACATGG AGATCT 
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GCTAGC TGTACC TCTAGC      (3.18) 
CGATCG ACATGG AGATCG 

Moreover, when the enzymes NheI and XbaI are applied to the molecules 

marked (3.14) and (3.16), the following new string of molecule will arise: 

GCTAGC TGTACC TCTAGC  TGTACC  TCTAGC  TGTACC TCTAGA 
CGATCG ACATGG AGATCG ACATGG AGATCG ACATGG AGATCT. 

Continuing in this manner, the molecules which will result from the second 

initial string using the enzymes NheI and XbaI can be summarized as 

GCTAGCTGTACC TCTAGCTGTACC TCTAGA
:  0

CGATCGACATGG AGATCGACATGG AGATCT

n

n
⎧ ⎫⎛ ⎞⎪ ⎪≥⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
. 

None of the strings in the infinite set (tctagc tgtacc)n is a constant since each 

such string occurs as a segment of a string in each of the two sets.  Since if such a 

string were a constant, a string beginning with GG and ending with GA would lie in 

L.  For this splicing language, there does not exist a positive integer P for which all 

strings of length P are constant.  Thus the language which result from this splicing 

system using the four enzymes Acc65I, BsrGI, NheI and XbaI with initial string I = 

{ggtacc tctagc tgtaca, gctagc tgtacc tctaga}is not strictly locally testable. 

Example 3.2: 

Let S = (D, I, B, ∅) be a splicing system where I = {ccgg ttag tcga, ctag tcgg 

ttaa} is the set consisting of two initial strings.  The set B = {(C, CG, G), (T, CG, A), 

(C, TA, G), (T, TA, A)} is the set of cleavage patterns for enzymes HpaII, Taqα I, 

BfaI and MseI respectively.  These patterns all leave 5' overhangs.   

Considering the first initial string, that is ccgg ttag tcga.  Using the enzyme 

HpaII, the following recombination can be seen, where new molecules (3.19) and 

(3.20) will arise. 
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C|CGG TTAG TCGA 
GGC|C AATC AGCT 

 

TCGA CTAA C|CGG 
AGCT GATT GGC|C 

 

CCGG          (3.19) 
GGCC 
 
TCGA CTAA CCGG TTAG TCGA      (3.20) 
AGCT GATT GGCC AATC AGCT 

Using the enzyme Taqα I, the following recombination can be seen, where 

new molecules (3.21) and (3.22) will arise. 

CCGG TTAG T|CGA 
GGCC AATC AGC|T 

 

T|CGA CTAA CCGG 
AGC|T GATT GGCC 

 

TCGA          (3.21) 
AGCT    
 

CCGG TTAG TCGA CTAA CCGG      (3.22) 
GGCC AATC AGCT GATT GGCC 

Using both the enzymes HpaII and Taqα I, the following recombination can 

be seen, where new molecules (3.24), (3.25), (3.26) and (3.27) will arise. 

C|CGG TTAG TCGA 
GGC|C AATC AGCT 

 

         CCGG TTAG T|CGA   (3.23) 
GGCC AATC AGC|T 

 

CCGA          (3.24) 
GGCT 
 

C|CGG TTAG TCGG TTAG TCGA      (3.25) 
GGC|C AATC AGCC AATC AGCT 
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TCGG TTAG TCGA        (3.26) 
AGCC AATC AGCT 
 

CCGG TTAG TCGG        (3.27) 
GGCC AATC AGCC 

Moreover, when the enzymes HpaII and Taqα I are applied to the molecules 

marked (3.23) and (3.25), the following new string of molecule will arise: 

CCGG TTAG TCGG TTAG TCGG TTAG TCGA 
GGCC AATC AGCC AATC AGCC AATC AGCT. 

Continuing in this manner, the molecules which will result from the first 

initial string using the enzymes HpaII and Taqα I can be summarized as 

CCGG TTACTCGG TTAGTCGA
:  0

GGCC AATGAGCC AATCAGCT

n

n
⎧ ⎫⎛ ⎞⎪ ⎪≥⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
. 

Now, considering the second initial string, that is ctag tcgg ttaa.  Using the 

enzyme BfaI, the following recombination can be seen, where new molecules (3.28) 

and (3.29) will arise. 

C|TAG TCGG TTAA 
GAT|C AGCC AATT 

 

TTAA CCGA C|TAG 
AATT GGCT GAT|C 

 

CTAG          (3.28) 
GATC 
 

TTAA CCGA CTAG TCGG TTAA      (3.29) 
AATT GGCT GATC AGCC AATT 

 Using the enzyme MseI, the following recombination can be seen, where new 

molecules (3.30) and (3.31) will arise. 

CTAG TCGG T|TAA 
GATC AGCC AAT|T 
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T|TAA CCGA CTAG 
AAT|T GGCT GATC 

 

TTAA          (3.30) 
AATT 
 

CTAG TCGG TTAA CCGA CTAG      (3.31) 
GATC AGCC AATT GGCT GATC 

Using both the enzymes BfaI and MseI, the following recombination can be 

seen, where new molecules (3.33), (3.34), (3.35) and (3.36) will arise. 

C|TAG TCGG TTAA 
GAT|C AGCC AATT 

 

   CTAG TCGG T|TAA     (3.32) 
GATC AGCC AAT|T 

 

CTAA          (3.33) 
GATT 
  

C|TAG TCGG TTAG TCGG TTAA      (3.34)  
GAT|C AGCC AATC AGCC AATT 
 

TTAG TCGG TTAA        (3.35) 
AATC AGCC AATT 
 

CTAG TCGG TTAG        (3.36) 
GATC AGCC AATC 

Moreover, when the enzymes BfaI and MseI are applied to the molecules 

marked (3.32) and (3.34), the following new string of molecule will arise: 

CTAG TCGG TTAG  TCGG TTAG TCGG TTAA 
GATC AGCC AATC AGCC AATC AGCC AATT. 

