
 VOT 74259

MATHEMATICAL MODELLING OF THE RECOMBINATION CAPACITY OF
SYSTEM OF ENZYMES ACTING ON DNA

(PEMODELAN MATEMATIK BAGI KAPASITI PENGGABUNGAN SEMULA
SUATU SISTEM ENZIM-ENZIM YANG BERTINDAK KE ATAS DNA)

NOR HANIZA SARMIN
TAHIR AHMAD

FAHRUL ZAMAN HUYOP
SITI MARIYAM SHAMSUDDIN

FONG WAN HENG

Jabatan Matematik
Fakulti Sains

Universiti Teknologi Malaysia

2007

 UNIVERSITI TEKNOLOGI MALAYSIA

 UTM/RMC/F/0024 (1998)

BORANG PENGESAHAN

LAPORAN AKHIR PENYELIDIKAN

TAJUK PROJEK : MATHEMATICAL MODELLING OF THE RECOMBINATION

 CAPACITY OF SYSTEM OF ENZYMES ACTING ON DNA

Saya __________________NOR HANIZA SARMIN____________________________________
 (HURUF BESAR)

Mengaku membenarkan Laporan Akhir Penyelidikan ini disimpan di Perpustakaan Universiti
Teknologi Malaysia dengan syarat-syarat kegunaan seperti berikut :

1. Laporan Akhir Penyelidikan ini adalah hakmilik Universiti Teknologi Malaysia.

2. Perpustakaan Universiti Teknologi Malaysia dibenarkan membuat salinan untuk
 tujuan rujukan sahaja.

3. Perpustakaan dibenarkan membuat penjualan salinan Laporan Akhir

 Penyelidikan ini bagi kategori TIDAK TERHAD.

4. * Sila tandakan (/)

 SULIT (Mengandungi maklumat yang berdarjah keselamatan atau
 Kepentingan Malaysia seperti yang termaktub di dalam
 AKTA RAHSIA RASMI 1972).

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh
 Organisasi/badan di mana penyelidikan dijalankan).

 TIDAK
 TERHAD

 TANDATANGAN KETUA PENYELIDIK

 Nama & Cop Ketua Penyelidik

 Tarikh : _________________

/

CATATAN : * Jika Laporan Akhir Penyelidikan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai SULIT dan TERHAD.

 Lampiran 20

 VOT 74259

MATHEMATICAL MODELLING OF THE RECOMBINATION CAPACITY OF
SYSTEM OF ENZYMES ACTING ON DNA

(PEMODELAN MATEMATIK BAGI KAPASITI PENGGABUNGAN SEMULA
SUATU SISTEM ENZIM-ENZIM YANG BERTINDAK KE ATAS DNA)

NOR HANIZA SARMIN
TAHIR AHMAD

FAHRUL ZAMAN HUYOP
SITI MARIYAM SHAMSUDDIN

FONG WAN HENG

RESEARCH VOTE NO:
74259

Jabatan Matematik
Fakulti Sains

Universiti Teknologi Malaysia

2007

ii

ACKNOWLEDGEMENT

The researchers would like to acknowledge the Research Management Center

(RMC), UTM and Ministry of Science, Technology and Innovation (MOSTI)

Malaysia for the financial funding through IRPA Vote 74259.

We would also like to express our gratitude to Prof Tom Head from

Binghamton University, Binghamton, New York, USA for his collaboration in this

research.

Last but not least, we acknowledge the staff of Perpustakaan Sultanah

Zanariah, UTM for their kind support.

iii

ABSTRACT

MATHEMATICAL MODELLING OF THE RECOMBINATION CAPACITY

OF SYSTEM OF ENZYMES ACTING ON DNA

(Keywords: Modelling, DNA, formal language theory, splicing systems)

This research initiates the connection between formal language theory and the
study of informational macromolecules. The modelling of a biological splicing system
has been done mathematically through formal language theory, which is a branch of
applied group theory and theoretical computer science. The accuracy of how a
splicing works has been verified through the corresponding biological splicing
system.

In this research, different kinds of languages that result from the action of
restriction enzymes on strings of DNA molecules have been studied. Examples of
strictly locally testable languages are given. Besides, some theorems related to
different combination of restriction enzymes in a strictly locally testable language are
presented. A language is local if every string of a certain length is a constant relative
to it. Some theorems related to concepts of constant and local are also given. A
maximal firm subword of a word is discussed, where automata concept is used to
illustrate the simple splicing system. This research also gives few actual molecular
considerations for the molecules that will arise from a given initial sets of strings
using some chosen restriction enzymes.

This research has brought together the communities of mathematical scientists
and bio-molecular scientists since each of these sciences can make a contribution to
the other. The most specific benefit of this research is the application of mathematical
analysis of questions of which DNA bio-molecules can potentially arise in a test tube
from the action of specific sets of enzymes acting on the specific sets of DNA
molecules.

 Key researchers :

Assoc. Prof. Dr. Nor Haniza Sarmin (Head)

Assoc. Prof. Dr. Tahir Ahmad
Assoc. Prof. Dr. Fahrul Zaman Huyop

Assoc. Prof. Dr. Siti Mariyam Shamsuddin
Fong Wan Heng

E-mail : nhs@fs.utm.my
Tel. No. : 07-5534266
Vote No. : 74259

iv

ABSTRAK

PEMODELAN MATEMATIK BAGI KAPASITI PENGGABUNGAN SEMULA

SUATU SISTEM ENZIM-ENZIM YANG BERTINDAK KE ATAS DNA

(Katakunci: Pemodelan, DNA, teori bahasa formal, sistem pemotongan dan
pencantuman)

Penyelidikan ini mencetuskan kaitan di antara teori bahasa formal dan

pembelajaran molekul makro yang berinfomasi. Pemodelan bagi sistem pemotongan
dan pencantuman secara biologi telah dilakukan secara bermatematik melalui teori
bahasa formal, iaitu satu cabang dari teori kumpulan berpenggunaan dan sains
komputer berteori. Kejituan pemotongan dan pencantuman pula telah disahkan
melalui sistem pemotongan dan pencantuman secara biologikal.

Dalam penyelidikan ini, beberapa jenis bahasa yang wujud daripada aksi
enzim pembatas ke atas jujukan molekul DNA telah diselidiki. Contoh-contoh bahasa
bolehuji setempat yang tegas ada dimuatkan. Selain itu, beberapa teorem tentang
gabungan berlainan bagi enzim pembatas dalam bahasa bolehuji setempat yang tegas
juga diberikan. Suatu bahasa dikatakan tempatan jika setiap jujukan dengan
kepanjangan tertentu yang relatif kepadanya adalah pemalar. Beberapa teorem
berkenaan konsep pemalar dan tempatan telah dinyatakan berserta pembuktiannya.
Konsep automata juga digunakan untuk menggambarkan sistem pemotongan dan
pencantuman mudah. Penyelidikan ini juga memberi beberapa pertimbangan
bermolekul sebenar untuk molekul yang boleh dihasilkan daripada suatu jujukan
permulaan dengan menggunakan beberapa enzim pembatas yang dipilih.

Penyelidikan ini telah menemukan bersama komuniti saintis dari bidang
matematik dan biomolekul. Ini disebabkan setiap bidang tersebut dapat memberi
manafaat antara satu sama lain. Faedah khusus yang utama terhasil dari penyelidikan
ini ialah aplikasi analisis matematik berkenaan biomolekul DNA yang akan terhasil
dalam tabung uji akibat dari aksi set enzim pembatas tertentu yang bertindak ke atas
set molekul DNA yang dipilih.

 Penyelidik utama :

Prof Madya Dr. Nor Haniza Sarmin (Ketua)

Prof Madya Dr. Tahir Ahmad
Prof Madya Dr. Fahrul Zaman Huyop

Prof Madya Dr. Siti Mariyam Shamsuddin
Fong Wan Heng

Mel-e : nhs@fs.utm.my
No Telefon : 07-5534266
No Vot : 74259

 v

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 ACKNOWLEDGEMENTS ii

 ABSTRACT iii

 ABSTRAK iv

 TABLE OF CONTENTS v

 LIST OF SYMBOLS vii

1 INTRODUCTION 1

 1.1 Introduction 1

 1.2 Research Background 1

 1.3 Problem Statement 2

 1.4 Research Objectives 2

 1.5 Scope of the Study 3

 1.6 Significance of Findings 3

2 LITERATURE REVIEW 4

 2.1 Literature Review 4

 2.2 Preliminaries 5

3 STRICTLY LOCALLY TESTABLE LANGUAGE 9

 3.1 Introduction 9

 3.2 Not Strictly Locally Testable Language 9

 3.3 Different Combination of Restriction Enzymes in a 17

 vi

Strictly Locally Testable Language

 3.4 Conclusion 22

4 CONCEPTS OF CONSTANT AND LOCAL 23

 4.1 Introduction 23

 4.2 Theorems on Concepts of Constant and Local 23

 4.3 Theorems on Conditions of Splicing Rules 26

 4.4 Conclusion 30

5 SIMPLE SPLICING SYSTEMS 31

 5.1 Introduction 31

 5.2 Maximal Firm Factors of a Word 31

 5.3 Simple Splicing System 33

 5.3 SH-automata Concept 35

 5.5 Solid Code 37

 5.6 Conclusion 40

6 MOLECULAR CONSIDERATIONS 41

 6.1 Introduction 41

 6.2 Molecular Considerations 41

 6.3 Firm Words in a Wet-lab Experiment 45

 6.4 Conclusion 46

7 CONCLUSION AND SUGGESTIONS 47

 7.1 Conclusion 47

 7.2 Suggestions 47

REFERENCES 48

vii

LIST OF SYMBOLS

a - [A/T]

