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ABSTRACT 
 
 
 
 
 

The field of computational structural biology these days has become 

advanced especially in the continued development of new high-throughput methods 

for predicting enzyme sub-functional classes. Prior knowledge of enzyme sub-

functional classes has been applied in numerous important predictive tasks that 

address structural and functional features of enzymes. However, issues on 

insufficient sequence-structure knowledge, lack of known enzyme sub-functional 

class, low-identity sequences have caused inaccurate feature representation and 

imbalance distribution of enzyme sub-functional class which has contributed to low 

prediction results. Thus, the research proposed a derivative features vector through 

the consolidation of amino acid composition; dipeptide composition; hydrophobicity 

and hydrophilicity known as APH which is based on multi-biological knowledge.  

The Support Vector Machine assigns and classifies every protein sequence into its 

respective vector. This process would enhance the sequence-structure knowledge and 

overcome inaccurate feature representation. Besides that, the Twin Support Vector 

Machine classifies the enzyme sub-functional class and solves the imbalance 

distribution of enzyme sub-functional class. In this study, bio-inspired kernel 

function was introduced to improve the overall enzyme sub-functional class 

prediction. The overall results were evaluated based on accuracy, sensitivity, 

specificity and Matthew’s Correlation Coefficient value. Statistical and biological 

validation using t-test and Gene Ontology showed that the experimental results 

achieved an accuracy of more than 98%. Findings from the research have shown that 

the proposed method could assist in the prediction of the enzyme biological function, 

protein structure and function, protein structural class and hence provide guidance in 

the designing of novel drugs to cure diseases. 
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ABSTRAK 
 
 
 
 
 

Bidang pengkomputeran dalam struktur biologi telah berkembang pesat 

melalui kaedah pemprosesan berteknologi tinggi terutamanya dalam bentuk ramalan. 

Pengetahuan tentang kelas sub-fungsi enzim digunakan dalam pelbagai tugasan 

ramalan bagi menangani ciri-ciri struktur dan fungsi enzim. Walau bagaimanapun, 

isu tentang pengetahuan urutan struktur yang tidak mencukupi, kekurangan dalam 

kelas sub-fungsi enzim yang telah diramalkan, jujukan identiti rendah telah 

menyebabkan perwakilan ciri-ciri yang tidak tepat dan ketidakseimbangan kelas sub-

fungsi enzim yang menyumbang kepada keputusan ramalan yang rendah. Oleh itu, 

kajian ini mencadangkan kaedah yang menggunakan ciri-ciri vektor terbitan melalui 

penyatuan komposisi asid amino; komposisi dipeptide; hydrophobicity dan 

hydrophilicity dinamakan APH yang berasaskan pengetahuan pelbagai sumber 

biologi. Support Vector Machine mewakil dan mengelaskan setiap urutan protein ke 

dalam vektor masing-masing. Proses ini akan meningkatkan pengetahuan urutan 

struktur dan mengatasi perwakilan ciri-ciri yang tidak tepat. Selain itu, Twin Support 

Vector Machine mengklasifikasikan kelas sub-fungsi enzim dan menyelesaikan 

ketidakseimbangan kelas sub-fungsi enzim. Dalam kajian ini, fungsi kernel bio-

inspirasi telah diperkenalkan untuk meningkatkan ramalan kelas sub-fungsi enzim 

secara keseluruhan. Keputusan ramalan telah dinilai berdasarkan ketepatan, 

kepekaan, keperincian dan nilai pekali korelasi Matthews. Pengesahan statistik dan 

biologi menggunakan ujian-t dan Ontologi Gen menunjukkan pencapaian nilai 

ketepatan melebihi 98%. Hasil penemuan kaedah kajian ini dapat membantu dalam 

ramalan fungsi biologi, struktur dan fungsi enzim protein, kelas struktur protein serta 

memberi panduan dalam merekabentuk ubat-ubatan baharu untuk menyembuhkan 

pelbagai jenis penyakit.  
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CHAPTER 1 
 
 
 
 
 

INTRODUCTION 
 
 
 

 
 
1.1 Overview 

 
 

Enzyme sub-functional class plays an important role in the foundation of 

enzyme structure information and hence leading to the determination of enzyme 

function in field of biomedicine. In finding the structure and function of an enzyme, 

a useful first step is predicting the functional class of enzymes and thereafter its sub-

functional classes. Since enzymes are made up of proteins, the protein three 

dimensional structures can also be identified and utilized in identifying the details of 

interaction of protein with other biomolecules and finally providing guidelines to 

infer protein function. Chou and Elrod (2003) stated that the sequence-structure gap 

is widening rapidly due to the unavailability of protein sequences. Therefore, by 

predicting enzyme sub-functional class and assigning those into corresponding 

structures and functions may reduce this gap. 

