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ABSTRACT 

 

 

 

 

Ethyl levulinate is a versatile chemical with numerous industrial applications. 

The production of ethyl levulinate from glucose and oil palm fronds (OPF) were 

investigated. The optimization of the effects of parameters was conducted by response 

surface methodology (RSM), and the data obtained was performed the regression 

analysis. In this study, three different heteropoly acids (HPAs) were screened and 

tested for glucose conversion to ethyl levulinate. The heteropoly acids; 

phosphomolybdic acid (H3PMo12O40), silicotungstic acid (H4SiW12O40) and 

phosphotungstic acid (H3PW12O40) were tested and the experimental results shown that 

phosphotungstic acid produced highest ethyl levulinate yield. Optimization of ethyl 

levulinate was conducted using the potential heteropoly acid catalyst meanwhile 

glucose was used as model compound. The conducted experiment for glucose 

conversion to ethyl levulinate produced 19.01% ethyl levulinate yield at 183 °C in 200 

min and 5.66 wt% of reaction temperature, time and catalyst loading, respectively. The 

optimization of the OPF for producing ethyl levulinate at the optimum conditions at 

198 °C in 166 min and 1.44 wt% of reaction temperature, time and catalyst loading, 

respectively, was established wherein 4.65% of ethyl levulinate yield was produced 

from OPF. Additionally, the high acidity of phosphotungstic acid was significantly can 

increase the ethyl levulinate yield with increase the amount of catalyst load and reduce 

the reaction temperature for the OPF conversion into ethyl levulinate. This study 

demonstrated that the heteropoly acid has potential to be applied in biomass conversion 

to ethyl levulinate under adequate process conditions. 
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ABSTRAK 

 

 

 

 

Etil levulinat adalah bahan kimia yang serba boleh dengan pelbagai aplikasi 

industri. Penghasilan etil levulinat dari glukosa dan pelepah kelapa sawit (OPF) telah 

dikaji. Pengoptimuman kesan parameter telah dijalankan oleh metodologi permukaan 

sambutan (RSM), dan data yang diperolehi telah dijalankan analisis regresi. Dalam 

kajian ini, tiga asid heteropoly berbeza (HPAs) telah diperiksa dan diuji untuk 

penukaran glukosa kepada etil levulinat. Asid heteropoli; asid fosfomolibdik 

(H3PMo12O40), asid silikotungstik (H4SiW12O40) dan asid fosfotungstik (H3PW12O40) 

telah diuji dan keputusan eksperimen menunjukkan bahawa asid fosfotungstik 

menghasilkan etil levulinat yang terbanyak. Pengoptimuman etil levulinat telah 

dijalankan menggunakan asid heteropoli yang berpotensi sebagai pemangkin. Glukosa 

telah digunakan sebagai model bahan di dalam eksperimen. Eksperimen yang 

dijalankan untuk penukaran glukosa kepada etil levulinat menghasilkan 19.01% hasil 

etil levulinate pada suhu 183 °C dengan masa 200 min dan sebanyak 5.66 wt%. 

Pengoptimuman OPF untuk menghasilkan etil levulinat pada keadaan optimum iaitu 

pada suhu tindak balas 198°C dengan masa tindak balas 166 min dan jumlah 

pemangkin yang digunakan sebanyak 1.44 wt%, telah menghasilkan 4.65% hasil etil 

levulinat daripada OPF. Selain itu, asid fosfotungstik yang mempunyai keasidan yang 

tinggi ketara boleh meningkatkan hasil etil levulinate dengan meningkatkan jumlah 

pemangkin dan mengurangkan suhu tindak balas bagi penukaran OPF ke etil levulinat. 

Kajian ini menunjukkan bahawa asid heteropoli mempunyai potensi untuk digunakan 

dalam penukaran biojisim kepada etil levulinat di bawah keadaan proses yang 

optimum. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

The conversions of biomass as raw material into basic chemicals have been 

studied over past decades.  The earliest work conducted to postulate the reaction 

pathways of biomass conversion was dated back in 1970s.  Moreover, in these recent 

years, the world is highly affected by serious environmental and economic issues.  