A - Alphabet

A* - Strings

B - The set of all patterns associated with enzymes that

 either produce 5′ overhangs or produce blunt ends

c - [C/G]

c - Constant

cxd - Site

C - The set of all patterns associated with enzymes that

 produce 3′ overhangs

g - [G/C]

I - A set of initial strings

L - Language

L(S) - Language generated by splicing system S

r - Splicing rule

R - A set of splicing rules

S - Splicing system

t - [T/C]

x - Crossing

(c, x, d) - Triple

∅ - Empty set

λ - Empty string

▼, ▲ - Cutting sites

\ - Not in

⊄ - Not subset

∪ - Union

CHAPTER 1

INTRODUCTION

1.1 Introduction

Every living organism has DNA that makes the organism unique. There are

more than 200 types of readily available restriction enzymes as listed in the New

England Biolabs catalog. These restriction enzymes can cut strings of DNA

molecules at specific places, resulting in molecules with sticky ends. New molecules

then arise when molecules previously cut by restriction enzymes are pasted together

by a ligase. Splicing system was defined to model the recombinant action of

restriction enzyme and a ligase on DNA molecules. The language which results

from a splicing system is called a splicing language. This language contains the

initial strings of DNA molecules and is closed under the application of splicing rules.

This splicing language is further studied using formal language theory, which is a

branch of applied discrete mathematics and theoretical computer science. It concerns

with sets of strings called languages and different mechanism for generating and

recognizing them.

1.2 Research Background

 This research initiates the connection between formal language theory and the

study of informational macromolecules. Previously, these two branches of studies

are independent of each other. However, when splicing system is introduced, the

 2

generative capacity of system of enzymes acting on a set of DNA molecules is

established formally using formal language theory. Different languages can result

from this recombinant behaviours and are analyzed using concept of languages in

formal language theory.

1.3 Problem Statement

 To apply as many restriction enzymes in different splicing languages and to

introduce new concepts related to splicing language.

1.4 Research Objectives

The objectives of this research are:

1) To study the different concepts in splicing systems and to find

examples to illustrate those concepts.

2) To study the features of sets of restriction sites of the restriction

enzymes that will allow formal descriptions of their generative

capacity.

3) To study the sites in DNA molecules at which the restriction enzymes

react.

4) To introduce new concepts in splicing system to determine

recombinant behaviour of system of enzymes on DNA molecules.

5) To provide mathematical proofs for concepts related to splicing

system.

 3

1.5 Scope of the Study

 This research will involve the study of the sites in DNA molecules at which

some 200 types of readily available restriction enzymes act and determine features of

sets of these sites that allow transparent formal descriptions of their generative

capacity using the concept of formal language theory. Splicing system, which is

used to model the recombinant action of restriction enzymes and a ligase on DNA

molecules, will be studied. New concepts related to splicing language will also be

introduced.

1.6 Significance of Findings

 The very general long-term benefit of this research will be the mutual

stimulation provided to the communities of mathematical scientists and biomolecular

scientists since this area of research is fairly new in Malaysia. Each of these sciences

can then make a contribution to each other. Algorithms for new concepts of splicing

language will be provided. Research papers regarding this research will be published

in national and international journals and proceedings.

CHAPTER 2

LITERATURE REVIEW

2.1 Literature Review

The potential effect of sets of restriction enzymes and a ligase that allow

DNA molecules to be cleaved and reassociated to produce further molecules can be

found in [1]. The associated languages are analyzed by means of a new generative

formalism called a splicing system. A new relationship between formal language

theory and the study of informational macromolecules was thus initiated. Formal

language theory is a branch of applied discrete mathematics and theoretical computer

science that is devoted to the study of sets of finite strings (called languages) of

symbols chosen from a prescribed finite set (called an alphabet). The set of double-

stranded DNA molecules that may arise from an initial set of DNA molecules in the

presence of specified enzyme activities is represented as a language over the four-

symbol alphabet of deoxyribonucleotide pairs.

 There are three different splicing models namely Head splicing system [1],

Paun splicing system [2] and Pixton splicing system [3]. Head’s splicing language is

always Paun’s splicing language, while Paun’s splicing language is always Pixton’s

splicing language. These different splicing models were studied in [4].

 Splicing language generated with one sided context is introduced in [5],

which describes reflexive and symmetric splicing language. Besides, it gives

molecular consideration of a splicing system via splicing rules of the full

 5

recombinant capacity of a restriction enzyme accompanied by a ligase. Examples of

reflexive and symmetric languages are also given in [6].

 Null context splicing system and strictly locally testable (SLT) languages are

described in [7]. A procedure is given which, for an arbitrary regular language L,

determines whether L is in SLT, and when L is in SLT, specifies constructively the

smallest family in the hierarchy to which L belongs.

 An example of a regular language which is not a splicing language is given

by Gatterdam in [8]. This papers shows that not all splicing languages are strictly

locally testable and hence not persistent. Local and semilocal languages are

introduced in [9]. Local language is a splicing language and a splicing language is a

regular language. Other types of splicing languages such as simple, semi-simple and

semi-null splicing languages are defined by Laun in [10].

2.2 Preliminaries

 Some main definitions used in this research are listed below.

Definition 2.1 (splicing system) [1]:

A splicing system S = (A, I, B, C) consists of a finite alphabet A, a finite set I

of initial strings in A*, and finite sets B and C of triples (c, x, d) with c, x and d in A*.

Each such triple in B or C is called a pattern. For each such triple the string cxd is

called a site and the string x is called a crossing. Patterns in B are called left patterns

and patterns in C are called right patterns. The language L = L(S) generated by S

consists of the strings in I and all strings that can be obtained by adjoining to L ucxfq

and pexdv whenever ucxdv and pexfq are in L and (c, x, d) and (e, x, f) are patterns of

the same hand. A language L is a splicing language if there exists a splicing system

S for which L = L(S).

 6

Definition 2.2 (persistent) [1]:

Let S = (A, I, B, C) be a splicing system. Then S is persistent if for each pair

of strings ucxdv, and pexfq, in A* with (c, x, d) and (e, x, f) of the same hand: If y is a

subsegment of ucx (respectively xfq) that is the crossing of a site in ucxdv

(respectively pexfq) then this same subsegment y of ucxfq contains an occurrence of

the crossing of a site in ucxfq.

Definition 2.3 (null context splicing system) [1]:

A null context splicing system is a splicing system S = (A, I, B, C) for which

each cleavage pattern in B and each in C has the form (1, x, 1).

Definition 2.4 (constant) [1]:

With respect to a language over A, a string c in A* is a constant if, whenever

ucv and pcq are in the language, ucq and pcv are also in the language.

Definition 2.5 (strictly locally testable) [7]:

A language L is strictly locally testable (SLT) if there is a positive integer k

for which every factor of L of length k is constant.

Definition 2.6 (uniform splicing system) [1]:

A uniform splicing system is a null context splicing system S = (A, I, X, X) for

which there is a positive integer P such that X = AP. A language L is a uniform

splicing language if there is a uniform splicing system S for which L = L(S).

 7

Definition 2.7 (n-local, local):

A language L is n-local, n is a non-negative integer, if every string of length n

is a constant relative to L. L is a local language if it is n-local for some non-negative

integer n.

The following are some propositions and theorems related to this research.

Theorem 2.1 (De Luca & Restivo) [1]:

If for a language L over A all the strings in AP are constants then L is (P+1)-

strictly locally testable.

Note: For a P-strictly locally testable language L over an alphabet A, all strings in AP

are constants.

Theorem 2.2 [1]:

The following conditions on a language L over an alphabet A are equivalent:

(i) L is a persistent splicing language;

(ii) L is a strictly locally testable language;

(iii) The set of constants for L contains AP for some P;

(iv) L is a uniform splicing language.

Proposition 2.3:

 Let A be a finite alphabet and L in A* a language. Then L is a null-context

splicing language if and only if L is local.

 8

Proof.