 
 
Prior to the time, several features vector and computational methods have 

been applied in prediction of the enzyme sub-functional class from their amino acid 

sequences. Enzyme sub-functional class prediction for supervised machine learning 

based method is gaining wide spread attention in the field of computational biology. 

Several in-depth review of computational methods used for predicting enzyme sub-

functional class using different machine learning approach can be found. The 

predictions are performed using variety of classification algorithms in early research 
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includes Support Vector Machine (SVM: Wang et al., 2010; Shi and Hu, 2010, Zhou 

et al., 2007), Neural Network (NN: Huang et al., 2007; Shen  and Chou, 2007; Naik 

et al., 2007) and Random Forest (Kumar and Choudhary, 2012). Hence, supervised 

machine learning technique gives a remarkable improvement of more than 80% in 

prediction quality as well as generalization capability in managing nonlinear 

classification.  

 
 

The remainder of the chapter will provide a basic concepts regarding enzyme 

sub-functional class prediction using biological based knowledge. This is crucial as 

the thorough understanding on the fundamental information that is related to this 

research is needed. The following few sections will discuss the background and 

challenges as well as current respective solutions, toward achieving precise enzyme 

sub-functional class prediction. Research goal, objectives, scopes and significance 

ensue thereafter. The chapter ends with thesis organization.    

 
 
 
 
1.2 Background 

 
 

Enzymes are made up of proteins which are the fundamental components of 

all living cells. They are made up of a combination of varying amounts of the same 

20 amino acids in sequence linked by peptide bonds. Enzymes cater most of the 

important functions, such as catalysis of biochemical reactions, transcription factors 

to guide the differentiation of the cell and its later responsiveness to signals, transport 

of materials in body fluids, receptors for hormones and other signaling molecules, 

and formation of tissues and muscular fiber. It is widely believed that the protein 

enzyme structures play key roles in determining its functions. However, it is 

extremely labor-expensive and sometimes even impossible to experimentally 

determine the structures for every protein sequence.  

 
 
In pharmaceutical, the structure and function of enzymes are used to design 

drugs (Singh et al., 2010; Pisal et al., 2010). In addition to probe those structure and 

function, the knowledge of functional classes is essential. The primary knowledge of 
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enzyme main and sub-functional classes is significant as it exemplify essential 

information that can be used to infer enzyme structures related in understanding the 

biological function of an enzyme used vastly as therapeutic strategy. Other than that, 

the knowledge of sub-functional class of enzyme can be applied to identify a sickle 

protein (Drotar, 2010) in which the enzyme sub-functional class can be discerned 

using amino acids content. In early study, Chou and Elrod (2003) have catalogued 

the enzyme functional class into six common classes namely oxidoreductases, 

transferases, hydrolases, lyases, isomerases, and ligases abbreviated as EC.1, EC.2, 

EC.3, EC.4, EC.5, and EC.6 respectively.  

 
 

In enzyme sub-functional class prediction, computational methods have been 

gaining widespread attention due to the laborious and time-consuming constraints in 

experimental wet lab or also known as in vivo methods. Enzyme sub-functional class 

is represented either based on knowledge-based method (Chou, 2005; Cai and Chou, 

2005; Chou and Elrod, 2003; Shi and Hu, 2010) or chemical atomic-based potentials 

(Szefczyk, 2008; Calzada et al., 2009; Lin and Oliver, 2008). The former approach is 

highly complicated in which it needs to determine the enzyme sub-functional class 

by calculating the detailed amino acids coordinates that traversed a vast number of 

accessible polypeptide conformations. In contrast, knowledge-based method exploits 

the structures information of enzymes from in vivo analysis. However, both methods 

rely upon tedious visual inspection or statistical inference from the sequence.  

