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ABSTRACT 

Protein is a sequence of a linear chain of amino acids.  Protein folding is a 

physical process by which the linear chains of amino acid fold into its functional 

tertiary structures.  Misfolding of a protein will lead to the problem such as diseases 

(cancer and influenza) in protein function.  Discovery of protein folding will help the 

biologist to find the cause of misfolding and also assist the drug designer to find the 

cure for related diseases.  Therefore the objective of this study is to investigate the 

folding pathways of Trp-cage miniprotein, Amyloid A4 peptide, and α-conotoxin 

RgIA.  The folding process was simulated using molecular dynamics (MD) 

simulation in both explicit and implicit solvent.  Amyloid A4 peptide (350ns) and α-

conotoxin (800ns) were simulated in implicit solvent, while the simulation for Trp-

cage (150ns) and α-conotoxin (200ns) were performed in explicit solvent method.  

The simulations produced a huge number of trajectories which were further analysed 

based on their root mean squared deviation (RMSD) values.  The RMSD values 

showed that these trajectories approaching their simulated native structure (NMRMD).  

Besides that, a few crucial formations of hydrogen bond, disulfide bond, and salt 

bridge were involved in stabilizing the folding process.  The best structure was 

identified by clustering all the trajectories based on RMSD, solvent accessible 

surface area (SASA), van der Waals interaction, electrostatic interactions and total 

energy of each trajectory.  The best structure for Trp-cage miniprotein, Amyloid A4 

peptide, α-conotoxin with implicit solvent and, α-conotoxin with explicit solvent 

were extracted at 79.76 ns, 224.85 ns, 184.20, and 104.20 ns, respectively. 
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ABSTRAK 

Protein merupakan jujukan rantaian asid amino.  Lipatan protein adalah satu 

proses fizikal di mana rantaian lurus asid amino membentuk kepada lipatan struktur 

tiga dimensi.  Kesalahan lipatan protein akan mendorong kepada permasalahan 

penyakit (kanser dan influenza) dalam fungsi protein.  Mengetahui laluan lipatan 

protein akan membantu ahli biologi untuk mencari punca kesalahan lipatan protein, 

serta membantu pereka ubat untuk mencari penawar sesuatu penyakit.  Oleh itu, 

objektif kajian ini adalah untuk mengkaji laluan lipatan Trp-cage miniprotein, 

Amiloid A4 peptide, dan α-conotoxin RgIA.  Proses lipatan protein dilakukan 

dengan menggunakan dua kaedah simulasi iaitu melalui kehadiran air sebagai pelarut 

dan tanpa kehadiran air sebagai pelarut.  Amiloid peptida A4 (350ns) dan α-

conotoxin (800ns) adalah protein yang digunakan untuk kaedah simulasi tanpa 

kehadiran air sebagai pelarut, manakala Trp-cage (150ns) dan α-conotoxin (200ns) 

telah digunakan dalam kaedah simulasi dengan kehadiran air sebagai pelarut.  Proses 

simulasi menghasilkan banyak trajektori dan ianya telah dianalisa berdasarkan 

kepada nilai punca min sisihan kuasa dua (RMSD).  Nilai RMSD menunjukkan 

trajektori yang menghampiri struktur sebenar protein.  Selain daripada itu, beberapa 

pembentukan ikatan hidrogen, ikatan disulfid, dan ikatan jambatan garam yang 

penting telah dikenal pasti membantu menstabilkan proses lipatan protein.  Struktur 

yang terbaik pula telah dikenal pasti dengan mengkelaskan kesemua trajektori 

berdasarkan RMSD, luas permukaan pelarut boleh capai (SASA), ikatan van der 

Waals, ikatan elektrostatik, dan jumlah tenaga struktur protein untuk setiap trajektori.  

