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ABSTRACT 

 

 

 

 

Vibration often is one of the limiting factors in the performance of many 

applications and various fields such as aerospace, automotive, submarines, robotic 

industries, and all mechanical structures. The conventional method of suppressing 

the vibration is by using passive damping which consists of mounting passive 

material on the structure. This, however, will lead to increasing the weight of the 

structure and hence decreasing its performance. This research is aimed to investigate 

the method of vibration suppression using active vibration control approaches for the 

flexible plate structure. Firstly, the vibration characteristic of the plate structure is 

investigated. This involved a parametric identification of the vibrational flexible 

plate system. The Recursive Least Square algorithm was used in this study to 

identify the dynamic behaviour of the flexible plate. Input and output vibration 

signals were acquired from the flexible plate test-rig using two accelerometers as the 

sensors and National Instruments Data Acquisition System. The two sensors detect 

the vibration response along the plate caused by the excitation of the primary source 

(excitation point). Then, the signals are processed by on-line identification technique 

using Recursive Least Square estimator. The parameters for the controller are 

generated using the dynamic model of the system obtained from the estimator. The 

controlled signal is later fed to the plate to generate a superimpose signal to eliminate 

the unwanted vibration via smart material actuator. Finally, the performance of the 

Active Vibration Control algorithm developed using Recursive Least Square 

estimator is evaluated, verified and validated. The result demonstrates the ability of 

the Active Vibration Control algorithm using Recursive Least Square estimator to 

suppress the vibration of the flexible plate structure. 
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ABSTRAK 

 

 

 

 

 Getaran merupakan salah satu faktor penghalang dalam melaksanakan 

kebanyakan prestasi sesebuah aplikasi, contohnya di dalam bidang aeroangkasa, 

automotif, kapal selam, robot industri dan semua struktur mekanikal. Teknik 

konvensional dalam mengurangkan getaran adalah dengan menggunakan redaman 

pasif yang terdiri daripada pemasangan bahan pasif ke atas struktur seperti getah. 

Walau bagaimanapun, ini akan meningkatkan berat keseluruhan struktur dan akan 

mengurangkan prestasinya. Tujuan kajian ini adalah untuk menyiasat pengurangan 

getaran pada struktur plat fleksibel menggunakan sistem anti getaran secara aktif. 

Sebagai permulaan, ciri-ciri struktur getaran sebuah plat akan dikaji. Ini melibatkan 

pengangaran model menggunakan sistem parametrik bagi menghasilkan logaritma 

kawalan getaran pada plat fleksibel. Algoritma Recursive Least Square telah 

digunakan dalam kajian ini bagi mengenalpasti tingkah laku dinamik plat tersebut. 

Isyarat getaran bagi masukan dan keluaran yang diperolehi dari bahan kajian plat 

fleksibel akan di rakam dengan menggunakan dua  meter alat pengesan dan alat 

sistem perolehan data. Kedua-dua alat pengesan akan mengesan getaran sepanjang 

plat yang disebabkan oleh alat pengetar. Kemudian, isyarat tersebut diproses secara 

langsung dengan menggunakan Algoritma Recursive Least Square. Parameter untuk 

pengawal ini dijana menggunkan model dinamik system yang diperolehi daripada 

penganggar. Isyarat terkawal kemudiannya disuap kepada plat untuk menghasilkan 

isyarat berlawanan untuk menghapuskan getaran yang tidak diingini melalui 

penggerak bahan pintar. Akhir sekali, prestasi penganggar yang telah dibangunkan 

mengunakan algoritma Recursive Least Square akan dinilai, dianalisa and disahkan. 

Hasil dari kajian ini telah menunjukkan keupayaan penganggar aktif sebenar untuk 

mengurangkan getaran pada struktur plat fleksibel. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.0 Overview 

 

 

Nowadays, applications of smart materials and structures have received 

considerable attention from many researchers. Both of these studies are currently 

attempts to build active structural systems to provide a necessary improvement of 

structural performance. Basically, smart materials can be employed as actuator and 

sensor which in the form of wafers, bimorph benders, and multi-layered benders 

(Kumar et al, 2007). A group of research from Boeing Company, the University of 

Maryland, the Massachusetts Institute of Technology, the University of California 

(Los Angeles) and the U.S. Army Research Office has support one projects for the 

development and application of this smart material application used on helicopter 

rotor shown in Figure 1.0. In their research, they used fibers of composite materials 

and piezoelectric devices on the blades of the helicopter rotor to attenuate the 

vibrations and also improving the aerodynamic performance (Viana et al, 2006). 