Continuing in this manner, the molecules which will result from the second 

initial string using the enzymes BfaI and MseI can be summarized as 

CTAGTCGG TTAGTCGG TTAA
:  0

GATCAGCC AATCAGCC AATT

n

n
⎧ ⎫⎛ ⎞⎪ ⎪≥⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
. 
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None of the strings in the infinite set (ttag tcgg)n is a constant since each such 

string occurs as a segment of a string in each of the two sets.  Since if such a string 

were a constant, a string beginning with CC and ending with AA would lie in L.  For 

this splicing language, there does not exist a positive integer P for which all strings 

of length P are constant.  Thus the language which result from this splicing system 

using the four enzymes HpaII, Taqα I, BfaI and MseI with initial string I = {ccgg ttag 

tcga, ctag tcgg ttaa} is not strictly locally testable. 

 

3.3 Different Combination of Restriction Enzymes in a Strictly Locally 

Testable Language 

 This section discusses some theorems related to different combination of 

restriction enzymes in strictly locally testable (SLT) languages. 

Theorem 3.1:   

 Suppose L = L(S) where S = (D, I, B, C).  If only one of the restriction 

enzymes is used for either B or C, the language generated must be SLT disregard of 

the initial language I (i.e., the initial set of molecular varieties). 

Proof:   

If there is only one restriction enzyme present, only the string of DNA which 

contains the restriction site of that particular enzyme can be altered by cutting at the 

specified sequence of restriction enzyme, and later pasting it back.  Since there is a 

positive integer k for which every factor of L of length k is a constant, L is a SLT 

language.  � 
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Theorem 3.2:   

 Suppose L = L(S) where S = (D, I, B, C).  If exactly one enzyme having a left 

overhang and exactly one enzyme having a right overhang is used to give B and C, 

the language generated must be SLT disregard of the initial language I. 

Proof:   

If there is only one enzyme in each B and C, only the string of DNA which 

contains the restriction site of any one or both of those particular enzymes can be 

altered, and since one of the enzyme has a left overhang and the other enzyme a right 

overhang, it is not possible for them to be cut and pasted together.  This is because 

there is no possibility that a 5' overhang can combine with a 3' overhang.  Since there 

is a positive integer k for which every factor of L of length k is a constant, L is a SLT 

language.  � 

Theorem 3.3:   

 Given a set consisting of two restriction enzymes:  AgeI and MseI.  Since 

there are two enzymes in the set, there are 22 = 4 subsets of this set of two enzymes.  

For all of these four subsets, the language generated by this splicing system will be 

SLT for every possible choice of I.   

Proof:   

 These four subsets are ∅, { AgeI }, { MseI }and { AgeI, MseI }.  This is due 

to the crossings of the restriction sites are disjoint as shown below:  

Restriction site for the enzyme AgeI: 

5′…A▼CCGG T…3′ 
3′…T GGCC▲A…5′ 
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Restriction site for the enzyme MseI: 

5′...T▼TA A...3′ 
3′...A AT▲T...5′ 

Therefore, since the crossings of the restriction sites are disjoint and there is a 

positive integer k for which every factor of L of length k is a constant, L is a SLT 

language.  � 

Theorem 3.4:   

 Given a set consisting of three restriction enzymes:  AgeI, MseI and HpaII.  

Since there are three enzymes in the set, there are 23 = 8 subsets of this set of three 

enzymes.  For all of these eight subsets, the language generated by this splicing 

system will be SLT for every possible choice of I.   

Proof:   

 These eight subsets are ∅, { AgeI }, { MseI }, { HpaII }, { AgeI, MseI },  { 

AgeI, HpaII }, { MseI, HpaII } and { AgeI, MseI, HpaII }.  This is due to the 

crossings of the restriction sites are disjoint as shown below:  

Restriction site for the enzyme AgeI:  

5′…A▼CCGG T…3′ 
3′…T GGCC▲A…5′ 

Restriction site for the enzyme MseI: 

5′...T▼TA A...3′ 
3′...A AT▲T...5′ 

Restriction site for the enzyme HpaII: 

5′…C▼CG G…3′ 
3′…G GC▲C…5′ 
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Therefore, since the crossings of the restriction sites are disjoint and there is a 

positive integer k for which every factor of L of length k is a constant, L is a SLT 

language.  � 

Theorem 3.5:   

 Given a set consisting of four restriction enzymes:  BamHI, BglII, BclI and 

DpnII.  Since there are four enzymes in the set, there are 24 = 16 subsets for this set 

of four enzymes.  Let S be any subset of these sets that contain DpnII.  For every 

such set S, ∅, { BamHI }, { BglII } and { BclI }, the language generated by this 

splicing system is SLT for every possible choice of I. 

Proof:   

 The restriction sites for enzymes BamHI, BglII, BclI and DpnII are shown 

below: 

Restriction site for the enzyme BamHI: 

5′…G▼GATC C…3′ 
3′…C CTAG▲G…5′ 

Restriction site for the enzyme BglII: 

5′…A▼GATC T…3′ 
3′…T CTAG▲A…5′ 

Restriction site for the enzyme BclI: 

5′…T▼GATC A…3′ 
3′…A CTAG▲T…5′ 

Restriction site for the enzyme DpnII: 

5′…▼GATC …3′ 
3′… CTAG▲…5′ 
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 For a language L generated by sets ∅, {BamHI}, {BglII}and {BclI}, the set 

of constants for L contains AP for some P, that is P = 4 in this case.  Therefore L is a 

SLT language.   

 For any splicing system with sets consisting of Dpn II, that splicing system is 

a null context splicing system where P = 4.  Such a splicing system is also a uniform 

splicing system, thus the language generated is a uniform splicing language, 

implying that it is a SLT language also.  � 

Theorem 3.6:   

 Given a set consisting of four restriction enzymes:  DpnI, DpnII, BamHI and 

BclI. Since there are four enzymes in the set, there are 24 = 16 subsets for this set of 

four enzymes.  Let S be any subset that contains at least one of { DpnI, DpnII }.  For 

every such set S, ∅, { BamH I } and { Bcl I }, the language generated by this splicing 

system is SLT for every possible choice of I. 