 
 

In addition, the enzyme sub-functional class is known to yield relatively 

small number of proteins. In the most recent release, ExPasy database (Gasteiger et 

al., 2005) based on recommendations of the Nomenclature Committee of the 

International Union of Biochemistry and Molecular Biology (IUBMB) includes 5026 

active entries. Meanwhile, enzyme sub-functional based on known domains are listed 

in the recent ENZYME database (Bairoch, 2000), release of 19-Oct-2011 and 

UniProt/Swiss-Prot database (Boutet et al., 2007), release of 21-Sept-2011 which 

contains 538,010 sequence entries comprising 190,998,508 amino acids abstracted 

from 213,490 references. These databases illustrate a huge gap between known 

sequence and known enzyme sub-functional class in which only 1%-2% of the 

sequences can be assigned to the corresponding enzyme sub-functional class. 
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Inspired by the aforementioned challenges, this study is devoted to further 

investigate how enzyme sub-functional class prediction using computational methods 

with the application of the information of biological knowledge, can be more 

beneficial than the ones based on the information of protein sequences (Huang et al., 

2007).  

 
 
Several computational classification methods have been introduced. Support 

Vector Machine (SVM, NN, Bayesian classification (Green and Karp, 2004; Borro et 

al., 2006), Random Forest and Decision Trees (Syed and Yona, 2009; Syed and 

Yona, 2003) are amongst many classification methods, which are able to exploit the 

latent pattern within the identified structures of enzyme. However, there is still the 

challenge of representing the underlying pattern with significant features vector; 

from a simple features vector to represent the known enzyme structures such as 

amino acid composition (Chou and Elrod, 2003), pseudo amino acid composition 

(Chou, 2005; Chou and Cai, 2004; Cai and Chou, 2005), polypeptide composition 

(Shi and Hu, 2010), conjoint triad feature based on protein-protein interaction (PPI: 

Wang et al., 2010; Wang et al., 2011), to a more complex hybrid features vector that 

considers evolutionary information encoded in PSI-Blast profiles (Liu et al., 2010; 

Tung et al., 2007). In addition, some features vector exhibit inferior prediction 

performance when it lack in sequence identity. 

 
 
 
 

 
 
 
 

Figure 1.1: The differentiation in enzyme sub-functional class prediction 
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1.3 Challenges of Enzyme Sub-functional Class Prediction 

 
 

Although ENZYME and UniProt/ Swiss-Prot are examples of well-

established databases that contain more reliable information of enzyme sub-

functional class, yet the lack of known sub-functional class of enzyme due to the 

laborious wet-lab experimental routine limits the high throughput enzyme sub-

functional assignment. As a consequence, the assignment of enzyme sub-functional 

class by computational method suffers from the low prediction accuracy. In turn, the 

first challenge belongs to the unclassified enzyme sub-functional class prediction 

which limits the sequence-structure class assignment. 

 
 

In order to produce an accurate sequence-structure assignment, the second 

challenge must be tackled, which is pertaining to the investigation of heterogeneous 

physiochemical characteristics of amino acids in specified sequence of protein. These 

physiochemical characteristics are transformed into numerical value and used to 

represent the input features vector for the enzyme sub-functional class prediction 

method. Unfortunately, the prediction performance is often poor because of the 

inaccurate features vector is used to signify the heterogeneous characteristics 

(Costantini et al., 2010; Chou, 2005). The situation is aggravated in the presence of 

low-identity sequences (Tian and Skolnick, 2003).  

 
 

The third challenge stems from the nature of sequences length in every 

enzyme sub-functional class that exhibits the imbalance class distribution misleads 

the prediction of enzyme sub-functional class. Consequently, some researchers 

resorted to this issue using multi-class analysis (Wang et al., 2010; Jayadeva et al., 

2009; Reshma et al., 2008). As a result, this will lead to over or underfitted 

prediction model for some particular classes if used without the aid of suitable kernel 

selection. 
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1.4 Current Methods in Enzyme Sub-functional Class Prediction 

 
 

Generally, current methods for enzyme sub-functional class prediction can be 

categorized into two: experimental based and computational based (the details are 

presented in Chapter 2):  

 

(i)  Experimental based method predicts the enzyme sub-functional class of 

protein from physical characterization of the functional class when in vivo 

analysis is employed. It can be identified either from the primary protein 

structure using X-ray crystallography (Palioura et al., 2009; Joosten et al., 

2008) and nuclear magnetic resonance (NMR) spectroscopy (Sudhamsu et al., 

2010; Liras and Demain, 2009; Cámara et al., 2009), or from the enzyme 

structure using circular dichroism (CD) spectroscopy (Dodsworth and Leigh, 

2007; Kim and Mrksich, 2010; Shi et al., 2002) and Raman spectroscopy 

(Leadbeater and Schmink, 2008; Aki et al., 2010; Malo et al., 2008). 

