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ABSTRACT 
 
 
 
 
 
 

Tungsten carbide (WC-Co) is categorized as a high wear resistance and fracture 

toughness material. But, these tool materials are found to wear rapidly when 

machining some particular workpieces. Various techniques have been proposed to 

improve the WC-Co performance. One such technique is by diamond coating WC-

Co. This was done due to its outstanding mechanical properties. Poor adhesion of the 

coating onto the substrate is the main technical barrier. This is due to the presence of 

cobalt in the cemented carbide which produces graphite layer. Pre-treatment step is 

always needed because the nucleation of specific coating is greatly affected by the 

initial surface conditions of the substrate. In this study, nickel was used as an 

interlayer and the Watt bath electroplating technique was employed to deposit a thin 

layer with good adhesion strength. Effect of electroplating parameters such as current 

density, bath temperature and surface roughness of substrate were studied. Coating 

thickness, hardness and surface morphology were investigated according to an 

experimental plan. Subsequently, full factorial experimental design followed by 

analysis of variance (ANOVA) were applied to analyze the statistical data. 

Performances of the nickel coating on the WC-Co substrate were analyzed and 

evaluated using Response Surface Methodology (RSM). The electrodeposition 

parameters have a great influence on Ni coatings properties. One can observe that 

lower current density produced more compact morphology and fined grain size. 

Increase in the thickness of Ni coatings occurred by increasing current density. 

Comparatively, bath temperature did not have a notable effect on coatings thickness 

but had great influence on surface morphology and adhesion strength of coatings. 

Further observation on nickel deposition found that, current density ≈4 to 5 A/dm2, 

bath temperature ≤60oC and surface roughness ≥0.5µm have apparent effects on 

excellent quality of Ni coatings on tungsten carbide especially in producing a thin 

layer of coating. 
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ABSTRAK 
 
 
 
 
 
 

Tungsten Karbida (WC-Co) dikategorikan sebagai bahan yang mempunyai rintangan 

kehausan dan tahap keliatan yang tinggi. Akan tetapi, bahan ini dikenalpasti akan 

mengalami kehausan dengan cepat apabila proses pemesinan dijalankan terhadap 

sesuatu benda kerja. Pelbagai kaedah telah diperkenalkan untuk meningkatkan 

prestasi dan sifat WC-Co itu sendiri. Salah satu kaedah yang digunakan adalah 

seperti saduran berlian. Saduran pada substrat yang mempunyai kelekatan yang 

rendah merupakan halangan teknikal utama disebabkan oleh kehadiran kobalt dalam 

WC-Co yang menghasilkan lapisan grafit. Rawatan awal sebelum proses saduran 

sentiasa diperlukan kerana memberikan kesan yang besar terhadap keadaan 

permukaan substrat. Dalam kajian ini, nikel bertindak sebagai lapisan antara dan 

teknik elektropenyaduran takungan Watt telah diaplikasikan untuk menghasilkan 

lapisan nipis dengan kekuatan lekatan yang baik. Kesan parameter 

elektropenyaduran seperti kepadatan arus, suhu larutan dan kekasaran permukaan 

substrat telah dikaji. Ketebalan dan kekuatan saduran serta morfologi permukaan 

dikaji dengan merujuk kepada pelan ujikaji. Kaedah rekabentuk ujikaji berfaktor 

penuh diikuti dengan analisis varians (ANOVA) telah digunakan untuk menilai data 

statistik yang diperolehi. Prestasi saduran nikel terhadap WC-Co telah dianalisis dan 

dinilai menggunakan kaedah tindak balas permukaan (RSM). Keputusan 

menunjukkan parameter saduran elektro mempunyai pengaruh yang besar terhadap 

sifat salutan Ni. Kepadatan arus yang rendah telah menghasilkan morfologi yang 

lebih padat dan ketebalan pada saduran Ni bertambah dengan peningkatan kepadatan 

arus. Suhu larutan tidak memberi kesan ketara terhadap ketebalan saduran tetapi 

memberikan kesan yang besar kepada kekuatan saduran dan juga morfologi 

permukaan. Didapati juga bahawa kepadatan arus ≈4 hingga 5 A/dm2, suhu larutan 

≤60 oC dan kekasaran permukaan ≥0.5 µm memberikan kualiti yang terbaik kepada 

saduran Ni ke atas WC-Co untuk menghasilkan lapisan nipis. 
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CHAPTER 1 