Proof:  

 The restriction sites for enzymes DpnI, DpnII, BamHI and BclI are shown 

below:  

Restriction site for the enzyme DpnI: 

5′…GA▼TC…3′ 
3′…CT▲AG…5′ 

Restriction site for the enzyme DpnII: 

5′…▼GATC …3′ 
3′… CTAG▲…5′ 

Restriction site for the enzyme BamHI: 

5′…G▼GATC C…3′ 
3′…C CTAG▲G…5′ 
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Restriction site for the enzyme BclI: 

5′…T▼GATC A…3′ 
3′…A CTAG▲T…5′ 

 For a language L generated by sets S, ∅, {BamHI} and {BclI}, the set of 

constants for L contains AP for some P, that is P = 4 in this case.  Strings that contain 

sites are constants.  There is a positive integer k = 4 for which every factor of L of 

length 4 is a constant.  Therefore L is a SLT language.  � 

 

3.4 Conclusion 

 This chapter shows two examples of a language that is not strictly locally 

testable.  Besides, several theorems regarding different combination of restriction 

enzymes in a strictly locally testable language are also discussed.  

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4 
 
 
 
 

CONCEPTS OF CONSTANT AND LOCAL 
 
 
 
 
4.1 Introduction 

In this section, some theorems and proofs on the concepts of constant and 

local are included.  Recall that a string x is a constant relative to a language L if for 

any two words pxq and uxv in L, it follows that pxv is also in L.  Also, a language L is 

n-local, where n is a non-negative integer, if every string of length n is a constant 

relative to L.  Furthermore, L is a local language if it is n-local for some non-negative 

integer n. 

 

4.2 Theorems on Concepts of Constant and Local 

 Below are six theorems regarding the concepts of constant and local in a 

language together with their proofs. 

Theorem 4.1:   

 If x is a constant relative to L and pxq and uxv are in L, then uxq is in L. 
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Proof:  

Let x be a constant relative to L.  For pxq and uxv in L, by definition, pxv is in 

L.  Thus for uxv and pxq in L, by definition also, uxq is in L.  � 

Theorem 4.2:   

 If L is n-local then it is k-local for every k > n.    

Proof:  

Suppose L is n-local.  Every string of length n is a constant relative to L.  If 

px1x2…xn-1xnq, ux1x2…xn-1xnv ∈ L, then px1x2…xn-1xnv ∈ L and ux1x2…xn-1xnq ∈ L 

since x1x2…xn-1xn is a constant.  Suppose px1x2…xn-1xnxn+1…xk-1xkq, ux1x2…xn-

1xnxn+1…xk-1xkv ∈ L.   From px1x2…xn-1xnq ∈ L and ux1x2…xn-1xnxn+1…xk-1xkv ∈ L, 

px1x2…xn-1xnxn+1…xk-1xkv ∈ L also since x1x2…xn-1xn is a constant.  Similarly, from 

ux1x2…xn-1xnv ∈ L and px1x2…xn-1xnxn+1…xk-1xkq ∈ L, ux1x2…xn-1xnxn+1…xk-1xkq ∈ L 

also since x1x2…xn-1xn is a constant.  Therefore, if L is n-local, then it is k-local for 

every k > n.  �  

Theorem 4.3:   

 If L =  xv'(vyzu)*u'x, then L is local and n-local for n ≥ 2. 

Proof:  

L is a local language if it is n-local for some non-negative integer n, that is, 

every string of length n is a constant relative to L.  Since vyzu of length 4 is a 

constant relative to L and every string of length 4 is a constant relative to L, L is 4-

local. 
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Suppose x is a constant and xv'u'x ∈ L.  However, xv'u'xv'u'x ∉ L.  Thus L is 

not 1-local.  But every string of length 2 is a constant relative to L.  Therefore L is n-

local for n ≥ 2.  � 

Theorem 4.4:   

 If L' =  xz'(zuvy)*y'x, then L' is local and n- local for n ≥ 2. 

Proof:  

L' is a local language if it is n-local for some non-negative integer n, that is, 

every string of length n is a constant relative to L'.  Since zuvy of length 4 is a 

constant relative to L' and every string of length 4 is a constant relative to L', L' is 4-

local. 

Suppose x is a constant and xz'y'x ∈ L'.  However, xz'y'xz'y'x ∉ L'.  Thus L' is 

not 1-local.  But every string of length 2 is a constant relative to L'.  Therefore L' is n-

local for n ≥ 2.  � 

Theorem 4.5:   

 If L =  xv'(vyzu)*u'x and L' =  xz'(zuvy)*y'x¸ then L'' = L ∪ L'= 

xv'vyz(uvyz)*uu'x ∪ xz'z(uvyz)*uvyy'x ∪ {xv'u'x, xz'y'x}. 

Proof: 

L''  = L ∪ L' 

  = xv'(vyzu)*u'x ∪ xz'(zuvy)*y'x 

  = xv'u'x ∪ xv'vyz(uvyz)*uu'x ∪ xz'y'x ∪ xz'z(uvyz)*uvyy'x 

  = xv'vyz(uvyz)*uu'x ∪ xz'z(uvyz)*uvyy'x ∪ {xv'u'x, xz'y'x}.  � 
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Theorem 4.6:   

 If L'' = xv'vyz(uvyz)*uu'x ∪ xz'z(uvyz)*uvyy'x ∪ {xv'u'x, xz'y'x}, then L'' is not 

local. 

Proof: 

L'' is not 1-local since there exist string of length 1 that is not a constant 

relative to L'': xv'u'x, xz'y'x ∈ L'' but xv'u'xz'y'x ∉ L''.  L'' is not 2-local since 

xv'vyzuu'x, xz'zuvyy'x ∈ L'' but xv'vyy'x ∉ L''.  L'' is not 3-local since xv'vyzuu'x, 

xz'zuvyzuvyy'x ∈ L'' but xv'vyzuvyy'x ∉ L''.  L'' is not 4-local since xv'vyzuvyzuu'x, 

xz'zuvyzuvyy'x ∈ L'' but xv'vyzuvyzuvyy'x ∉ L''. 