 Suppose that L is local. Let n be a non-negative integer for which L is n-

local. Let R = {w in A*: w has length n}. Let I = {z in L : no string w of length n

occurs as many as three times as a factor of z }. We confirm that L = L(A,R,I): L ⊇

L(A,R,I) since L ⊇ I and every w in R is a constant with respect to L since L is n-

local. Suppose now that L ⊄ L(A,R,I) and let z be a string of least length in L \

L(A,R,I). Then z is not in I, and there must be at least one string w of length n, for

which w occurs in z at least three times. Let the specified occurrences of w in the

three factorizations, z = swt = uwv = xwy, be the first, second and third occurrences

of w in z. Thus sw is a proper prefix of uw and uw is a proper prefix of xw. Let uw

= swp and xw = uwq. Since w is a constant with respect to L: (1) from swt and uwv

in L we have swv in L; (2) from uwv and xwy in L we have uwy in L. Each of swv

and uwy is shorter than z and therefore each is in L(A,R,I). Since both uwy and swv

are in L(A,R,I) and w is in R, the contradiction uwv = z is in L(A,R,I) arises. Thus L

⊆ L(A,R,I) and L = L(A,R,I) is confirmed.

 Suppose now that L = L(A,R,I) where both R and I are finite subsets of A*.

(We do not assume that all strings in R have the same length.) We confirm that L is

n-local where n is the length of the longest string in I plus twice the length of the

longest string in R: Let L(0) = I and, for each j ≥ 1, let L(j+1) = L(j) ∪{ z in A* \ L(j)

: z = uwy, where w has length n and there exist v & x for which uwv & xwy are in

L(j)}. Then L = ∪ {L(j) : j ≥ 0}. Suppose that L is not n-local. Note that L(0) is n-

local (in the vacuous sense). It follows that there is a greatest non-negative integer k

for which L(k) is n-local. Then L(k+1) is not n-local and there is string z in

L(k+1)\L(k) in which a non-constant factor of length n occurs. Then there are strings

uwv & xwy in L(k) with w in R and z = uwy. A contradiction arises as follows: For

each occurrence of a factor s of length n in z, one of the following three possibilities

holds. (1) s is a factor of uw and is therefore a constant because uwv is in L(k) which

is n-local. (2) s = qwp where q is a suffix of u and p is a prefix of y and is therefore a

constant since w is a constant. (3) s is a factor of wy and is therefore a constant

because xwy is in L(k) which is n-local. From this contradiction it follows that L is n-

local as asserted.

CHAPTER 3

STRICTLY LOCALLY TESTABLE LANGUAGE

3.1 Introduction

This chapter highlights some examples of not strictly locally testable

languages. Theorems related to different combination of restriction enzymes in

strictly locally testable languages are proved using definitions, theorems and

propositions listed in Chapter 2.

3.2 Not Strictly Locally Testable Language

Two examples of languages that are not strictly locally testable is given

below. The first example differs from the second one by the length of the restriction

sites of the enzymes. Different restriction enzymes and initial strings are used for

both the examples to illustrate the cut and paste activities of restriction enzymes and

a ligase that act on a set of DNA molecules, and the new strings which will arise

from them. In these two examples, g, a, t and c denotes [G/C], [A/T], [T/A] and

[C/G] respectively. The lines in these two examples refer to the cutting sites by the

respective restriction enzymes.

 10

Example 3.1:

Let S = (D, I, B, ∅) be a splicing system where I = {ggtacc tctagc tgtaca,

gctagc tgtacc tctaga} is the set consisting of two initial strings. The set B = {(G,

GTAC, C), (T, GTAC, A), (G, CTAG, C), (T, CTAG, A)} is the set of cleavage

patterns for enzymes Acc65I, BsrGI, NheI and XbaI respectively. These patterns all

leave 5' overhangs.

Considering the first initial string, that is ggtacc tctagc tgtaca. Using the

enzyme Acc65I, the following recombination can be seen, where new molecules

(3.1) and (3.2) will arise.

G|GTACC TCTAGC TGTACA
CCATG|G AGATCG ACATGT

TGTACA GCTAGA G|GTACC
ACATGT CGATCT CCATG|G

GGTACC (3.1)
CCATGG

TGTACA GCTAGA GGTACC TCTAGC TGTACA (3.2)
ACATGT CGATCT CCATGG AGATCG ACATGT

Using the enzyme BsrGI, the following recombination can be seen, where

new molecules (3.3) and (3.4) will arise.

GGTACC TCTAGC T|GTACA
CCATGG AGATCG ACATG|T

T|GTACA GCTAGA GGTACC
ACATG|T CGATCT CCATGG

TGTACA (3.3)
ACATGT

GGTACC TCTAGC TGTACA GCTAGA GGTACC (3.4)
CCATGG AGATCG ACATGT CGATCT CCATGG

 11

Using both the enzymes Acc65I and BsrGI, the following recombination can

be seen, where new molecules (3.6), (3.7), (3.8) and (3.9) will arise.

G|GTACC TCTAGC TGTACA
CCATG|G AGATCG ACATGT

 GGTACC TCTAGC T|GTACA (3.5)
CCATGG AGATCG ACATG|T

GGTACA (3.6)
CCATGT

G|GTACC TCTAGC TGTACC TCTAGC TGTACA (3.7)
CCATG|G AGATCG ACATGG AGATCG ACATGT

GGTACC TCTAGC TGTACC (3.8)
CCATGG AGATCG ACATGG

TGTACC TCTAGC TGTACA (3.9)
ACATGG AGATCG ACATGT

Moreover, when the enzymes Acc65I and BsrGI are applied to the molecules

marked (3.5) and (3.7), the following new string of molecule will arise:

GGTACC TCTAGC TGTACC TCTAGC TGTACC TCTAGC TGTACA
CCATGG AGATCG ACATG G AGATCG ACATGG AGATCG ACATGT.

Continuing in this manner, the molecules which will result from the first

initial string using the enzymes Acc65I and BsrGI can be summarized as

GGTACC TCTAGCTGTACC TCTAGCTGTACA
: 0

CCATGG AGATCGACATGG AGATCGACATGT

n

n
⎧ ⎫⎛ ⎞⎪ ⎪≥⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
.

Now, considering the second initial string, that is gctacg tgtacc tctaga. Using

the enzyme NheI, the following recombination can be seen, where new molecules

(3.10) and (3.11) will arise.

G|CTAGC TGTACC TCTAGA
CGATC|G ACATGG AGATCT

 12

TCTAGA GGTACA G|CTAGC
AGATCT CCATGT CGATC|G

GCTAGC (3.10)
CGATCG

TCTAGA GGTACA GCTAGC TGTACC TCTAGA (3.11)
AGATCT CCATGT CGATCG ACATGG AGATCT

Using the enzyme XbaI, the following recombination can be seen, where new

molecules (3.12) and (3.13) will arise.

GCTAGC TGTACC T|CTAGA
CGATCG ACATGG AGATC|T

T|CTAGA GGTACA GCTAGC
AGATC|T CCATGT CGATCG

TCTAGA (3.12)
AGATCT

GCTAGC TGTACC TCTAGA GGTACA GCTAGC (3.13)
CGATCG ACATGG AGATCT CCATGT CGATCG

Using both the enzymes NheI and XbaI, the following recombination can be

seen, where new molecules (3.15), (3.16), (3.17) and (3.18) will arise.

G|CTAGC TGTACC TCTAGA
CGATC|G ACATGG AGATCT

 GCTAGC TGTACC T|CTAGA (3.14)
CGATCG ACATGG AGATC|T

GCTAGA (3.15)
CGATCT

G|CTAGC TGTACC TCTAGC TGTACC TCTAGA (3.16)
CGATC|G ACATGG AGATCG ACATGG AGATCT

TCTAGC TGTACC TCTAGA (3.17)
AGATCG ACATGG AGATCT

 13

GCTAGC TGTACC TCTAGC (3.18)
CGATCG ACATGG AGATCG

Moreover, when the enzymes NheI and XbaI are applied to the molecules

marked (3.14) and (3.16), the following new string of molecule will arise:

GCTAGC TGTACC TCTAGC TGTACC TCTAGC TGTACC TCTAGA
CGATCG ACATGG AGATCG ACATGG AGATCG ACATGG AGATCT.

Continuing in this manner, the molecules which will result from the second

initial string using the enzymes NheI and XbaI can be summarized as

GCTAGCTGTACC TCTAGCTGTACC TCTAGA
: 0

CGATCGACATGG AGATCGACATGG AGATCT

n

n
⎧ ⎫⎛ ⎞⎪ ⎪≥⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
.

None of the strings in the infinite set (tctagc tgtacc)n is a constant since each

such string occurs as a segment of a string in each of the two sets. Since if such a

string were a constant, a string beginning with GG and ending with GA would lie in

L. For this splicing language, there does not exist a positive integer P for which all

strings of length P are constant. Thus the language which result from this splicing

system using the four enzymes Acc65I, BsrGI, NheI and XbaI with initial string I =

{ggtacc tctagc tgtaca, gctagc tgtacc tctaga}is not strictly locally testable.

Example 3.2:

Let S = (D, I, B, ∅) be a splicing system where I = {ccgg ttag tcga, ctag tcgg

ttaa} is the set consisting of two initial strings. The set B = {(C, CG, G), (T, CG, A),

(C, TA, G), (T, TA, A)} is the set of cleavage patterns for enzymes HpaII, Taqα I,

BfaI and MseI respectively. These patterns all leave 5' overhangs.