 

 

Plate structures have been used extremely in many engineering applications 

because of their benefits of flexible structures such as in aerospace, automotive, 

submarines, robotic industries, and all mechanical structures. However, these 
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flexibility of the plate and highly-nonlinear dynamics of the system, it’s a major 

problem which found in industry that can lead the flexible plate to vibrate at it 

resonant mode (Mat Darus et al, 2003; Safizadeh et al, 2010). While in designing a 

structure application, plates are usually specified only to withstand applied static 

loads. The dynamic forces and random cyclic loads also can threaten the stability of a 

system. There exist a large number of discrete frequencies at which a rectangular 

plate will undergo large amplitude vibration by sustained time varying forces of 

matching frequencies. Thus, the possibility of large displacement and stresses due to 

this recent type of excitation must be taken into account (Tavakolpour et al, 2008). 

 

 

 

 

Figure 1.0: Fibers of composite materials and piezo-electric devices are used 

in the blades of the helicopter rotor 

 

 

Practically, the aerospace composite structural constructions are relatively 

thin walled and become flexible. Therefore, this application is treated as lightly 

damped systems. During the flight, the vibration can occur from the unsteady 

aerodynamics in these structures. These vibrations usually take a longer time for the 

oscillatory energies to decay down. During this period of time the vibration in 

structures generally reduces their load carrying abilities and may cause fatigue and 
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dynamic instability related to the problems. For that reason, vibration control is 

prefer to enhance the structural performance and also further to avoid catastrophic 

failures such as flutter and lifting surfaces (Kumar et al, 2007). 

 

 

The usual method to avoid the failure of flexible plates due to vibratory 

disturbances is to alter the geometry or boundary conditions of the plate according to 

the frequency value of the vibration sources. Sometimes, it would be impossible to 

anticipate the frequency of disturbances owing to time dependent characteristics of 

the destructive vibrations. Due to this drawback, the idea of controlling the unwanted 

vibrations came into being. To reduce the amplitude of the destructive vibration in a 

structure, two control strategies, namely the passive and active methods can be 

employed. The passive method consists of mounting passive material on the 

structure. This method is relatively efficient at high frequencies but expensive and 

bulky at low frequencies. According to Johnson, this passive method can be divided 

into two classes structural and embedded. The structural damping occurs due the 

friction of junctions, cable rubbing and material damping. The embedded damping is 

achieved by adding dissipation mechanisms to the structure, commonly based on one 

of the following damping techniques; viscoelastic materials, viscous devices, 

magnetic devices and passive piezoelectric (Johnson, 1995).  

 

 

The active method in controlling vibration uses the superposition of waves by 

generating secondary source(s) to destructively interfere with the unwanted source 

and thus result in a reduction in the level of vibration. This is found to be more 

efficient and economical than the passive method at low frequency vibration 

suppression (Mat Darus et al, 2004). To design a suitable controller for active 

vibration control of a flexible thin plate, it is vital to have a good understanding 

about the dynamics of the system. The dynamic behavior of thin isotropic rectangular 

plates is a subject that has received considerable attention in recent years because of 

its technical importance. 
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1.2 Background of the problem 

 

 

Many effort has been done by the researcher’s in order to deal with vibration 

alleviation in flexible structures system (Sinawi et al, 2004; Viana et al, 2006; 

Jnifene et al, 2007; Kumar et al, 2007; Cavallo et al, 2008; Tavakolpour et al, 2008). 

The potential  flexible structure in various applications is leads to the highly demand, 

because of having reliable, lightweight and efficient of flexible structure (Mat Darus 

et al, 2003; Zhou et al, 2004; Ismail et al, 2006). However, when flexible structures 

are subjected to dynamic forces and random cyclic loads as well as rigid body 

displacements, theirs behavior presents a number of discrete frequencies at which 

these flexible structure will undergo  large amplitude vibration by sustained time 

varying forces and flexible mode of vibrations (Gaudiller et al, 2005; Tavakolpour et 

al, 2009). Due to the advantages of flexible structures are widely has been used in 

various fields of applications, such as in many engineering fields on civil, 

mechanical, marine (Carra et al, 2007), aerospace engineering field (Mukherjee et al, 

2002), and others. However, these advantages of flexible plate will be affected due to 

the unwanted structural vibrations. Thus, controls of flexible systems have been a 

challenge and have received the attention of a large number of researchers (Jnifene et 

al, 2007). 

 

 

Controls of vibration of flexible structure have been studied over the past 20 

years with different strategies and behavior. The conventional control methods have 

not been widely successful due to the dynamic complexity of flexible structure (Mat 

Darus et al, 2004). These systems reduced the vibration and noise by simply 

dissipating energy as heat. These conventional method is known as passive control 

method, consists of mounting passive material on the structure in order to change its 

dynamic characteristics such as stiffness and damping coefficient (Viana et al, 2006). 

Unfortunately, this method is efficient at high frequencies but expensive and bulky at 

low frequencies (Hossain et al, 1997). Passive vibration control usually leads to 

increase in the overall weight of structure, which makes it less transportable 

especially for space applications. Moreover, their damping performance is generally 

quite poor because they are enabling to adapt or return to changing the disturbance 
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over time. However, conventional control is widely used because of its low cost and 

simplicity. 