Similarly, no string beginning with xv' and ending with y'x would lie in L''.  

There is a string of length n that is not a constant relative to L''.  L'' is not n-local and 

thus not local.  � 

 

4.3 Theorems on Conditions of Splicing Rules 

 This section presents three theorems showing conditions of splicing rules 

which are equivalent to each other. 

Theorem 4.7:   

 The following four conditions on the pair consisting of a word w in A* and a 

language L ∈ A* are equivalent:   

(a) w is a constant with respect to L.   

(b) L is closed under the splicing rule (w, 1, w, 1), i.e., under the splicing rule w.   

(c) L is closed under the splicing rule (1,w, 1, w).   

(d) L is closed under a splicing rule (u, v, u, v) where uv = w. 
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Proof: 

(a) ⇒ (b):  Suppose w is a constant with respect to L.  Thus, if pwq, rws ∈ L, then 

pws ∈ L and rwq ∈ L.  Using splicing rule (w, 1, w, 1), pwq = p-w, 1-q ∈ L and rws = 

r-w, 1-s ∈ L.  This splicing rule (w, 1, w, 1) yields p-w,1-s = pws ∈ L and r-w,1-q = 

rwq ∈ L.  Therefore, pwq, rws, pws, rwq ∈ L using rule (w, 1, w, 1) and L is closed 

under this splicing rule. 

(b) ⇒ (c):  Suppose L is closed under the splicing rule (w, 1, w, 1).  Thus, pwq, rws, 

pws, rwq ∈ L using (w, 1, w, 1).  Using splicing rule (1, w, 1, w), pwq = p-1, w-q ∈ L 

and rws = r-1,w-s ∈ L.  This splicing rule (1, w, 1, w) further yields p-1, w-s = pws ∈ 

L and r-1, w-q = rwq ∈ L.  Therefore, pwq, rws, pws, rwq ∈ L using rule (1, w, 1, w) 

and L is closed under this splicing rule. 

(c) ⇒ (d):  Suppose L is closed under the splicing rule (1, w, 1, w).  Thus, pwq, rws, 

pws, rwq ∈ L using (1, w, 1, w).  Using splicing rule (u, v, u, v) where uv = w, pwq = 

puvq = p-u, v-q ∈ L and rws = ruvs = r-u, v-s ∈ L. This splicing rule (u, v, u, v) 

further yields p-u, v-s = puvs = pws ∈ L and r-u, v-q = ruvq = rwq ∈ L.  Therefore, 

pwq, rws, pws, rwq ∈ L using rule (u, v, u, v) where uv = w and L is closed under this 

splicing rule. 

(d) ⇒ (a):  Suppose L is closed under the splicing rule (u, v, u, v) where uv = w.  

Thus, pwq, rws, pws, rwq ∈ L using (u, v, u, v).  Since pwq, rws ∈ L and pws, rwq ∈ 

L, then w is a constant with respect to L.  � 

Theorem 4.8:   

 The following four conditions on a language L ∈ A* are equivalent:   

(a) L is n-local.   

(b) L is closed under the action of each splicing rule (w, 1, w, 1) for which w has 

length n, i.e., under the splicing rule w, where w has length n.   
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(c) L is closed under the action of every splicing rule (1, w, 1, w) with w of 

length n. 

(d) L is closed under the action of each splicing rule (u, v, u, v) for which length 

uv is n. 

Proof: 

(a) ⇒ (b):  Suppose L is n-local, that is, every string of length n is a constant relative 

to L.  Thus, if pw1w2…wnq, rw1w2…wns ∈ L, then pw1w2…wns ∈ L.  Using splicing 

rule (w, 1, w, 1), pw1w2…wnq = pw1w2…wn, 1-q ∈ L and rw1w2…wns = rw1w2…wn, 

1-s ∈ L yields pw1w2…wn, 1-s = pw1w2…wns ∈ L and rw1w2…wn,1-q = rw1w2…wnq 

∈ L.  Therefore, pw1w2…wnq, rw1w2…wns, pw1w2…wns and rw1w2…wnq ∈ L using 

rule (w, 1, w, 1) and L is closed under this splicing rule. 

(b) ⇒ (c):  Suppose that L is closed under the splicing rule (w, 1, w, 1).  Thus, 

pw1w2…wnq, rw1w2…wns, pw1w2…wns and rw1w2…wnq ∈ L using rule (w, 1, w, 1).  

But using splicing rule (1, w, 1, w), pw1w2…wnq = p-1, w1w2…wn – q ∈ L and 

rw1w2…wns = r-1, w1w2…wn-s ∈ L.  This splicing rule further yields p-1, w1w2…wn-s 

= pw1w2…wns  ∈ L and r-1, w1w2…wn-q = rw1w2…wnq ∈ L.  Therefore, 

pw1w2…wnq, rw1w2…wns, pw1w2…wns and rw1w2…wnq ∈ L using rule (1, w, 1, w) 

and L is closed under this splicing rule. 

(c) ⇒ (d):  Suppose that L is closed under the splicing rule (1, w, 1, w).  Thus, 

pw1w2…wnq, rw1w2…wns, pw1w2…wns and rw1w2…wnq ∈ L using rule (1, w, 1, w).   

But using splicing rule (u, v, u, v) where uv = w1w2…wn, pw1w2…wnq = puvq = p-u, 

v-q ∈ L and rw1w2…wns = ruvs = r-u, v-s ∈ L.  This splicing rule further yields p-u, 

v-s = puvs = pw1w2…wns ∈ L and r-u, v-q = ruvq = rw1w2…wnq ∈ L.  Therefore, 

pw1w2…wnq, rw1w2…wns, pw1w2…wns and rw1w2…wnq ∈ L using rule (u, v, u, v) 

where uv = w1w2…wn and L is closed under this splicing rule. 