(ii)  Computational based method upon input of the protein sequence predicts the 

enzyme sub-functional class of enzyme by utilizing mathematical inference 

and/or computational algorithms. It can be broadened into two categories: 

knowledge-based method and chemical atomic-based potentials method. 

Consecutively, knowledge-based method is branched into four major 

categories: pseudo amino acid composition (Chou, 2005; Cai and Chou, 

2005; Cai et al., 2005), amino acid composition (Chou and Elrod, 2003; 

Esmaeili et al., 2010), functional domain composition (Cai and Chou, 2004; 

Cai and Chou, 2005; Cai and Chou, 2006; Chou and Cai, 2004) and 

polypeptides/peptides composition (Costantini et al., 2010; Shi and Hu, 2010; 

Ding and Zhang, 2008; Zhang and Luo, 2003). 

 
 
 
 
1.5 Problem Statement 

 
 

To date, classification of enzyme sub-functional class using sequence-

structure knowledge instead of the sequence information is still a hot research field 
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and has been gaining various attentions. The enzyme sequence-structure gap is 

growing tremendously at a rapid pace. Generally, due to the numerous active 

genomes and sequencing projects, there exist more protein sequences to be classified 

within a certain period of time as compared to solving enzyme structures and 

functions. Hence, to reduce the distance of the gap, efficient computational approach 

has been introduced to predict enzyme sub-functional class. Based on the above 

mentioned challenges (Section 1.2), some factors will need to be addressed by the 

possible solution.  

 
 
The first factor is related to the insufficient knowledge of known enzyme sub-

functional captured during in vivo. It is observed that the quantities of known 

sequences are growing exponentially with respect to the quantity of known enzyme 

sub-functional (Chou and Elrod, 2003). The wide sequence-structure gap has a direct 

effect on the enzyme sub-functional class prediction. Thus, this study aims to provide 

an enzyme sub-functional class prediction method that can acquire the biological 

based knowledge, derived from known excessive protein sequences, in order to 

produce high-throughput sequence-structure class assignment instead of the 

laborious experimental based method.  

 
 

The second factor is pertaining to the inaccurate feature representation of the 

protein sequences. Recently, large quantity and high-identity of sequences hold the 

key to achieve higher accuracy in enzyme sub-functional class prediction. In 

contrast, this study aims to generate alternative features vector that is more robust 

without degrading the prediction performance. In this study, the biological based 

features carried on sequence level were introduced in the predictive of enzyme sub-

functional classification. The additional sequence order and sequence length 

knowledge is expected to avoid the inconsistency of enzyme sub-functional class 

prediction.  

  
 

The third factor is related to the imbalance class distribution of enzyme sub-

functional class due to the amount of sequences in every class is irregular. 

Consequently, classification rules become too restrictive due to the unsteady amount 

of protein sequences acquired during in vivo. More specifically, it suffers from the 
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tightly bounded maximum or minimum margins when classifying the enzyme sub-

functional class using the conventional SVM classifier. Hence, an optimized Twin 

SVM method is proposed to rectify such inadequacy. 

 
 
 
 
1.6 Objectives of the Study 

 
 

The goal of this study is to predict the enzyme sub-functional class from the 

protein sequences using the multi-biological features and multi-class classifier as 

computational method. This can be objectified into: 

 

(i)  To construct the optimum single feature with the incorporation of SVM 

algorithm in order to bridge the sequence-structure knowledge. 

(ii)  To develop the multi-biological knowledge based feature representation in 

order to improve the accuracy of the enzyme sub-functional class prediction. 

(iii)  To optimize the multi-class classifier algorithm by exploiting the newly 

designed features vector in (ii) to resolve the imbalance classification issue in 

enzyme sub-functional class prediction. 