 

 

Recently, due to the technological advancements such as the availability of 

high-power and low cost computing, smart materials, and advanced control 

techniques have led to a growing use of active control such as active force control or 

active vibration control systems. The implication of these control strategies is that 

desirable performance characteristics can be achieved through the complexity of 

flexible structure and clever strategies, whereby actuators excite the structure based 

on the structure’s response measured by sensors (Colla et al, 2009). Control of these 

structures involves a number of disciplines, including structural dynamics, control 

theory, and materials engineering. Present research focus is on developing control of 

flexible structure systems, incorporating conventional based identification, to 

overcome the above-mentioned problems. 

 

 

 

 

1.3 Statement of the problems 

 

 

Vibration is often a limiting factor in performance of many fields application. 

Many precision industrial processes in the fields of aerospace, ground transportation, 

agriculture, measurement, life sciences, semiconductor industry and nanotechnology 

cannot take place if the equipments are being affected by vibration. The conventional 

method of decreasing the vibration level is to use passive damping which consist of 

mounting passive material on the structure. 

 

 

The aim of this research is to investigate and develop the active vibration 

control systems of a flexible structure and to validate the controller performance by 

experimental study. This study is focused on the flexible structure than rigid 

structures as they are capable of being operated at high speeds and handling of a 
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larger payloads with the same actuator capabilities (Hossain et al, 1995). Flexible 

structure with several boundary conditions will be considered. Firstly, by 

understanding the dynamic characteristics and mode classification of the flexible 

structure, it will be useful tool to assist for the development of the control strategies 

(Ismail et al, 2006). 

 

 

A schematic diagram of the SISO feed-forward AVC structured has been 

considered in this study due to understanding the dynamics characteristics and mode 

of vibration of the flexible structure (Hossain et al, 1995; Tokhi et al, 1997). A 

dynamic response of the structure is developed through an experimental study. Thus, 

the system has been introduced structural vibration at (primary) point source into the 

structure systems. The dynamics response then were detected by a sensor and thus 

signal is fed to an actuator (secondary) point source for generation of the 

superimposed signal on the primary signal to achieve vibration reduction at the 

observation point (Mat Darus et al, 2004). 

 

 

In order to design an active controller for the vibration suppression, the 

identification system has been used in order to find an accurate model of the systems. 

A conventional method for identification system such as Least Squares (LS) and 

Recursive Least Squares (RLS) have been considered (Mat Darus et al, 2004).  

 

 

 

 

1.4 Objectives 

 

 

The objectives of this research are to: 

 

1. Develop an active vibration control algorithm for vibration 

suppression of a flexible plate structure. 
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2. Develop an experimental rig for the implementation of an active 

vibration control of the flexible plate structure. 

 

3. Implement and validate thus developed an active vibration control 

algorithm on the developed experimental rig. 

 

 

 

 

1.5 Scope of the study  

 

 

The following are the scope of the study: 

 

 

1. Development of flexible plate structure rig. The experimental rig has 

been setup employing mechatronic approaches.  Actuator and sensor 

were attached to the experimental rig such as electromagnetic shaker, 

piezoelectric sensor/actuator, and accelerometer. 

 

2. Development of an electromagnetic shaker as the primary disturbance 

for the plate structure. 

 

3. Data collection using PC-Based equipment such as data acquisition 

system and analyzer. 

 

4. The system identification of the plate structure using conventional 

parametric modeling technique such as Recursive Least Squares 

(RLS) were carried out. 

 

5. Development of a conventional an active vibration control system. 

 

6. Testing and verification of the developed active vibration control 

technique through experimental validation. 
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7. Comparative assessment of the experimental result with the 

simulation result. 

 

 

 

 

1.6 Methodology of the study 

 

 

This research focused on the development of an active vibration control 

techniques based on system identification methods for vibration suppression of 

flexible structures by experimental studied. The methodologies of the study were 

divided into four major sections: 

 

 

a) Literature Review – This section discussed reviewed on active vibration 

control, smart structure, smart material, system identification, control 

strategy and self-tuning control. 

 

b) Parametric Identification – This section discussed on the model selection, 

model estimation, model validation & implementation, and results with 

difference excitation input. 

 

c) Experimental Study – This section discussed on the experimental rig 

hardware and software, equipment preparation, experimental setup and 

experimental procedure. 

 

d) Active Vibration Control (AVC) – This section discussed on the control 

design of AVC, model estimator on system identification, implementation 

of the controller using online identification in self-tuning of AVC. 
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The flowchart of the research can be clearly seen in step by step process as 

shown in Figure 1.2.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Project flow chart 
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1.7 Gantt chart 
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Implementation of 

AVC controller 
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performance of the 

algorithm on the 

experimental rig 
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1.8 Summary 

 

 

 Background and statement of the problem in this research has been discussed and 

considered. The outcomes of this research are including a complete research on the 

system identification of the plate structure using conventional parametric modeling 

techniques as known as Recursive Least Square (RLS), development and experimental 

validation of the Active Vibration Control Strategy for vibration suppression of the 

flexible plate system. 
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