(d) ⇒ (a):  Suppose L is closed under the splicing rule (u, v, u, v) where uv = 

w1w2…wn.  Thus, pw1w2…wnq, rw1w2…wns, pw1w2…wns and rw1w2…wnq ∈ L using 



 29

rule (u, v, u, v).  Since    pw1w2…wnq, rw1w2…wns ∈ L and pw1w2…wns, rw1w2…wnq 

∈ L, then w1w2…wn is a constant with respect to L.  Since every string of length n is 

a constant relative to L, L is n-local.  � 

Theorem 4.9:   

 The following three conditions on a language L are equivalent:   

(a) L is local. 

(b) L is a uniform splicing language. 

(c) L is a null-context splicing language.     

Proof: 

(a) ⇒ (b):  Suppose L is local.  Proposition 2.3 proves that if L is local, then L is a 

null-context splicing language.  Here R = {w ∈ A*: w has length n}.  Since L is a 

null-context splicing language, for which, for some non-negative number n, R is the 

set of all strings in A* having length n, and according to Definition 2.6, L is a 

uniform splicing language. 

(b)⇒ (c):  Suppose L is a uniform splicing language.  By definition, a uniform 

splicing system is a null-context system for which, for some non-negative number n, 

R is the set of all strings in A* having length n.  Thus R is a null-context rule.  Thus L 

is a null-context splicing language. 

(c) ⇒ (a):  By Proposition 2.3, L is a null-context splicing language, which implies L 

is local.  � 
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4.4  Conclusion 

 This chapter presents six theorems on concepts of constant and local.  Also 

presented are three theorems on conditions of splicing rules which are equivalent to 

each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5 
 
 
 
 

SIMPLE SPLICING SYSTEMS 
 
 
 
 
5.1 Introduction 

 This chapter highlights some examples of the maximal firm factors of a word.  

Besides, simple splicing system is discussed using the automata concept.  Another 

concept used in splicing system called the solid code is also discussed. 

 

5.2 Maximal Firm Factors of a Word  

 Following are some examples of the maximal firm factors of a word. 

Example 5.1.   

 Let A = {a, b}, B = {b}, I will be left unspecified so far.  There is only one 

rule, namely r = (b, λ, b, λ).  A word w in A* is firm with respect to r if (and only if) 

w is in a*.  The maximal firm factors of the word aabaaabaaba are indicated via 

underscores: aabaaabaaba. 
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Example 5.2.  

 Let A = {a, b, c, d, e}, B = {b, d}, I will be unspecified so far.  There are only 

two rules, namely r = (b, λ, b, λ) and r' = (d, λ, d, λ).  These two rules can be 

abbreviated as b and d respectively.  A word w in A* is firm with respect to r if w in 

{a, c, d, e}*.  A word w in A* is firm with respect to r' if w in {a, b, c, e}*.  A word 

w in A* is firm with respect to R = {r, r'} iff w is in {a, c, e}*.  The maximal firm 

factors of the word aabacadcccbceeab are indicated via underscores: 

aabacadcccbceeab.  

Example 5.3.  

 Let A = {a, b}, B = {b} and I = {aaabaa, aba}.  The language generated by 

(A, B, I) is L = {aaabaa, aba, aaaba, abaa}. The maximal firm factors of words in L 

are indicated via underscores: {aaabaa, aba, aaaba, abaa}. 

Example 5.4.  

 Let A = {a, b, c, d, e}, B = {b, d} and I = {aabcedccbee}.  The language 

generated by (A, B, I) is L' = aab(cedccb)*ee.  The maximal firm factors of words in 

L' are indicated via underscores: aab(cedccb)*ee. 

Example 5.5.  

 Let A = {a, b, c, d, e}, B = {b, d} and I = {abcde, edcba}.  The language 

generated by (A, B, I) is L" = {a(bcdc)*ba, e(dcbc)*de, a(bcdc)*bcde, 

e(dcbc)*dcba}.  The maximal firm factors of words in L'' are indicated via 

underscores: {a(bcdc)*ba, e(dcbc)*de, a(bcdc)*bcde, e(dcbc)*dcba}.   
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5.3 Simple Splicing System 

 Following is the definition of a simple splicing system. 

Definition 5.1: (Simple Splicing System) 

 A simple splicing system consists of a finite alphabet A, a subset B of A 

(often called the marked symbols in A), a finite set of splicing rules R = {(b, λ, b, λ): 

b in B}, and a finite set I of initial words in A*.  Because of the extremely simple 

nature of the rule set R, which is determined completely by listing the elements of the 

subset B, a simple splicing system is denoted in the simplified form (A, B, I).  Simple 

splicing systems are always and automatically reflexive and transitive. 

 In [7], the simple splicing systems are fitted into a hierarchy that starts off S-

1H, S0H, S1H = SH, S2H, S3H,… with the union of this nest of language families 

being the classical family of all strictly locally testable language (SLT) which is 

equivalent to null context splicing (NCH) language.   

 S-1H languages are merely the finite languages which can be represented by L 

= L (A, L, empty).  Since there are no ‘rules’ to do any cutting, each of the words in L 

can be regarded as a firm word since none can be cut. 

 S0H languages are merely the language B*, where B ranges over the subsets 

of A.  Thus these languages can be represented by L = L (A, B, {λ}).  Thus, no word 

of length >= 2 is firm, since it can certainly be cut (anyplace in the word).  As for 

each individual letter, b in B, each such letter is firm, or no word (or letter) is firm.  

Probably it will be best to say that there are no firm words. 

 The first family that is worth considering is S1H = SH.  Languages in SH are 

generated like L = L (A, I, R) where R is a subset of A.  Any word of he form xry 

where r is in R can be cut as follows: for any xry and urv, xrv and ury can be formed.  

The cutting can be considered as x|ry, u|rv or xr|y, ur|v.  We shall standardize that the 
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cutting goes at the end of the site: xry and urv get cut into xr|y, ur|v and then the 

pieces get pasted to give xrv and ury.   

 A word w in A* that contains no letter in R cannot be cut at all, thus it is 

considered to be firm.  If w = xry with neither x nor y null then w can be cut into two 

pieces and should therefore be not firm.  For SH languages, a word w is firm if and 

only if it contains no element of R.   