Considering the first initial string, that is ccgg ttag tcga. Using the enzyme

HpaII, the following recombination can be seen, where new molecules (3.19) and

(3.20) will arise.

 14

C|CGG TTAG TCGA
GGC|C AATC AGCT

TCGA CTAA C|CGG
AGCT GATT GGC|C

CCGG (3.19)
GGCC

TCGA CTAA CCGG TTAG TCGA (3.20)
AGCT GATT GGCC AATC AGCT

Using the enzyme Taqα I, the following recombination can be seen, where

new molecules (3.21) and (3.22) will arise.

CCGG TTAG T|CGA
GGCC AATC AGC|T

T|CGA CTAA CCGG
AGC|T GATT GGCC

TCGA (3.21)
AGCT

CCGG TTAG TCGA CTAA CCGG (3.22)
GGCC AATC AGCT GATT GGCC

Using both the enzymes HpaII and Taqα I, the following recombination can

be seen, where new molecules (3.24), (3.25), (3.26) and (3.27) will arise.

C|CGG TTAG TCGA
GGC|C AATC AGCT

 CCGG TTAG T|CGA (3.23)
GGCC AATC AGC|T

CCGA (3.24)
GGCT

C|CGG TTAG TCGG TTAG TCGA (3.25)
GGC|C AATC AGCC AATC AGCT

 15

TCGG TTAG TCGA (3.26)
AGCC AATC AGCT

CCGG TTAG TCGG (3.27)
GGCC AATC AGCC

Moreover, when the enzymes HpaII and Taqα I are applied to the molecules

marked (3.23) and (3.25), the following new string of molecule will arise:

CCGG TTAG TCGG TTAG TCGG TTAG TCGA
GGCC AATC AGCC AATC AGCC AATC AGCT.

Continuing in this manner, the molecules which will result from the first

initial string using the enzymes HpaII and Taqα I can be summarized as

CCGG TTACTCGG TTAGTCGA
: 0

GGCC AATGAGCC AATCAGCT

n

n
⎧ ⎫⎛ ⎞⎪ ⎪≥⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
.

Now, considering the second initial string, that is ctag tcgg ttaa. Using the

enzyme BfaI, the following recombination can be seen, where new molecules (3.28)

and (3.29) will arise.

C|TAG TCGG TTAA
GAT|C AGCC AATT

TTAA CCGA C|TAG
AATT GGCT GAT|C

CTAG (3.28)
GATC

TTAA CCGA CTAG TCGG TTAA (3.29)
AATT GGCT GATC AGCC AATT

 Using the enzyme MseI, the following recombination can be seen, where new

molecules (3.30) and (3.31) will arise.

CTAG TCGG T|TAA
GATC AGCC AAT|T

 16

T|TAA CCGA CTAG
AAT|T GGCT GATC

TTAA (3.30)
AATT

CTAG TCGG TTAA CCGA CTAG (3.31)
GATC AGCC AATT GGCT GATC

Using both the enzymes BfaI and MseI, the following recombination can be

seen, where new molecules (3.33), (3.34), (3.35) and (3.36) will arise.

C|TAG TCGG TTAA
GAT|C AGCC AATT

 CTAG TCGG T|TAA (3.32)
GATC AGCC AAT|T

CTAA (3.33)
GATT

C|TAG TCGG TTAG TCGG TTAA (3.34)
GAT|C AGCC AATC AGCC AATT

TTAG TCGG TTAA (3.35)
AATC AGCC AATT

CTAG TCGG TTAG (3.36)
GATC AGCC AATC

Moreover, when the enzymes BfaI and MseI are applied to the molecules

marked (3.32) and (3.34), the following new string of molecule will arise:

CTAG TCGG TTAG TCGG TTAG TCGG TTAA
GATC AGCC AATC AGCC AATC AGCC AATT.

Continuing in this manner, the molecules which will result from the second

initial string using the enzymes BfaI and MseI can be summarized as

CTAGTCGG TTAGTCGG TTAA
: 0

GATCAGCC AATCAGCC AATT

n

n
⎧ ⎫⎛ ⎞⎪ ⎪≥⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
.

 17

None of the strings in the infinite set (ttag tcgg)n is a constant since each such

string occurs as a segment of a string in each of the two sets. Since if such a string

were a constant, a string beginning with CC and ending with AA would lie in L. For

this splicing language, there does not exist a positive integer P for which all strings

of length P are constant. Thus the language which result from this splicing system

using the four enzymes HpaII, Taqα I, BfaI and MseI with initial string I = {ccgg ttag

tcga, ctag tcgg ttaa} is not strictly locally testable.

3.3 Different Combination of Restriction Enzymes in a Strictly Locally

Testable Language

 This section discusses some theorems related to different combination of

restriction enzymes in strictly locally testable (SLT) languages.

Theorem 3.1:

 Suppose L = L(S) where S = (D, I, B, C). If only one of the restriction

enzymes is used for either B or C, the language generated must be SLT disregard of

the initial language I (i.e., the initial set of molecular varieties).

Proof:

If there is only one restriction enzyme present, only the string of DNA which

contains the restriction site of that particular enzyme can be altered by cutting at the

specified sequence of restriction enzyme, and later pasting it back. Since there is a

positive integer k for which every factor of L of length k is a constant, L is a SLT

language. �

 18

Theorem 3.2:

 Suppose L = L(S) where S = (D, I, B, C). If exactly one enzyme having a left

overhang and exactly one enzyme having a right overhang is used to give B and C,

the language generated must be SLT disregard of the initial language I.

Proof:

If there is only one enzyme in each B and C, only the string of DNA which

contains the restriction site of any one or both of those particular enzymes can be

altered, and since one of the enzyme has a left overhang and the other enzyme a right

overhang, it is not possible for them to be cut and pasted together. This is because

there is no possibility that a 5' overhang can combine with a 3' overhang. Since there

is a positive integer k for which every factor of L of length k is a constant, L is a SLT

language. �

Theorem 3.3:

 Given a set consisting of two restriction enzymes: AgeI and MseI. Since

there are two enzymes in the set, there are 22 = 4 subsets of this set of two enzymes.

For all of these four subsets, the language generated by this splicing system will be

SLT for every possible choice of I.

Proof:

 These four subsets are ∅, { AgeI }, { MseI }and { AgeI, MseI }. This is due

to the crossings of the restriction sites are disjoint as shown below:

Restriction site for the enzyme AgeI:

5′…A▼CCGG T…3′
3′…T GGCC▲A…5′

 19

Restriction site for the enzyme MseI:

5′...T▼TA A...3′
3′...A AT▲T...5′

Therefore, since the crossings of the restriction sites are disjoint and there is a

positive integer k for which every factor of L of length k is a constant, L is a SLT

language. �

Theorem 3.4:

 Given a set consisting of three restriction enzymes: AgeI, MseI and HpaII.

Since there are three enzymes in the set, there are 23 = 8 subsets of this set of three

enzymes. For all of these eight subsets, the language generated by this splicing

system will be SLT for every possible choice of I.

Proof:

 These eight subsets are ∅, { AgeI }, { MseI }, { HpaII }, { AgeI, MseI }, {

AgeI, HpaII }, { MseI, HpaII } and { AgeI, MseI, HpaII }. This is due to the

crossings of the restriction sites are disjoint as shown below:

Restriction site for the enzyme AgeI:

5′…A▼CCGG T…3′
3′…T GGCC▲A…5′

Restriction site for the enzyme MseI:

5′...T▼TA A...3′
3′...A AT▲T...5′

Restriction site for the enzyme HpaII:

5′…C▼CG G…3′
3′…G GC▲C…5′

 20

Therefore, since the crossings of the restriction sites are disjoint and there is a

positive integer k for which every factor of L of length k is a constant, L is a SLT

language. �

Theorem 3.5:

 Given a set consisting of four restriction enzymes: BamHI, BglII, BclI and

DpnII. Since there are four enzymes in the set, there are 24 = 16 subsets for this set

of four enzymes. Let S be any subset of these sets that contain DpnII. For every

such set S, ∅, { BamHI }, { BglII } and { BclI }, the language generated by this

splicing system is SLT for every possible choice of I.

Proof:

 The restriction sites for enzymes BamHI, BglII, BclI and DpnII are shown

below:

Restriction site for the enzyme BamHI:

5′…G▼GATC C…3′
3′…C CTAG▲G…5′

Restriction site for the enzyme BglII:

5′…A▼GATC T…3′
3′…T CTAG▲A…5′

Restriction site for the enzyme BclI:

5′…T▼GATC A…3′
3′…A CTAG▲T…5′

Restriction site for the enzyme DpnII:

5′…▼GATC …3′
3′… CTAG▲…5′

 21

 For a language L generated by sets ∅, {BamHI}, {BglII}and {BclI}, the set

of constants for L contains AP for some P, that is P = 4 in this case. Therefore L is a

SLT language.