These problems are related to rapid consumptions and dependence on fossil fuels, 

economic development, population growth, and also resulting global warming (Yuan et 

al., 2011).  Concerns towards energy demand have led to the discovery of alternatives 

for fossil resources to supply chemicals and energy in the future (Zhang et al., 2011).  

Due to the availability of the biomass feedstock as it is not compete with the food 

chain, a lot of studies have been carried out to identify its potential in integrating into 

biofuel and bio-based chemical products. 

 

 

The potential of oil palm frond can be enhanced for producing chemical 

products by develop a new industrial uses of it.  The acid catalyzed reaction of oil palm 

frond to produce ethyl levulinate can be a good alternative method for these plentiful 

and readily available biomass feedstocks in Malaysia.  Lignocellulosic biomass such as 

oil palm fronds, have complex structures which consist of cellulose and hemicellulose 
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polymers that are bound together by lignin.  Both cellulose and hemicellulose 

structures involve in most biomass including oil palm fronds (OPF) conversion to 

produce ethyl levulinate as depicted in Figure 1.1 (Peng et al., 2010).  The presence of 

insoluble humin (carbonaceous residue), one of the side products in the reaction 

process might increase the complexity of the reaction network (Fang and Hanna, 

2002). 

 

 

 

Figure 1.1 Reaction scheme for the conversion of the biomass to ethyl levulinate 

(Fang and Hanna, 2002 and Peng et al., 2011) 

 

 

Biomass has been converted into new bio-based chemicals with various 

applications such as pharmaceutical compound, biofuels, fragrance, flavouring, coating 

material and resin (Werpy et al., 2004; Chang et al., 2009).  There are many catalysts 

produced and been used in converting biomass into bio-based chemicals.  

 

 

Ethyl levulinate; a levulinic acid ester is a useful compound that can be used as 

fuel additives, also in flavouring and fragrance.  Commonly, ethyl levulinate and other 

levulinic acid esters can be produced by esterification reaction with acid catalyst such 

as p-toluenesulfonic, sulphuric and polyphosphoric acid which are in homogeneous 
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medium (Ayoub, 2005; Bacler and Kontowicz, 1953; Olah and Welch, 1974).  

However, homogeneous catalysts (mineral acids) are well known to cause serious 

pollution, due to their corrosive and toxic nature.  These problems have been overcome 

nowadays as the use of solid acid (heterogeneous) catalysts is getting more important 

(Corma and Garcia, 2003; Ledneczki et al., 2005). Heteropoly acids (HPAs) are an 

example of solid acid that have potential of a low cost resources reward and green 

benefits (Kozhevnikov, 2007).  This study will demonstrate the combination of 

economic resources with a new technology approach that can establish the bio refinery 

development activities.  

 

 

 

 

1.2 Problem Statement 

 

 

In these few years, there are a lot of studies had been conducted in production 

of chemicals or fuels from renewable biomass resources (Mascal and Nikitin, 2010; 

Chang et al., 2012; Zhou et al., 2011; Torre et al., 2010).  It has been a worldwide 

demand as the increasing of dependency on fossil resources.  The developments of 

sustainable and clean technologies that can replace the depleting of fossil fuels can be 

achieved by utilizing the renewable feedstock through tremendously researches 

(Alonso et al., 2010; Chun et al., 2011; Hayes and Hayes, 2009).  A polysaccharide 

type, cellulose can be a source of sugar and sugar-based molecules (Klemm et al., 

2005).  This component is the most abundant source of biomass in production of 

various chemicals and other products.  

