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ABSTRACT 

 

 

 

 

Automotive steel sheet structures are likely to experience high strain-rate 

loading during impact and crash conditions. A quasi-static stress-strain at low strain 

rate data alone may not give an accurate numerical prediction of sheet metal structure 

behaviour at high strain rates. In this study, the response of sheet metal which is low 

carbon steel with 0.045 C (wt %) and high strength steel, DP600 subjected to high 

strain rates loading is investigated. The Rusinek-Klapaczko (R-K) constitutive model 

is employed to predict the material behaviour at varying strain rates because the 

model incorporates strain, strain rates and temperature evaluation terms. In order to 

characterize the response of sheet metal at high strain rates, tensile experiments using 

an Instron machine were carried out at strain rates between 0.001 s
-1 

until 0.1 s
-1

 as a 

quasi-static rates and together with published high strain rate data up to the range of 

500 s
-1

 was employed. These true stress-strain curves are used to extract the 

parameters of the R-K model. The R-K model predictive capability is then assessed 

by simulating a tensile test using finite element method (FEM). It was found that the 

R-K model is able to predict the tensile behaviour of the materials with an error of 

about 5 %. The validated R-K model was then incorporated into a FE simulation of 

bending of thin-walled tube made of low carbon steel and the results were compared 

with the experimental observation. It was found that the deformation of the structure 

has a good agreement with the experimental observation. The R-K model was also 

able to adequately capture the variation of the plastic strain rate in the structure.  
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ABSTRAK 

 

 

 

 

Struktur kepingan besi automotif kebiasaannya akan mengalami terikan 

berkadar tinggi ketika hentaman dan perlanggaran. Data tegasan-terikan kuasi-statik 

pada kadar terikan yang rendah semata-mata tidak dapat memberikan ramalan 

berangka yang tepat tentang kelakuan struktur kepingan besi pada kadar terikan yang 

tinggi. Di dalam kajian ini, tindak balas kepingan keluli iaitu keluli karbon rendah 

dengan kandungan karbon 0.045 C (wt %) dan keluli berkekuatan tinggi, DP600 

terhadap bebanan terikan tinggi akan dikaji. Model Rusinek-Klapaczko (R-K) 

digunakan untuk meramal kelakuan kepingan besi pada terikan yang berbeza-beza 

kerana model ini menggabungkan terikan, kadar keterikan dan taksiran suhu. Untuk 

mencirikan tindak balas kepingan kaluli pada terikan berkadar tinggi, eksperimen 

tegasan menggunakan mesin Instron telah di jalankan pada kadar 0.001 s
-1

 sehingga 

0.1 s
-1

 untuk terikan berkadar rendah dan bersama-sama data berterikan tinggi yang 

telah sedia ada sehingga lingkungan kadar 500 s
-1

 telah digunakan. Graf tegasan-

terikan ini digunakan untuk mendapatkan parameter-parameter bagi model R-K. 

Kebolehan meramal oleh model R-K dinilai dengan mensimulasi ujian tegangan 

menggunakan kaedah unsur terhingga. Didapati bahawa model R-K boleh 

meramalkan tingkah laku tegangan bahan dengan ralat sebanyak 5 %. Model R-K yg 

telah disahkan kemudian digabungkan ke dalam simulasi lenturan tiub berdinding 

nipis diperbuat daripada keluli karbon rendah dan keputusan yang diperolehi 

dibandingkan dengan eksperimen. Keputusan menunjukkan bahawa ubah bentuk 

struktur mempunyai persetujuan yang baik dengan eksperimen. Model R-K juga 

berkebolehan untuk menangkap variasi terikan plastik di dalam struktur dengan 

memadai.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Many advanced processes in engineering such as high-speed metal forming 

and cutting, metallic structures under crash and high speed impact, involve complex 

thermo mechanical and multi axial loading conditions which include large strain, 

high strain rates, temperature softening and adiabatic processes. Over the last few 

decades, deformation of metals has been subjected to intensive study since it is of 

fundamental interest in analysing failure processes.  The mechanical behaviour of 