 For any splicing system with sets consisting of Dpn II, that splicing system is

a null context splicing system where P = 4. Such a splicing system is also a uniform

splicing system, thus the language generated is a uniform splicing language,

implying that it is a SLT language also. �

Theorem 3.6:

 Given a set consisting of four restriction enzymes: DpnI, DpnII, BamHI and

BclI. Since there are four enzymes in the set, there are 24 = 16 subsets for this set of

four enzymes. Let S be any subset that contains at least one of { DpnI, DpnII }. For

every such set S, ∅, { BamH I } and { Bcl I }, the language generated by this splicing

system is SLT for every possible choice of I.

Proof:

 The restriction sites for enzymes DpnI, DpnII, BamHI and BclI are shown

below:

Restriction site for the enzyme DpnI:

5′…GA▼TC…3′
3′…CT▲AG…5′

Restriction site for the enzyme DpnII:

5′…▼GATC …3′
3′… CTAG▲…5′

Restriction site for the enzyme BamHI:

5′…G▼GATC C…3′
3′…C CTAG▲G…5′

 22

Restriction site for the enzyme BclI:

5′…T▼GATC A…3′
3′…A CTAG▲T…5′

 For a language L generated by sets S, ∅, {BamHI} and {BclI}, the set of

constants for L contains AP for some P, that is P = 4 in this case. Strings that contain

sites are constants. There is a positive integer k = 4 for which every factor of L of

length 4 is a constant. Therefore L is a SLT language. �

3.4 Conclusion

 This chapter shows two examples of a language that is not strictly locally

testable. Besides, several theorems regarding different combination of restriction

enzymes in a strictly locally testable language are also discussed.

CHAPTER 4

CONCEPTS OF CONSTANT AND LOCAL

4.1 Introduction

In this section, some theorems and proofs on the concepts of constant and

local are included. Recall that a string x is a constant relative to a language L if for

any two words pxq and uxv in L, it follows that pxv is also in L. Also, a language L is

n-local, where n is a non-negative integer, if every string of length n is a constant

relative to L. Furthermore, L is a local language if it is n-local for some non-negative

integer n.

4.2 Theorems on Concepts of Constant and Local

 Below are six theorems regarding the concepts of constant and local in a

language together with their proofs.

Theorem 4.1:

 If x is a constant relative to L and pxq and uxv are in L, then uxq is in L.

 24

Proof:

Let x be a constant relative to L. For pxq and uxv in L, by definition, pxv is in

L. Thus for uxv and pxq in L, by definition also, uxq is in L. �

Theorem 4.2:

 If L is n-local then it is k-local for every k > n.

Proof:

Suppose L is n-local. Every string of length n is a constant relative to L. If

px1x2…xn-1xnq, ux1x2…xn-1xnv ∈ L, then px1x2…xn-1xnv ∈ L and ux1x2…xn-1xnq ∈ L

since x1x2…xn-1xn is a constant. Suppose px1x2…xn-1xnxn+1…xk-1xkq, ux1x2…xn-

1xnxn+1…xk-1xkv ∈ L. From px1x2…xn-1xnq ∈ L and ux1x2…xn-1xnxn+1…xk-1xkv ∈ L,

px1x2…xn-1xnxn+1…xk-1xkv ∈ L also since x1x2…xn-1xn is a constant. Similarly, from

ux1x2…xn-1xnv ∈ L and px1x2…xn-1xnxn+1…xk-1xkq ∈ L, ux1x2…xn-1xnxn+1…xk-1xkq ∈ L

also since x1x2…xn-1xn is a constant. Therefore, if L is n-local, then it is k-local for

every k > n. �

Theorem 4.3:

 If L = xv'(vyzu)*u'x, then L is local and n-local for n ≥ 2.

Proof:

L is a local language if it is n-local for some non-negative integer n, that is,

every string of length n is a constant relative to L. Since vyzu of length 4 is a

constant relative to L and every string of length 4 is a constant relative to L, L is 4-

local.

 25

Suppose x is a constant and xv'u'x ∈ L. However, xv'u'xv'u'x ∉ L. Thus L is

not 1-local. But every string of length 2 is a constant relative to L. Therefore L is n-

local for n ≥ 2. �

Theorem 4.4:

 If L' = xz'(zuvy)*y'x, then L' is local and n- local for n ≥ 2.

Proof:

L' is a local language if it is n-local for some non-negative integer n, that is,

every string of length n is a constant relative to L'. Since zuvy of length 4 is a

constant relative to L' and every string of length 4 is a constant relative to L', L' is 4-

local.

Suppose x is a constant and xz'y'x ∈ L'. However, xz'y'xz'y'x ∉ L'. Thus L' is

not 1-local. But every string of length 2 is a constant relative to L'. Therefore L' is n-

local for n ≥ 2. �

Theorem 4.5:

 If L = xv'(vyzu)*u'x and L' = xz'(zuvy)*y'x¸ then L'' = L ∪ L'=

xv'vyz(uvyz)*uu'x ∪ xz'z(uvyz)*uvyy'x ∪ {xv'u'x, xz'y'x}.

Proof:

L'' = L ∪ L'

 = xv'(vyzu)*u'x ∪ xz'(zuvy)*y'x

 = xv'u'x ∪ xv'vyz(uvyz)*uu'x ∪ xz'y'x ∪ xz'z(uvyz)*uvyy'x

 = xv'vyz(uvyz)*uu'x ∪ xz'z(uvyz)*uvyy'x ∪ {xv'u'x, xz'y'x}. �

 26

Theorem 4.6:

 If L'' = xv'vyz(uvyz)*uu'x ∪ xz'z(uvyz)*uvyy'x ∪ {xv'u'x, xz'y'x}, then L'' is not

local.

Proof:

L'' is not 1-local since there exist string of length 1 that is not a constant

relative to L'': xv'u'x, xz'y'x ∈ L'' but xv'u'xz'y'x ∉ L''. L'' is not 2-local since

xv'vyzuu'x, xz'zuvyy'x ∈ L'' but xv'vyy'x ∉ L''. L'' is not 3-local since xv'vyzuu'x,

xz'zuvyzuvyy'x ∈ L'' but xv'vyzuvyy'x ∉ L''. L'' is not 4-local since xv'vyzuvyzuu'x,

xz'zuvyzuvyy'x ∈ L'' but xv'vyzuvyzuvyy'x ∉ L''.

Similarly, no string beginning with xv' and ending with y'x would lie in L''.

There is a string of length n that is not a constant relative to L''. L'' is not n-local and

thus not local. �

4.3 Theorems on Conditions of Splicing Rules

 This section presents three theorems showing conditions of splicing rules

which are equivalent to each other.

Theorem 4.7:

 The following four conditions on the pair consisting of a word w in A* and a

language L ∈ A* are equivalent:

(a) w is a constant with respect to L.

(b) L is closed under the splicing rule (w, 1, w, 1), i.e., under the splicing rule w.

(c) L is closed under the splicing rule (1,w, 1, w).

(d) L is closed under a splicing rule (u, v, u, v) where uv = w.

 27

Proof:

(a) ⇒ (b): Suppose w is a constant with respect to L. Thus, if pwq, rws ∈ L, then

pws ∈ L and rwq ∈ L. Using splicing rule (w, 1, w, 1), pwq = p-w, 1-q ∈ L and rws =

r-w, 1-s ∈ L. This splicing rule (w, 1, w, 1) yields p-w,1-s = pws ∈ L and r-w,1-q =

rwq ∈ L. Therefore, pwq, rws, pws, rwq ∈ L using rule (w, 1, w, 1) and L is closed

under this splicing rule.

(b) ⇒ (c): Suppose L is closed under the splicing rule (w, 1, w, 1). Thus, pwq, rws,

pws, rwq ∈ L using (w, 1, w, 1). Using splicing rule (1, w, 1, w), pwq = p-1, w-q ∈ L

and rws = r-1,w-s ∈ L. This splicing rule (1, w, 1, w) further yields p-1, w-s = pws ∈

L and r-1, w-q = rwq ∈ L. Therefore, pwq, rws, pws, rwq ∈ L using rule (1, w, 1, w)

and L is closed under this splicing rule.

(c) ⇒ (d): Suppose L is closed under the splicing rule (1, w, 1, w). Thus, pwq, rws,

pws, rwq ∈ L using (1, w, 1, w). Using splicing rule (u, v, u, v) where uv = w, pwq =

puvq = p-u, v-q ∈ L and rws = ruvs = r-u, v-s ∈ L. This splicing rule (u, v, u, v)

further yields p-u, v-s = puvs = pws ∈ L and r-u, v-q = ruvq = rwq ∈ L. Therefore,

pwq, rws, pws, rwq ∈ L using rule (u, v, u, v) where uv = w and L is closed under this

splicing rule.

(d) ⇒ (a): Suppose L is closed under the splicing rule (u, v, u, v) where uv = w.

Thus, pwq, rws, pws, rwq ∈ L using (u, v, u, v). Since pwq, rws ∈ L and pws, rwq ∈

L, then w is a constant with respect to L. �

Theorem 4.8:

 The following four conditions on a language L ∈ A* are equivalent:

(a) L is n-local.