 

 

In the petrochemical industry, ethyl levulinate can be produced via two routes; 

direct conversion from biomass by acid hydrolysis reaction and by esterification of 

levulinic acid (Bozell and Petersen, 2010).  These conversion routes are more complex 

than the acid catalyzed reaction of biomass. 
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There are many researches in production of fine chemicals and its other 

products in various conditions have been successfully conducted.  The direct 

production of ethyl levulinate from lignocellulosic biomass has been reported by some 

researchers, but none of them have used oil palm fronds as biomass feedstock 

(Saravanamurugan and Riisager, 2012; Pasquale et al., 2012; Peng et al., 2011; Chang 

et al., 2012).  The direct formation of ethyl levulinate from lignocellulosic biomass by 

solid acid catalyst in ethanol media provides a very simple step reaction as shown in 

Figure 1.2. 

 

 

 

Biomass                     5-ethoxymethyl furfural            ethyl levulinate + ethyl formate 

 

Figure 1.2 Direct formation of ethyl levulinate from lignocellulosic biomass (Peng 

et al., 2011) 

 

 

 The production of ethyl levulinate either from model compound or biomass, 

there are a lot of researches that have widely used hazardous catalyst such as sulphuric 

acid (H2SO4) (Chang et al., 2012a; Peng et al., 2011; Chang et al., 2012b; Garves, 

1988).  This kind of catalyst is promise in causing a serious pollution especially to the 

environment due to their high corrosivity properties and toxic nature.  In this research, 

heteropoly acid (HPA) that has the same acidity condition with sulphuric acid was 

used.  HPAs are well-known environmental friendly acid catalyst is promising to 

produce ethyl levulinate yield from model compound and biomass itself. 

 

 

 

 

 

 

 

 

 

HPA 

Ethanol 
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1.3 Objectives 

 

 

The objectives of this research are: 

 

i. To screen a series of heteropoly acids (HPA) catalysts for catalytic performance 

of glucose conversion to ethyl levulinate.  

 

ii. To study the effect of parameters (i.e reaction temperature, reaction time, and 

catalyst loading) of ethyl levulinate production. 

 

iii. To optimize process conditions for glucose and oil palm fronds conversion to 

ethyl levulinate using Response Surface Methodology (RSM) using screened 

HPA catalyst at optimum conditions. 

 

 

 

 

1.4 Research Scopes 

 

 

The generalized scopes involved in this research are: 

 

i. Heteropoly acid catalysts used were phosphotungstic acid, phosphomolybdic 

acid, and silicotungstic acid. 

 

ii. Model compound of glucose was utilized for catalyst testing, screening and 

optimization process.  

 

iii. HPAs testing and screening for glucose conversion to ethyl levulinate. 

 

iv. Optimization process for glucose conversion to ethyl levulinate by using 

screened catalyst. 
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v. Optimization of oil palm frond for ethyl levulinate production by using 

screened catalyst. 

 

vi. Parameters optimized were reaction temperatures, reaction time, and catalyst 

loading. 

 

vii. The concentration of final product was analyzed by a gas chromatography with 

a flame ionization detector (FID).  

 

viii. In addition, the Response Surface Methodology (RSM) was used for 

optimization of acid catalyzed reaction process. 

 

 

 

 

1.5 Thesis Outline 

 

 

This thesis is divided into 5 main chapters.  Introduction to this research has 

been explained in Chapter 1.  This chapter consists of research background, recent 

problem statements, objectives, and scopes of this research.  Literature reviews are 

given in Chapter 2 which explain in detailed the previous researches that is related to 

the biomass conversion into ethyl levulinate and other high value chemical products by 

using various methods as well as researches concerned in this area.  Chapter 3 has been 

described the experimental procedures such as catalyst screening, optimization of the 

production of ethyl levulinate from glucose as well as production of ethyl levulinate 

from biomass, and analytical procedures involved to evaluate the efficiency of the 

method in this study.  Chapter 4 is the main part of this research whereby Chapter 4 

explains in detail the results and discussions for the optimization processes and 

utilization of lignocellulosic biomass.  Finally, Chapter 5 concludes the findings and 

significance of this study.  Recommendations for the future works are also suggested in 

assurance the positive outlook of this research area. 
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