 SH systems are just the same as splicing systems where all the rules have the 

form (a, λ, a, λ) which can be written for convenience by merely mentioning that ‘a 

is in R’.  S2H also allows rules of the form (ab, λ, ab, λ) which can be written for 

convenience by merely mentioning that ‘ab is in R’. 

 For the SH language L we will say that a word w in L is firm if it contains no 

occurrence of a letter in R.  Recall that by a factor of a word w in A* is meant any 

word y for which there are words x and z for which w = xyz, where x, z in A*.  So a 

maximal firm subword of a word w should be a factor y of w in which no letter in R 

occurs in y but if w = uayz with a in A, then a is in R and if w = xybv with b in A, then 

b is in R.   

 If w = uayz and a is not in R, then ay would be a firm factor of w that is one 

letter longer than y and so y wouldn’t be a maximal firm subword of w. If  w = xybv 

and b is not in R, then yb would be a firm factor of w that is one letter longer than y 

and so y wouldn’t be a maximal firm subword of w.  A word y is a maximal firm 

subword of w as long as y can get, and stay, inside w.  In other words, a maximal 

firm subword of w is a longest possible factor of w that contains no letter in R. 

 Next, the simple splicing system automata concept, known as SH-automata 

concept, is discussed. 

 



 35

5.4 SH-automata Concept  

 Below are some examples on maximal firm subwords and the simplest non-

deterministic automaton that recognizes (A, I, R): 

Example 5.6.  

 Suppose A = {a, b}, I = {aabaaaaabaaabaa} and R = {b}. The maximal firm 

subwords of the only word in I are: aa, aaaaa, aaa.  The simplest non-deterministic 

automaton that recognizes L (A, I, R):  

 

 

 

The regular expression for this language is aab(aaab+aaaaab)*aa. 

Example 5.7.  

 Suppose A = {a, b}, I = {abaaabaaabaa, aabaaaaabaaaaabaaaaa} and R = 

{b}.  Maximal firm subwords of I: a, aaa, aa, aaaaa.  The simplest non-

deterministic automaton that recognizes L (A, I, R):  

 

 

 Notice that we will get the same language generated if I were {abaaabaa, 

aabaaaaabaaaaa} or if I were {abaaaaa, aabaaaaabaaabaa}.  The regular 

expression for this language is (a+aa)b(aaab+aaaaab)*(aa+aaaaa). 

aaaaa 

aaa 

aa aa b 

aaaaa 

a 

aaa 

aaaaa 

aa 

aa 

b 
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aa 
aa a 

aaa 

c b 

aaaaa 

aaa a 

Example 5.8.  

 Suppose A = {a, b, c}, I = {abaacaaaaaba, abaaabaaacaaba} and R = {b, c}.  

Maximal firm subwords of I: a, aa, aaaaa, aaa.  The simplest non-deterministic 

automaton that recognizes L (A, I, R):  

 

 

 

The regular expression for this language is ab[aaab+(aac+aaac)(aab+aaaaab)]*a. 

Example 5.9.  

 Suppose A = {a, b, c}, I = {abaaabbaabbba} and R = {b, c}.  Maximal firm 

subwords of I: a, aaa, aa.  The simplest non-deterministic automaton that recognizes 

L (A, I, R):  

 

 

The regular expression for this language is ab(aaab+b+aab)*a. 

Note: (a+b)* = A* 

a*b* = those words in which ALL occurrences of an ‘a’ come before ALL 

occurrences of ‘b’. 

 Following is an example of a S2H system: 

aaa aaa

a a b 

λ

 

aa 
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Example 5.10.  

 Suppose A = {a, b, c}, I = {aabcaaabcaaaabcaa}, R = {bc}.  This is not 

really more complicated than an SH system.  The rule bc doesn’t occur in any 

complicated or over-lapping way and in fact neither a b nor a c even occurs 

separately.  So this S2H is hardly different from the SH system where A = {a, d}, I = 

{aadaaadaaaadaa}, R = {d}.  This language is a homomorphic image of the SH 

language aad(aaad+aaaad)*aa under the function f(a) = a, f(d ) = bc.  The 

appropriate S2H automaton that recognizes L(A, I, R):  

 

 

The regular expression for this S2H language is aabc(aaabc+aaaabc)*aa. 

 One trip through the SH – automaton is an arbitrary walk through the graph 

entering via an entrance following any path until exit.  The language is an infinite set.  

We can generate a lot of different words from an SH-automaton, but SH-automaton 

defines exactly one language which is exactly the language generated defined by the 

simple splicing language.   

 Taking the SH-automata concept, which is a short compact way of encoding 

normal non-deterministic automata – in the special case of SH systems, the maximal 

firm subwords of the initial words of an SH systems serve as the labels for the 

associated SH-automaton.   

 

5.5 Solid Code 

 This section discusses on solid code and several examples related to it. 

aaa 

aaaa 

aa aa bc
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Definition 5.2 (Solid Code): 

 A set S of words in A* is a solid code if 

(1) w = xyz can hold with both w and y in S only when x and z are null. 

(2) xy in S and yz in S can hold only if y is null. 

Or less formally,  

(1) no word in S is a subword of any other word in S; 

(2) no two distinct words in S overlap non-trivially. 

 Below are some examples of solid and non solid codes: 

Example 5.11. 

 Let A = {a, b, c, d, e, f, g}.  S = {a, b, c, d} is a solid code. S = {abc, abbc, 

abbbc, abbbbc, abbbbbc} is solid. S = ab*c is an infinite solid code.  T = {cab, ac} is 

not solid, since cab and ac are overlapping non-trivially.  T = {ab, ac, abc, dddd} is 

not solid, since ab is a subword of abc.  T = {abc, cba} is not solid, since abc and 

cba are overlapping non-trivially.  T = {abcdde, cd} is not solid, since cd is a 

subword of abcdde. 