(b) L is closed under the action of each splicing rule (w, 1, w, 1) for which w has

length n, i.e., under the splicing rule w, where w has length n.

 28

(c) L is closed under the action of every splicing rule (1, w, 1, w) with w of

length n.

(d) L is closed under the action of each splicing rule (u, v, u, v) for which length

uv is n.

Proof:

(a) ⇒ (b): Suppose L is n-local, that is, every string of length n is a constant relative

to L. Thus, if pw1w2…wnq, rw1w2…wns ∈ L, then pw1w2…wns ∈ L. Using splicing

rule (w, 1, w, 1), pw1w2…wnq = pw1w2…wn, 1-q ∈ L and rw1w2…wns = rw1w2…wn,

1-s ∈ L yields pw1w2…wn, 1-s = pw1w2…wns ∈ L and rw1w2…wn,1-q = rw1w2…wnq

∈ L. Therefore, pw1w2…wnq, rw1w2…wns, pw1w2…wns and rw1w2…wnq ∈ L using

rule (w, 1, w, 1) and L is closed under this splicing rule.

(b) ⇒ (c): Suppose that L is closed under the splicing rule (w, 1, w, 1). Thus,

pw1w2…wnq, rw1w2…wns, pw1w2…wns and rw1w2…wnq ∈ L using rule (w, 1, w, 1).

But using splicing rule (1, w, 1, w), pw1w2…wnq = p-1, w1w2…wn – q ∈ L and

rw1w2…wns = r-1, w1w2…wn-s ∈ L. This splicing rule further yields p-1, w1w2…wn-s

= pw1w2…wns ∈ L and r-1, w1w2…wn-q = rw1w2…wnq ∈ L. Therefore,

pw1w2…wnq, rw1w2…wns, pw1w2…wns and rw1w2…wnq ∈ L using rule (1, w, 1, w)

and L is closed under this splicing rule.

(c) ⇒ (d): Suppose that L is closed under the splicing rule (1, w, 1, w). Thus,

pw1w2…wnq, rw1w2…wns, pw1w2…wns and rw1w2…wnq ∈ L using rule (1, w, 1, w).

But using splicing rule (u, v, u, v) where uv = w1w2…wn, pw1w2…wnq = puvq = p-u,

v-q ∈ L and rw1w2…wns = ruvs = r-u, v-s ∈ L. This splicing rule further yields p-u,

v-s = puvs = pw1w2…wns ∈ L and r-u, v-q = ruvq = rw1w2…wnq ∈ L. Therefore,

pw1w2…wnq, rw1w2…wns, pw1w2…wns and rw1w2…wnq ∈ L using rule (u, v, u, v)

where uv = w1w2…wn and L is closed under this splicing rule.

(d) ⇒ (a): Suppose L is closed under the splicing rule (u, v, u, v) where uv =

w1w2…wn. Thus, pw1w2…wnq, rw1w2…wns, pw1w2…wns and rw1w2…wnq ∈ L using

 29

rule (u, v, u, v). Since pw1w2…wnq, rw1w2…wns ∈ L and pw1w2…wns, rw1w2…wnq

∈ L, then w1w2…wn is a constant with respect to L. Since every string of length n is

a constant relative to L, L is n-local. �

Theorem 4.9:

 The following three conditions on a language L are equivalent:

(a) L is local.

(b) L is a uniform splicing language.

(c) L is a null-context splicing language.

Proof:

(a) ⇒ (b): Suppose L is local. Proposition 2.3 proves that if L is local, then L is a

null-context splicing language. Here R = {w ∈ A*: w has length n}. Since L is a

null-context splicing language, for which, for some non-negative number n, R is the

set of all strings in A* having length n, and according to Definition 2.6, L is a

uniform splicing language.

(b)⇒ (c): Suppose L is a uniform splicing language. By definition, a uniform

splicing system is a null-context system for which, for some non-negative number n,

R is the set of all strings in A* having length n. Thus R is a null-context rule. Thus L

is a null-context splicing language.

(c) ⇒ (a): By Proposition 2.3, L is a null-context splicing language, which implies L

is local. �

 30

4.4 Conclusion

 This chapter presents six theorems on concepts of constant and local. Also

presented are three theorems on conditions of splicing rules which are equivalent to

each other.

CHAPTER 5

SIMPLE SPLICING SYSTEMS

5.1 Introduction

 This chapter highlights some examples of the maximal firm factors of a word.

Besides, simple splicing system is discussed using the automata concept. Another

concept used in splicing system called the solid code is also discussed.

5.2 Maximal Firm Factors of a Word

 Following are some examples of the maximal firm factors of a word.

Example 5.1.

 Let A = {a, b}, B = {b}, I will be left unspecified so far. There is only one

rule, namely r = (b, λ, b, λ). A word w in A* is firm with respect to r if (and only if)

w is in a*. The maximal firm factors of the word aabaaabaaba are indicated via

underscores: aabaaabaaba.

 32

Example 5.2.

 Let A = {a, b, c, d, e}, B = {b, d}, I will be unspecified so far. There are only

two rules, namely r = (b, λ, b, λ) and r' = (d, λ, d, λ). These two rules can be

abbreviated as b and d respectively. A word w in A* is firm with respect to r if w in

{a, c, d, e}*. A word w in A* is firm with respect to r' if w in {a, b, c, e}*. A word

w in A* is firm with respect to R = {r, r'} iff w is in {a, c, e}*. The maximal firm

factors of the word aabacadcccbceeab are indicated via underscores:

aabacadcccbceeab.

Example 5.3.

 Let A = {a, b}, B = {b} and I = {aaabaa, aba}. The language generated by

(A, B, I) is L = {aaabaa, aba, aaaba, abaa}. The maximal firm factors of words in L

are indicated via underscores: {aaabaa, aba, aaaba, abaa}.

Example 5.4.

 Let A = {a, b, c, d, e}, B = {b, d} and I = {aabcedccbee}. The language

generated by (A, B, I) is L' = aab(cedccb)*ee. The maximal firm factors of words in

L' are indicated via underscores: aab(cedccb)*ee.

Example 5.5.

 Let A = {a, b, c, d, e}, B = {b, d} and I = {abcde, edcba}. The language

generated by (A, B, I) is L" = {a(bcdc)*ba, e(dcbc)*de, a(bcdc)*bcde,

e(dcbc)*dcba}. The maximal firm factors of words in L'' are indicated via

underscores: {a(bcdc)*ba, e(dcbc)*de, a(bcdc)*bcde, e(dcbc)*dcba}.

 33

5.3 Simple Splicing System

 Following is the definition of a simple splicing system.

Definition 5.1: (Simple Splicing System)

 A simple splicing system consists of a finite alphabet A, a subset B of A

(often called the marked symbols in A), a finite set of splicing rules R = {(b, λ, b, λ):

b in B}, and a finite set I of initial words in A*. Because of the extremely simple

nature of the rule set R, which is determined completely by listing the elements of the

subset B, a simple splicing system is denoted in the simplified form (A, B, I). Simple

splicing systems are always and automatically reflexive and transitive.

 In [7], the simple splicing systems are fitted into a hierarchy that starts off S-

1H, S0H, S1H = SH, S2H, S3H,… with the union of this nest of language families

being the classical family of all strictly locally testable language (SLT) which is

equivalent to null context splicing (NCH) language.

 S-1H languages are merely the finite languages which can be represented by L

= L (A, L, empty). Since there are no ‘rules’ to do any cutting, each of the words in L

can be regarded as a firm word since none can be cut.

 S0H languages are merely the language B*, where B ranges over the subsets

of A. Thus these languages can be represented by L = L (A, B, {λ}). Thus, no word

of length >= 2 is firm, since it can certainly be cut (anyplace in the word). As for

each individual letter, b in B, each such letter is firm, or no word (or letter) is firm.

Probably it will be best to say that there are no firm words.

 The first family that is worth considering is S1H = SH. Languages in SH are

generated like L = L (A, I, R) where R is a subset of A. Any word of he form xry

where r is in R can be cut as follows: for any xry and urv, xrv and ury can be formed.

The cutting can be considered as x|ry, u|rv or xr|y, ur|v. We shall standardize that the

 34

cutting goes at the end of the site: xry and urv get cut into xr|y, ur|v and then the

pieces get pasted to give xrv and ury.

 A word w in A* that contains no letter in R cannot be cut at all, thus it is

considered to be firm. If w = xry with neither x nor y null then w can be cut into two

pieces and should therefore be not firm. For SH languages, a word w is firm if and

only if it contains no element of R.

 SH systems are just the same as splicing systems where all the rules have the

form (a, λ, a, λ) which can be written for convenience by merely mentioning that ‘a

is in R’. S2H also allows rules of the form (ab, λ, ab, λ) which can be written for

convenience by merely mentioning that ‘ab is in R’.

 For the SH language L we will say that a word w in L is firm if it contains no

occurrence of a letter in R. Recall that by a factor of a word w in A* is meant any

word y for which there are words x and z for which w = xyz, where x, z in A*. So a

maximal firm subword of a word w should be a factor y of w in which no letter in R

occurs in y but if w = uayz with a in A, then a is in R and if w = xybv with b in A, then

b is in R.