sheet metals under dynamic loading such as sheet metal forming is different from 

that under static or quasi-static loading. When a structure deforms in a dynamic state, 

the material properties such as strength, stiffness and yield stress are affected by 

strain rate [1]. As strain rate is increased from quasi-static to dynamic, conditions 

change from isothermal to fully adiabatic, resulting in a gradual decrease in strength 

with increasing strain rates [2]. However, the flow stress also highly depends on 

many other factors such as strain path, strain rate and temperature history. This 

stress-strain response can be represented using a constitutive model with temperature 

and strain rate dependent variables. Only a model that includes all of these pertinent 

factors is capable of predicting the complex stress state in material deformation [3]. 



2 

Thus, the main task of constitutive model is to predict precisely the response of 

engineering structures under large deformation such as impact loading [4]. 

 

In this research sheet metal behaviour under high strain rate loading which is 

commonly found in the automotive industry is studied. The material properties and 

behaviour are obtained from tensile testing for quasi-static state and from published 

data, especially for the high strain rate state. After that, it continued with 

determination of parameter extraction from experimental data for material model. 

Rusinek-Klepaczko model is employed to describe the rate-dependent plastic 

behaviour of sheet metal at various strain rates. Their properties include yield stress, 

plastic modulus and fracture strain. Then the mechanic behaviour of sheet metal is 

demonstrated using finite element method with implemented of material model. Then 

all of these features are applied into thin walled tube flexural deformation test.  

 

 

 

 

1.2 Overview 

 

 

Sheet metals are commonly used in industrial application such as automotive 

body such as low carbon sheet metal and high strength steel [5]. Most of the auto-

body metal parts are produced from sheet metal forming such as stamping process. 

Moreover, in automotive industries light-weight and safe design of auto-body 

structures are the main objectives and challenging to achieve in order to increase fuel 

efficiency, satisfying emission-gas vehicle regulations vehicles and to ensure the 

safety of passengers in the event of an accident. To achieve these objectives, crash 

analyses either from experiment or numerical modelling of the high speed material 

deformation have to be accurately carried out with accurate stress-strain curves at the 

high strain rate. The dynamic tensile properties of auto-body steel sheets are 

important since the range of the strain rate is 500 s
-1

 in a real auto-body crash [6] and 

from 10 s
-1

 to 100 s
-1

 in sheet metal forming [3] at which the dynamic response of 

steel sheets is different from quasi-static. 
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The flow stress of a material generally increases as the strain rate increases.  

It is well known that the behaviour of sheet metals is strongly dependent on the strain 

rate and temperature.  Worked materials in these large deformation processes such as 

stamping and crashworthiness experience a broad range of strain, strain rate, 

temperature, and complex loading histories. To describe precisely the behaviour of 

materials at high strain rates and temperatures, constitutive model which is widely 

applicable and capable of accounting complex stress state in material deformation 

was used [3]. The constitutive model will implement into finite element to develop 

models which are widely applicable and capable of accounting for complex paths of 

deformation, temperature and strain rate which represents the main requirements of 

large deformation problems. 

 

There is always a balance between testing and numerical modelling. If one 

does no testing, which may be a very expensive task then the production becomes a 

very high-risk effort.  If one does no numerical modelling, then all design decisions 

are based on experience or an expensive testing [7]. Finite element (FE) analysis is 

an alternative method for investigating the sheet metal behaviour under various 

loading rate issues.  By using FE analysis, the mechanics behaviour of sheet metal 

such as distributions and evolution of stress and strain can be predicted. Generally, 

the purpose of using FE analysis is to grow the design space and shrink the test 

space. For example, one of the goals of the automotive industry is to reduce the cost 

associated with the safety evaluation of structures. Thus, the industry has 

increasingly moved towards finite element simulation of crash tests with fewer 

numbers of actual experiments. Good constitutive model is needed for the accuracy 

of FE simulation results is highly dependent on material constitutive model, accurate 

geometry, loading conditions and boundary conditions employed in the FE model 

[7].  