 When R is a solid code, the SkH system (A, I, R) where k is the length of the 

longest word in R, may be identified with an appropriate S1H system, and thereby 

completely understood in terms of the maximal firm words of the S1H system and the 

words in the solid code R.   

Example 5.12.  

 Suppose A = {a, b, c, d}, I = {bbadcddacbcabdcd, dabcaddcddbcab}, R = 

{cdd, bca} which is a solid code.  I = {bbad/cdd/ac/bca/bdcd, da/bca/dd/cdd/bca/b} 

illustrates how, when R is a solid, words come apart naturally and uniquely into code 
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words and ‘words-in-between’.  Since the maximum length of a word in R is three, 

we have specified an S3H system.  However, due to the nice clean parsing into words 

in R and words-between, such an S3H is really pretty much the same as an easily 

specified S1H system over a different alphabet.   

 Suppose that we choose a new letter not in A for each word in R.  Let us use p 

and q.  Then form the S1H system by using the parsed version of I given above: A' = 

{a, b, c, d, p, q}, I' = {bbadpacqbdcd, daqddpqb}, R' = {p, q}.  This is an S1H system 

and we can see that it has ‘maximal firm words’: bbad, ac, bdcd, da, dd, b.  The 

language L(A, I, R) is the image of the language L(A', I', R') under the 

homomorphism of h : (A') → A* generated by the one-to-one function h: A'→{a, b, c, 

d, cdd, bca} defined by h(a) = a, h(b) = b, h(c) = c, h(d) = d, h(p) = cdd, h(q) = bca. 

Example 5.13.  

 Suppose A = {a, b, c, d}, I = {dabccacdbabcacdb, acacdcabb}, R = {ab, 

cacd} which is a solid code.  I = {d/ab/c/cacd/b/ab/cacd/b, a/cacd/c/ab/b} illustrates 

how, when R is a solid, words come apart naturally and uniquely into code words and 

‘words-in-between’.  Since the maximum length of a word in R is four, we have 

specified an S4H system.  However, due to the nice clean parsing into words in R and 

words-between, such an S4H is really pretty much the same as an easily specified S1H 

system over a different alphabet.   

 Suppose that we choose a new letter not in A for each word in R.  Let us use p 

and q.  Then form the S1H system by using the parsed version of I given above: A' = 

{a, b, c, d, p, q}, I' = {dpcqbpqb, aqcpb}, R' = {p, q}.  This is an S1H system and we 

can see that it has ‘maximal firm words’: d, c, b, a.  The language L(A, I, R) is the 

image of the language L(A', I', R') under the homomorphism of h : (A') → A* 

generated by the one-to-one function h: A' → {a, b, c, d, ab, cacd} defined by h(a) = 

a, h(b) = b, h(c) = c, h(d) = d, h(p) = ab, h(q) = cacd. 
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Example 5.14.  

 Suppose A = {a, b, c, d}, I = {dacbba, bacbbacd} and R = {ac, acb}.  R is not 

solid since ac is a subword of acb. 

Example 5.15.  

 Suppose A = {a, b, c, d}, I = {abcdddacba, bbcdaadacbb} and R = {bc, 

dacb}.  R is not solid since bc and dacb overlap non-trivially. 

 

5.6 Conclusion 

 This chapter discussed the maximal firm factors of a word, the simple 

splicing system, SH-automata concept and concepts of solid code.  This will allow 

languages L (A, I, R) to be reduced to S1H languages by replacement of the 

occurrences of words in R by letters of an alphabet of new letters. 

 

 

 



CHAPTER 6 
 
 
 
 

MOLECULAR CONSIDERATIONS 
 
 
 
 

6.1 Introductions 

 This chapter lists some molecular considerations of a splicing system.  Firm 

words in a wet-lab experiment are also discussed. 

 

6.2 Molecular Considerations 

This section lists a few of the actual molecular considerations for the 

molecules that will arise from a given initial sets of strings using some chosen 

restriction enzymes. 

Example 6.1:  

 List all the sequences of the ds-DNA molecules (without sticky ends) that can 

arise as ds-DNA molecules having the sequence 

5′-C19GGATCCC17-3′ 
3′-G19CCTAGGG17-5′ 
are added to an aqueous solution containing BamHI and a ligase. 
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All molecules: 

1) original molecule, that is 

5′-C19GGATCCC17-3′  
3′-G19CCTAGGG17-5′ 

2) 5′-C19GGATCCG19-3′ 
3′-G19CCTAGGC19-5′ 

3) 5′-G17GGATCCC17-3′   
3′-C17CCTAGGG17-5′ 

Example 6.2:  

Find all the sequences of the ds-DNA molecules that can arise as ds-DNA 

molecules having the sequence 

5′-G19GGATCCC15GGATCCG17-3′ 
3′-C19CCTAGGG15CCTAGGC17-5′ 
are added to an aqueous solution containing BamHI and a ligase. 

All molecules: 

1) original molecule, that is  

5′-G19GGATCCC15GGATCCG17-3′ 
3′-C19CCTAGGG15CCTAGGC17-5′ 

2) 5′-G19GGATCCG17-3′ 
3′-C19CCTAGGC17-5′ 

3) 5′-G19GGATCCC15GGATCCC15GGATCCG17-3′ 
3′-C19CCTAGGG15CCTAGGG15CCTAGGC17-5′ 

4) 5′-G19GGATCCC19-3′ 
3′-C19CCTAGGG19-5′ 

5) 5′-C17GGATCCG15GGATCCC15GGATCCG17-3′ 
3′-G17CCTAGGC15CCTAGGG15CCTAGGC17-5′ 
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6) 5′-G19GGATCCC15GGATCCG15GGATCCC19-3′  
3′-C19CCTAGGG15CCTAG GC15CCTAGGG19-5′ 

7) 5′-C17GGATCCG17-3′ 
3′-G17CCTAGGC17-5′ 

8) 5′-G19GGATCCG15GGATCCC19-3′ 
3′-C19CCTAGGC15CCTAGGG19-5′ 

9) 5′-C17GGATCCC15GGATCCG17-3′  
3′-G17CCTAGGG15CCTAGGC17-5′ 

and so on, where ALL molecules can be written in recursive form as: 