 If w = uayz and a is not in R, then ay would be a firm factor of w that is one

letter longer than y and so y wouldn’t be a maximal firm subword of w. If w = xybv

and b is not in R, then yb would be a firm factor of w that is one letter longer than y

and so y wouldn’t be a maximal firm subword of w. A word y is a maximal firm

subword of w as long as y can get, and stay, inside w. In other words, a maximal

firm subword of w is a longest possible factor of w that contains no letter in R.

 Next, the simple splicing system automata concept, known as SH-automata

concept, is discussed.

 35

5.4 SH-automata Concept

 Below are some examples on maximal firm subwords and the simplest non-

deterministic automaton that recognizes (A, I, R):

Example 5.6.

 Suppose A = {a, b}, I = {aabaaaaabaaabaa} and R = {b}. The maximal firm

subwords of the only word in I are: aa, aaaaa, aaa. The simplest non-deterministic

automaton that recognizes L (A, I, R):

The regular expression for this language is aab(aaab+aaaaab)*aa.

Example 5.7.

 Suppose A = {a, b}, I = {abaaabaaabaa, aabaaaaabaaaaabaaaaa} and R =

{b}. Maximal firm subwords of I: a, aaa, aa, aaaaa. The simplest non-

deterministic automaton that recognizes L (A, I, R):

 Notice that we will get the same language generated if I were {abaaabaa,

aabaaaaabaaaaa} or if I were {abaaaaa, aabaaaaabaaabaa}. The regular

expression for this language is (a+aa)b(aaab+aaaaab)*(aa+aaaaa).

aaaaa

aaa

aa aa b

aaaaa

a

aaa

aaaaa

aa

aa

b

 36

aa
aa a

aaa

c b

aaaaa

aaa a

Example 5.8.

 Suppose A = {a, b, c}, I = {abaacaaaaaba, abaaabaaacaaba} and R = {b, c}.

Maximal firm subwords of I: a, aa, aaaaa, aaa. The simplest non-deterministic

automaton that recognizes L (A, I, R):

The regular expression for this language is ab[aaab+(aac+aaac)(aab+aaaaab)]*a.

Example 5.9.

 Suppose A = {a, b, c}, I = {abaaabbaabbba} and R = {b, c}. Maximal firm

subwords of I: a, aaa, aa. The simplest non-deterministic automaton that recognizes

L (A, I, R):

The regular expression for this language is ab(aaab+b+aab)*a.

Note: (a+b)* = A*

a*b* = those words in which ALL occurrences of an ‘a’ come before ALL

occurrences of ‘b’.

 Following is an example of a S2H system:

aaa aaa

a a b

λ

aa

 37

Example 5.10.

 Suppose A = {a, b, c}, I = {aabcaaabcaaaabcaa}, R = {bc}. This is not

really more complicated than an SH system. The rule bc doesn’t occur in any

complicated or over-lapping way and in fact neither a b nor a c even occurs

separately. So this S2H is hardly different from the SH system where A = {a, d}, I =

{aadaaadaaaadaa}, R = {d}. This language is a homomorphic image of the SH

language aad(aaad+aaaad)*aa under the function f(a) = a, f(d) = bc. The

appropriate S2H automaton that recognizes L(A, I, R):

The regular expression for this S2H language is aabc(aaabc+aaaabc)*aa.

 One trip through the SH – automaton is an arbitrary walk through the graph

entering via an entrance following any path until exit. The language is an infinite set.

We can generate a lot of different words from an SH-automaton, but SH-automaton

defines exactly one language which is exactly the language generated defined by the

simple splicing language.

 Taking the SH-automata concept, which is a short compact way of encoding

normal non-deterministic automata – in the special case of SH systems, the maximal

firm subwords of the initial words of an SH systems serve as the labels for the

associated SH-automaton.

5.5 Solid Code

 This section discusses on solid code and several examples related to it.

aaa

aaaa

aa aa bc

 38

Definition 5.2 (Solid Code):

 A set S of words in A* is a solid code if

(1) w = xyz can hold with both w and y in S only when x and z are null.

(2) xy in S and yz in S can hold only if y is null.

Or less formally,

(1) no word in S is a subword of any other word in S;

(2) no two distinct words in S overlap non-trivially.

 Below are some examples of solid and non solid codes:

Example 5.11.

 Let A = {a, b, c, d, e, f, g}. S = {a, b, c, d} is a solid code. S = {abc, abbc,

abbbc, abbbbc, abbbbbc} is solid. S = ab*c is an infinite solid code. T = {cab, ac} is

not solid, since cab and ac are overlapping non-trivially. T = {ab, ac, abc, dddd} is

not solid, since ab is a subword of abc. T = {abc, cba} is not solid, since abc and

cba are overlapping non-trivially. T = {abcdde, cd} is not solid, since cd is a

subword of abcdde.

 When R is a solid code, the SkH system (A, I, R) where k is the length of the

longest word in R, may be identified with an appropriate S1H system, and thereby

completely understood in terms of the maximal firm words of the S1H system and the

words in the solid code R.

Example 5.12.

 Suppose A = {a, b, c, d}, I = {bbadcddacbcabdcd, dabcaddcddbcab}, R =

{cdd, bca} which is a solid code. I = {bbad/cdd/ac/bca/bdcd, da/bca/dd/cdd/bca/b}

illustrates how, when R is a solid, words come apart naturally and uniquely into code

 39

words and ‘words-in-between’. Since the maximum length of a word in R is three,

we have specified an S3H system. However, due to the nice clean parsing into words

in R and words-between, such an S3H is really pretty much the same as an easily

specified S1H system over a different alphabet.

 Suppose that we choose a new letter not in A for each word in R. Let us use p

and q. Then form the S1H system by using the parsed version of I given above: A' =

{a, b, c, d, p, q}, I' = {bbadpacqbdcd, daqddpqb}, R' = {p, q}. This is an S1H system

and we can see that it has ‘maximal firm words’: bbad, ac, bdcd, da, dd, b. The

language L(A, I, R) is the image of the language L(A', I', R') under the

homomorphism of h : (A') → A* generated by the one-to-one function h: A'→{a, b, c,

d, cdd, bca} defined by h(a) = a, h(b) = b, h(c) = c, h(d) = d, h(p) = cdd, h(q) = bca.

Example 5.13.

 Suppose A = {a, b, c, d}, I = {dabccacdbabcacdb, acacdcabb}, R = {ab,

cacd} which is a solid code. I = {d/ab/c/cacd/b/ab/cacd/b, a/cacd/c/ab/b} illustrates

how, when R is a solid, words come apart naturally and uniquely into code words and

‘words-in-between’. Since the maximum length of a word in R is four, we have

specified an S4H system. However, due to the nice clean parsing into words in R and

words-between, such an S4H is really pretty much the same as an easily specified S1H

system over a different alphabet.

 Suppose that we choose a new letter not in A for each word in R. Let us use p

and q. Then form the S1H system by using the parsed version of I given above: A' =

{a, b, c, d, p, q}, I' = {dpcqbpqb, aqcpb}, R' = {p, q}. This is an S1H system and we

can see that it has ‘maximal firm words’: d, c, b, a. The language L(A, I, R) is the

image of the language L(A', I', R') under the homomorphism of h : (A') → A*

generated by the one-to-one function h: A' → {a, b, c, d, ab, cacd} defined by h(a) =

a, h(b) = b, h(c) = c, h(d) = d, h(p) = ab, h(q) = cacd.

 40

Example 5.14.

 Suppose A = {a, b, c, d}, I = {dacbba, bacbbacd} and R = {ac, acb}. R is not

solid since ac is a subword of acb.

Example 5.15.

 Suppose A = {a, b, c, d}, I = {abcdddacba, bbcdaadacbb} and R = {bc,

dacb}. R is not solid since bc and dacb overlap non-trivially.

5.6 Conclusion

 This chapter discussed the maximal firm factors of a word, the simple

splicing system, SH-automata concept and concepts of solid code. This will allow

languages L (A, I, R) to be reduced to S1H languages by replacement of the

occurrences of words in R by letters of an alphabet of new letters.

CHAPTER 6

MOLECULAR CONSIDERATIONS

6.1 Introductions

 This chapter lists some molecular considerations of a splicing system. Firm

words in a wet-lab experiment are also discussed.

6.2 Molecular Considerations

This section lists a few of the actual molecular considerations for the

molecules that will arise from a given initial sets of strings using some chosen

restriction enzymes.

Example 6.1:

 List all the sequences of the ds-DNA molecules (without sticky ends) that can

arise as ds-DNA molecules having the sequence

5′-C19GGATCCC17-3′
3′-G19CCTAGGG17-5′
are added to an aqueous solution containing BamHI and a ligase.