Struktur yang terbaik untuk Trp-cage miniprotein, Amiloid A4 peptide, α-conotoxin 

RgIA tanpa kehadiran air sebagai pelarut dan α-conotoxin RgIA dengan kehadiran 

air sebagai pelarut telah diekstrak pada 79.76 ns, 224.85 ns, 184.20 ns, dan 104.2 ns. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Protein is composed of one or more chains of amino acids. Protein carries out 

important function in every cell.  In order for the protein to function correctly, it must 

fold into its three-dimensional structure.  Therefore, understanding the protein 

folding process is vital because several diseases such as Alzheimer and cancer are 

directly related to the misfolding of protein.  All these diseases have no cure until 

today and this problem has not been solved for more than 4 decades.  

The causes for those diseases such as Alzheimer, Parkinson and Influenza can 

be found if the folding process of protein is known. This is the major challenge in 

science today since nobody knows how the protein folds. Theoretically, protein 

folding is a process in which the sequence of amino acids folds naturally into its 

three-dimensional structure. The formation of the three-dimensional structure is 

related to the interaction among amino acid residues.  The most important finding in 

understanding protein folding was carried out by Anfinsen (1972) and his colleagues; 

they claimed that the structure of the protein is determined by the sequence of amino 

acids.  Findings by Anfinsen and colleagues have inspired researchers to continue 

investigating the pathways of protein folding.  Therefore the evolution in studying 

protein folding ha increased very rapidly, researchers have come up with various 

methods and they have proven that protein folding can be simulated using computer 

(Levitt and Warshel, 1975a).  Computational method such as molecular dynamics 

(MD) simulation is a powerful tool due to its high resolutions and detailed atomic
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level representation.  Furthermore, the increase in computer speed and improvements 

in force field along with more efficient computation algorithms have brought realistic 

computational simulation of the folding process within reach (Pande et al., 2003, 

Scheraga et al., 2007). 

The aim of this study was to investigate the pathway of the protein folding 

towards their native or near native state using MD simulation. MD simulation was 

employed using Amber11 (Case et al., 2010). Several studies using this programme 

shown promising result (Sonavane et al., 2008, Best, 2012).  There are two types of 

simulations that can be applied; they are implicit solvent method and explicit solvent 

method.  For this research, both simulations were used.  The protein α-Conotoxin 

(PDB ID: 2JUQ) was simulated using both methods, while Trp-cage (PDB ID: 

1L2Y) and Amyloid (PDB ID: 1AML) were simulated using explicit solvent method 

and implicit solvent method, respectively.   

1.2 Problem Statement 

Researchers have defined how the amino acid sequence of a protein is coded 

into DNA.  However, the secret on how the protein folds into its three-dimensional 

structure still remains unsolved.  Many theoreticians and biologists have huge 

interests to investigate the pathway of protein folding.  This is proven by the 

increasing number of new findings on the fundamental, knowledge, and theory of 

protein folding.  

On the experimental front, artificially designed autonomous-folding mini 

protein has been solved.  These findings have helped researchers to address the 

fundamental issues regarding protein folding.  However, protein has marginally 

stable non-native states that are difficult to observe experimentally.  In order to 

identify this structure, the best method is to use computational simulation.  This is 

because this method has high resolution and provides detailed atomic-level 

presentations. 
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1.3 Objective 

The objective of this study is to study the folding pathway of Trp-cage 

miniprotein, Amyloid A4 peptide and α-conotoxin RgIA peptide using molecular 

dynamics simulation. 

1.4 Scopes 

There are five scopes for this study.  The first scope is to use the Trp-cage 

miniprotein, Amyloid A4 peptide, and α-conotoxin as subjects for investigating the 

folding pathway.  The second scope is to investigate the hydrogen bond formation, 

disulfide bond and salt bridge formation from the trajectories.  The third scope is to 

develop clusters from the trajectories based on the RMSD value using clustering 

analysis.  The forth scope is to identify the SASA value for each cluster.  The fifth 

scope is the find the best structure based on RMSD value, radius of gyration, total 

energy, van der Waals interaction energy, and electrostatic interaction energy.
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