 

To develop FE model the thermo-visco-plastic behaviour of sheet metal 

under higher strain rates, several constitutive relations can be found in the literature 

such as Johnson-Cook (J-C) [8] model and Zerilli-Armstrong (Z-A) [9] model. 

However, J-C [8] models and Z-A [9] models for work hardening of metals are not 

physically based, their usage is limited only to the range of deformation conditions at 

which they were curve fitted, and the accuracy is often not satisfactory. What is 
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missing in these models is the ability to capture history effects of temperature, strain 

rate, and load path in manufacturing processes [3]. Temperature history effects are 

magnitude in lower hardening behaviour and properties as the material. Prolonged 

exponent to temperature induces creep of the material. Thus, the more sophisticated 

material model which is a function of strain hardening, strain rate and temperature 

sensitivities of flow stress have been proposed by Rusinek and Klepaczko (R-K) [6] 

model. The R-K constitutive relation is used because the precise constitutive 

modelling can predict the loading rate effects in terms of strain rate and temperature 

sensitivity [6]. 

 

 

 

 

1.3 Problem Statement 

 

 

Sheet metals such as low carbon steel and high strength steel are commonly 

used to fabricate the auto-body structures. Under large deformation such as stamping 

and crashworthiness, structural materials are subject to very high rates of strain and 

complex loading histories. Many material properties, including those of the sheet 

metal are strain rate sensitive. Consequently, quasi-static stress-strain data may not 

produce accurate predictions of behaviour at high strain rates, and the use of such 

data in the analysis and design of dynamically loaded structures can lead to cautious 

overweight designs or premature structural failure. Because of its high flow stress, 

the thermal coupling in the form of adiabatic heating leading the thermal softening 

and material instabilities cannot be neglected, especially at high strain rates and large 

deformation. In order to examine deformation fields under different conditions of 

loadings, expensive process and testing were involved. Thus, finite element (FE) 

analysis is an alternative method for investigating the sheet metal behaviour under 

various loading rate issues by implementing the sophisticated constitutive model. 

Therefore, to establish the model parameters and to validate the constitutive model, 

experimental and FE simulation techniques are presented. The FE results then will 

validate with experiments to demonstrate prediction capability of FE and constitutive 

model. The R-K model is chosen in this study to accumulate predict material 
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response at varying strain rates because the model incorporates hardening, strain 

rates and temperature evaluation terms.  

 

 

 

 

1.4 Objectives 

 

 

The objectives of this research project are: 

1. To determine the properties and quantify behaviour for automotive sheet 

metals of low carbon and high strength steels.  

2. To validate true stress-plastic strain behaviour of sheet metal at strain 

rates in the range of up to 200s
-1

 for low carbon sheet metal and 500s
-1

 

for high strength steel.  

3. To establish a predictive capability of Rusinek-Klepaczko (R-K) 

constitutive model through FE simulation of a thin-walled tube under 

flexural loading. 

4. To develop FORTRAN coding of the R-K model for use in FE 

simulation software 

 

 

 

 

1.5 Scope of Study 

 

 

The present study focuses on sheet metal behaviour and is limited to the 

following scope of work: 

1. The nominal sheet thicknesses for low carbon steel and DP600 are 

0.7mm and 1.2mm, respectively while for thin-wall tube the thickness of 

the sheet is 1mm.  

2. Mechanical properties and behaviour of sheet metal will be established 

in accordance to ASTM E8/E8M standards or equivalent. These tests 
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will be conducted at room temperature and at straining rates ranging 

from 0.001667s
-1

 to 0.1667s
-1

. 

3. Rusinek-Klepaczko (R-K) constitutive model parameters will be 

extracted from three experimental tension test data at 0.001667s
-1

, 

0.1667s
-1

 and 200s
-1

 for low carbon steel while three tension test data at 

0.0001s
-1

, 0.001667s
-1

 and 500s
-1

 for DP600. 

4. A subroutine of the R-K constitutive model will be constructed writing 

and implement in Abaqus software for general loading FE.  

5. Finite element model on flexural test of a thin - walled tube made of low 

carbon steel is simulated for prediction capability of the R-K constitutive 

model. 
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