 42

All molecules:

1) original molecule, that is

5′-C19GGATCCC17-3′
3′-G19CCTAGGG17-5′

2) 5′-C19GGATCCG19-3′
3′-G19CCTAGGC19-5′

3) 5′-G17GGATCCC17-3′
3′-C17CCTAGGG17-5′

Example 6.2:

Find all the sequences of the ds-DNA molecules that can arise as ds-DNA

molecules having the sequence

5′-G19GGATCCC15GGATCCG17-3′
3′-C19CCTAGGG15CCTAGGC17-5′
are added to an aqueous solution containing BamHI and a ligase.

All molecules:

1) original molecule, that is

5′-G19GGATCCC15GGATCCG17-3′
3′-C19CCTAGGG15CCTAGGC17-5′

2) 5′-G19GGATCCG17-3′
3′-C19CCTAGGC17-5′

3) 5′-G19GGATCCC15GGATCCC15GGATCCG17-3′
3′-C19CCTAGGG15CCTAGGG15CCTAGGC17-5′

4) 5′-G19GGATCCC19-3′
3′-C19CCTAGGG19-5′

5) 5′-C17GGATCCG15GGATCCC15GGATCCG17-3′
3′-G17CCTAGGC15CCTAGGG15CCTAGGC17-5′

 43

6) 5′-G19GGATCCC15GGATCCG15GGATCCC19-3′
3′-C19CCTAGGG15CCTAG GC15CCTAGGG19-5′

7) 5′-C17GGATCCG17-3′
3′-G17CCTAGGC17-5′

8) 5′-G19GGATCCG15GGATCCC19-3′
3′-C19CCTAGGC15CCTAGGG19-5′

9) 5′-C17GGATCCC15GGATCCG17-3′
3′-G17CCTAGGG15CCTAGGC17-5′

and so on, where ALL molecules can be written in recursive form as:

1)
*19 15 17

19 15 17

5'-G GGATCCC GGATCCG -3'
3'-C CCTAGGG CCTAGGC -5'

⎛ ⎞
⎜ ⎟
⎝ ⎠

2)
* *17 15 15 17

17 15 15 17

5'-C GGATCCG GGATCCC GGATCCG -3'
3-G CCTAGGC CCTAGGG CCTAGGC -5'

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

3)
*17 15 15 17

17 15 15 17

5'-C GGATCCG GGATCCC GGATCCG -3'
3-G CCTAGGC CCTAGGG CCTAGGC -5'

⎛ ⎞
⎜ ⎟
⎝ ⎠

4)
* *19 15 15 19

19 15 15 19

5'-G GGATCCC GGATCCG GGATCCC -3'
3'-C CCTAGGG CCTAGGC CCTAGGG -5'

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

5)
*19 15 15 19

19 15 15 19

5'-G GGATCCC GGATCCG GGATCCC -3'
3'-C CCATGGG CCATGGC CCATGGG -5'

⎛ ⎞
⎜ ⎟
⎝ ⎠

Example 6.3:

 Find all the sequences of the ds-DNA molecules that can arise as ds-DNA

molecules having the sequence

 44

5′-G19CGCGC15GGATCCG17-3′
3′-C19GCGCG15CCTAGGC17-5′
are added to an aqueous solution containing BamHI, BstUI, and a ligase.

All molecules:

1) Original molecule, that is

5′-G19CGCGC15GGATCCG17-3′
3′-C19GCGCG15CCTAGGC17-5′

 2) 5′-G19CGCGC19-3′
3′-C19GCGCG19-5′

3) 5′-C17GGATCCG15CGCGC15GGATCCG17-3′
 3′-G17CCTAGGC15GCGCG15CCTAGGC17-5′

4) 5′-G19CGCGC15GGATCCG15CGCGC19-3′
 3′-C19GCGCG15CCTAGGC15GCGCG19-5′

5) 5′-C17GGATCCG17-3′
 3′-G17CCTAGGC17-5′

and so on, where ALL molecules can be written in recursive form as:

1)
*19 15 15 15 17

19 15 15 15 17

5'-G CGCGC GGATCCG CGCGC GGATCCG -3'
3'-C GCGCG CCATGGC GCGCG CCATGGC -5'

⎛ ⎞
⎜ ⎟
⎝ ⎠

2)
*17 15 15 17

17 15 15 17

5'-C GGATCCG CGCGC GGATCCG -3'
3'-G CCTAGGC GCGCG CCTAGGC -5'

⎛ ⎞
⎜ ⎟
⎝ ⎠

3)
*19 15 15 19

19 15 15 19

5'-G CGCGC GGATCCG CGCGC -3'
3'-C GCGCG CCTAGGC GCGCG -5'

⎛ ⎞
⎜ ⎟
⎝ ⎠

Example 6.4: Give splicing models, with alphabet A = { a, c, g, t }, appropriate for

Examples 6.2 and 6.3.

 45

For example 6.2, the appropriate splicing model for the representation of the

generative activity of BamHI and a ligase acting on molecules having the sequence

{g19ggatccc15ggatccg17} is S = (R, I) where R = {r} and I = {m, m’}, where

r = (g, gatcc; g, gatcc),

m = g19ggatccc15ggatccg17,

m’=c17ggatccg15ggatccc19.

For example 6.3, the appropriate splicing model for the representation of the

generative activity of BamHI, BstUI and a ligase acting on molecules having the

sequence {g19cgcgc15ggatccg17} is S = (R, I) where R = {r, r1, r2, r3} and I = {m, m’},

where

r = (cg, cg; cg, cg) ,

r1=(g, gatcc; g, gatcc),

r2 = (cg, cg; g, gatcc),

r3 = (g, gatcc; cg, cg),

m = g19cgcgc15ggatccg17,

m’= c17ggatccg15cgcgc19.

6.3 Firm Words in Wet-Lab Experiment

 There should be four distinct firm words for molecules, since when we deal

with ds-DNA molecule that is not a DNA palindrome, we have to list in two ways

but rotating one form through 180 degrees. When we denote dsDNA molecules on a

line (as a word or as a string) running from left to right, the dsDNA molecules that

these strings represent are free to turn every way in a test tube.

 In an experiment, the original molecule can be written on a line as a string in

two distinct ways. When the one molecule (with two string representations) is cut

into two pieces each of these pieces has two string representations. So in the word

model (or word encoding) one might get confused if one does not understand this

fundamental distinction between a dsDNA molecule and its (usually two distinct)

 46

word representation(s). In fact, to show the splicing operation one view two of the

original dsDNA molecules in opposite orientations to see the splice that creates the

one long and the one short new dsDNA molecule. Two molecules viewed in the

same orientation, when spliced, merely produce the two original molecules, each of

the original length.

6.3 Conclusion

 In this chapter, we showed that the result of a wet-lab splicing system can be

predicted using the theoretical splicing model.

CHAPTER 7

CONCLUSION AND SUGGESTIONS

7.1 Conclusion

 In this report, chapter 1 serves as an introduction to this research. Literature

review is given in chapter 2, in which the splicing model used in this research is the

Head splicing model. In chapter 3, strictly locally testable language is discussed, and

theorems regarding to it are proved. In chapter 4, concepts of constant and local are

presented, and those theorems related to them are proved. Maximal firm factors of a

word are also discussed in chapter 5, which leads to the discussion of simple splicing

system. SH-automata and the concept of solid code are used to illustrate the different

simple splicing systems. Lastly, several molecular considerations are discussed in

chapter 6 in which theoretical splicing system can be used to predict the actual

biological splicing system.

7.2 Suggestions

 Splicing systems can be viewed as a simple splicing system using the concept

of constant, which can be further showed through various examples. More theorems

related to simple splicing system can be proved. Actual wet-lab experiment can be

carried out in order to view the result of an actual splicing system as compared to the

mathematical model corresponding to it.

 48

REFERENCES

1. T. Head. Formal language theory and DNA: An analysis of the generative

capacity of specific recombinant behaviours. Bull. Math. Biology. 1987. 49: 737-

759.

2. Gh. Paun, G. Rozenberg and A. Salomaa. Computing by splicing. Theoret.

Comput. Sci. 1996. 168: 321-336.

3. D. Pixton. Regularity of splicing languages. Discrete Appl. Math. 1996. 69: 101-

124.

4. P. Bonizzoni, C. Ferretti, G. Mauri and R. Zizza. Separating some splicing

models. Information Processing Letters. 2001. 79: 255-259.

5. T. Head. Splicing languages generated with one sided context. In: Computing

with Bio-Molecules – Theory and Experiments (G. Paun, ed.). Singapore:

Springer-Verlag. 269-282; 1995.

6. E. Goode and D. Pixton. Recognizing splicing languages: Syntactic monoids and

simultaneous pumping.

7. T. Head. Splicing representations of strictly locally testable languages. Discrete

Applied Mathematics. 1998. 87:139-147.

8. R. W. Gatterdam. Splicing systems and regularity. International J. Computer.

Math. 1989. 31: 63-67.

9. T. Head. Finitely generated languages and positive data. Romanian Journal of

Information Science and Technology. 2002. 5(1-2): 127-136.

10. E. Laun. Constants and splicing systems. PhD Dissertation. Binghamton

University; 1999.