1) 
*19 15 17

19 15 17

5'-G GGATCCC GGATCCG -3'
3'-C CCTAGGG CCTAGGC -5'

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

2) 
* *17 15 15 17

17 15 15 17

5'-C GGATCCG GGATCCC GGATCCG -3'
3-G CCTAGGC CCTAGGG CCTAGGC -5'

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

3) 
*17 15 15 17

17 15 15 17

5'-C GGATCCG GGATCCC GGATCCG -3'
3-G CCTAGGC CCTAGGG CCTAGGC -5'

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

4) 
* *19 15 15 19

19 15 15 19

5'-G GGATCCC GGATCCG GGATCCC -3'
3'-C CCTAGGG CCTAGGC CCTAGGG -5'

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

5) 
*19 15 15 19

19 15 15 19

5'-G GGATCCC GGATCCG GGATCCC -3'
3'-C CCATGGG CCATGGC CCATGGG -5'

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Example 6.3:  

 Find all the sequences of the ds-DNA molecules that can arise as ds-DNA 

molecules having the sequence 
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5′-G19CGCGC15GGATCCG17-3′ 
3′-C19GCGCG15CCTAGGC17-5′ 
are added to an aqueous solution containing BamHI, BstUI, and a ligase. 

All molecules: 

1) Original molecule, that is 

5′-G19CGCGC15GGATCCG17-3′ 
3′-C19GCGCG15CCTAGGC17-5′ 

      2) 5′-G19CGCGC19-3′ 
3′-C19GCGCG19-5′ 

3)       5′-C17GGATCCG15CGCGC15GGATCCG17-3′ 
   3′-G17CCTAGGC15GCGCG15CCTAGGC17-5′ 

4)       5′-G19CGCGC15GGATCCG15CGCGC19-3′ 
      3′-C19GCGCG15CCTAGGC15GCGCG19-5′ 

5)       5′-C17GGATCCG17-3′ 
      3′-G17CCTAGGC17-5′ 

and so on, where ALL molecules can be written in recursive form as: 

1) 
*19 15 15 15 17

19 15 15 15 17

5'-G CGCGC GGATCCG CGCGC GGATCCG -3'
3'-C GCGCG CCATGGC GCGCG CCATGGC -5'

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

2) 
*17 15 15 17

17 15 15 17

5'-C GGATCCG CGCGC GGATCCG -3'
3'-G CCTAGGC GCGCG CCTAGGC -5'

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

3) 
*19 15 15 19

19 15 15 19

5'-G CGCGC GGATCCG CGCGC -3'
3'-C GCGCG CCTAGGC GCGCG -5'

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Example 6.4: Give splicing models, with alphabet A = { a, c, g, t }, appropriate for 

Examples 6.2 and 6.3. 
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For example 6.2, the appropriate splicing model for the representation of the 

generative activity of BamHI and a ligase acting on molecules having the sequence 

{g19ggatccc15ggatccg17} is S = (R, I) where R = {r} and I = {m, m’}, where 

r = (g, gatcc; g, gatcc), 

m = g19ggatccc15ggatccg17, 

m’=c17ggatccg15ggatccc19. 
 

For example 6.3, the appropriate splicing model for the representation of the 

generative activity of BamHI, BstUI and a ligase acting on molecules having the 

sequence {g19cgcgc15ggatccg17} is S = (R, I) where R = {r, r1, r2, r3} and I = {m, m’}, 

where 

r = (cg, cg; cg, cg) , 

r1=(g, gatcc; g, gatcc), 

r2 = (cg, cg; g, gatcc), 

r3 = (g, gatcc; cg, cg), 

m = g19cgcgc15ggatccg17, 

m’= c17ggatccg15cgcgc19. 

 

6.3 Firm Words in Wet-Lab Experiment 

 There should be four distinct firm words for molecules, since when we deal 

with ds-DNA molecule that is not a DNA palindrome, we have to list in two ways 

but rotating one form through 180 degrees.  When we denote dsDNA molecules on a 

line (as a word or as a string) running from left to right, the dsDNA molecules that 

these strings represent are free to turn every way in a test tube.   

 

 In an experiment, the original molecule can be written on a line as a string in 

two distinct ways.  When the one molecule (with two string representations) is cut 

into two pieces each of these pieces has two string representations.   So in the word 

model (or word encoding) one might get confused if one does not understand this 

fundamental distinction between a dsDNA molecule and its (usually two distinct) 
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word representation(s).  In fact, to show the splicing operation one view two of the 

original dsDNA molecules in opposite orientations to see the splice that creates the 

one long and the one short new dsDNA molecule.  Two molecules viewed in the 

same orientation, when spliced, merely produce the two original molecules, each of 

the original length.   

 

6.3 Conclusion 

 In this chapter, we showed that the result of a wet-lab splicing system can be 

predicted using the theoretical splicing model. 

 



CHAPTER 7 
 
 
 
 

CONCLUSION AND SUGGESTIONS 
 
 
 
 
7.1 Conclusion 

 In this report, chapter 1 serves as an introduction to this research.  Literature 

review is given in chapter 2, in which the splicing model used in this research is the 

Head splicing model.  In chapter 3, strictly locally testable language is discussed, and 

theorems regarding to it are proved.  In chapter 4, concepts of constant and local are 

presented, and those theorems related to them are proved.  Maximal firm factors of a 

word are also discussed in chapter 5, which leads to the discussion of simple splicing 

system.  SH-automata and the concept of solid code are used to illustrate the different 

simple splicing systems.  Lastly, several molecular considerations are discussed in 

chapter 6 in which theoretical splicing system can be used to predict the actual 

biological splicing system. 

 

7.2 Suggestions 

 Splicing systems can be viewed as a simple splicing system using the concept 

of constant, which can be further showed through various examples.  More theorems 

related to simple splicing system can be proved.  Actual wet-lab experiment can be 

carried out in order to view the result of an actual splicing system as compared to the 

mathematical model corresponding to it. 
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