 
 
 
 
1.7 Scope of the Study 

 

(i) This research uses dataset obtained from ENZYME and UniProt/ 

Swiss-Prot database (Borgwardt et al., 2005). 

(ii)  International Commission on Enzymes to annotate the function of 

enzymes by the Enzyme Commission (EC) number (Bairoch, 2000). 

(iii)  The use of amino acid composition (AAC), dipeptide composition and 

hydrophilic and hydrophobic properties to attain the sequence order 

and sequence level information. 

(iv)  The introduction of APH feature which is the consolidation between 

AAC, dipeptide composition, hydrophobicity and hydrophilicity 
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properties as an efficient sequence encoding methods for representing 

given protein sequence. 

(v)  Twin SVM by incorporating the bio-inspired kernel function machine 

learning technique is used in order to solve the multiclass 

classification problem.  

(vi)   The prediction performances are assessed: (i) computationally: in 

terms of accuracy, sensitivity as well as specificity; and (ii) 

biologically: by cross-checking against ENZYME database and Gene 

Ontology. Finally, t-test is employed for statistical validation. 

 
 
 
 
1.8  Significance of the Study 

 
 

The significance of this study can be branched into two main categories: 

computational and biological aspects. From computational aspect, the proposed 

method is intended to precisely predict the enzyme sub-functional class from protein 

sequences with low quantity and identity. It serves as an alternative for laborious and 

time consuming task of experimental prediction. From biological aspect, enzyme 

sub-functional class embodies structural information that provides detail insight into 

protein functionalities such as prediction of the outer membrane protein (Gao et al., 

2010), prediction of the structural class (Kurgan et al., 2008) and prediction of the 

subcellular localization of protein (Xie et al., 2005). In molecular medicine, enzymes 

are used to design highly specialized drugs for treating diseases. For example, in the 

treatment of Type I diabetes, human insulin is given fast and slow reaction forms of 

damage β structure cell of the islet Langerhans (Chen et al., 2010). In the 

investigation of sickle protein, enzyme sub-functional knowledge is considered a 

milestone. For example, the sickle protein in anaemia cell arose from the substitution 

of glutamate by valine at the sixth position of the β subunit structure of haemoglobin 

(Drotar, 2010). Furthermore, enzyme sub-functional knowledge can be adopted as a 

therapeutic strategy in which it inhibits the function of viral diseases. For example, in 

cholera treatment, some structural routes have been devised to minimize the viral 

infection (Bimczok et al., 2010). 
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1.9  Organization of the Thesis 

 
 

This thesis is organized into seven chapters. A brief description on the 

content of each chapter is given below: 

 

(i)  Chapter 1 defines the challenges, problems, current methods, objectives, 

scopes and significance of the study. 

(ii)  Chapter 2 reviews the main subjects of interest, which are enzyme sub-

functional class prediction, computational based method for enzyme sub-

functional class prediction, imbalance classification rules, biological based 

knowledge structure and significant features vector. 

(iii)  Chapter 3 presents the research methodology of the computational method 

that supports the objectives of the study. This includes data sources, 

instrumentations and analyses. 

(iv)  Chapter 4 lays out the development of the SVM-CTF that is resilient towards 

insufficient sequence-structure knowledge of known enzyme sub-functional 

class. The prediction result is validated and compared against experimentally-

determined enzyme sub-functional class from Wang et al. (2010). SVM-CTF 

is an abbreviation of SVM with Conjoint Triad Feature for enzyme sub-

functional class prediction.  

(v)  Chapter 5 describes the APH feature that addresses the problem of 

heterogeneous characteristics of amino acids as well as low-identity 

sequences and uncertain feature representation by integrating significant 

features vector using the biological based knowledge. APH is an abbreviation 

of consolidation between (a) amino acids, (b) dipeptide composition, (c) 

hydrophobicity and hydrophilicity properties of protein sequence. 

(vi)  Chapter 6 proposes an extension to the baseline method, namely the Bio-

TWSVM introduces an additional bio-inspired kernel component represented 

by Twin SVM classification, so as to overcome the imbalance class 

distribution in enzyme sub-functional class of particular sequence. 

(vii)  Chapter 7 draws general conclusions of the accomplished results and presents 

the contributions of the study as well as recommends the potential 

enhancements for future study.  
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