 

 

 

 

 

INTRODUCTION 

 

 

 

 

 

1.1 Background 

 

 

The cemented tungsten carbide cutting tools are used widely in the 

machining, mining and stone cutting industry. However, these tools are found to 

wear rapidly when machining some particular materials such as abrasive composites 

or high silicon-filled aluminum. Numerous research studies (Ma et al. 2007, Polini et 

al. 2006, Polini and Barletta, 2008) showed that efficient and energy saving cutting 

tools is required to reduce the tool's down-time, increase cutting productivity and 

improve the quality of the machined surface. Moreover, diamond coating has been 

proposed to improve the performance of cemented carbide tools due to its 

outstanding mechanical properties. Along with great wear resistance, the advantages 

of the diamond coating include high surface hardness, high thermal conductivity, 

reduced friction, better corrosion protection, and improved optical properties (Polini, 

2006, Xu et al. 2007). 
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Diamond film deposition has thus made it possible to use many diamond 

properties in new and innovative applications. Surprisingly, simple procedures for 

producing low-pressure diamond films now means thin films can be obtained on 

wear components having complex geometries. Polini (2006) reported that the 

ultimate goal of using CVD diamond coatings is to extend the technical performance 

of components, such as tools, beyond their conventional wear life. CVD diamond 

films are highly resistant to chemical and abrasive wear (Kamiya et al. 2002). 

Moreover diamond-coated articles are of little use if these deposits do not remain 

attached to the underlying substrate during use. Consequently, in the case of CVD 

diamond coated articles it is mandatory to optimize both adhesion and wear 

resistance. 

 

 

The application of diamond coatings to enhance the overall machining 

effectiveness of WC-Co by reducing the tools downtime; increasing the cutting 

productivity and improving the quality of the machined surface are becoming more 

attractive. Polycrystalline diamond (PCD) tools on a WC-Co substrate were 

generally used for this purpose. Therefore, because of their high cost, many 

researchers and industrial users are instead using diamond films deposited using 

CVD techniques which are relatively inexpensive, and could be deposited on tools of 

any geometry. Compared to an uncoated cemented carbide tool, the CVD diamond 

coated tool shows much greater abrasive wear resistance which results in up to ten 

times longer tool life, and less build-up edge and lower cutting forces which yield a 

better surface finish on the workpiece materials. Besides, one of the largest barriers 

to be overcome is the poor adhesion of diamond film on the cemented carbides 

substrate. This is due to (i) the large thermal mismatch of the diamond film with the 

cemented carbide tool and (ii) weak interface bonding resulting from graphite film 

formation during low-pressure diamond deposition due to the presence of the cobalt 

binder. There are many reports, which claimed to reduce the thermal mismatch and 

to limit the graphite formation by etching cobalt (Sarangi et al. 2008, Polinia et al. 

2002, Sahoo et al. 2002) and/or depositing interlayer as diffusion barriers. 
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Due to excellent wetting ability, tungsten carbide with cobalt has made this 

metal the first choice as binder. However, high cost and environmental pollution 

impacts are basically the main issue for cobalt usage. Substitution of cobalt with 

other metals has always been figured out. Some other metals that have been used as 

binder are iron, nickel and manganese. In addition to lower cost, nickel has higher 

corrosion resistance than cobalt.  

 

 

Among the various manufacturing methods, electroplating has received 

considerable attention as a feasible, inexpensive and economically viable processing 

technique for producing thin layer (Rashidi and Ahmadeh, 2010, Ewecharoen et al. 

2008). Consequently, especially nickel layer, prepared by electrodeposition has high 

density, minimum porosity, excellent corrosion resistance and good wear resistance 

and as the grain size of nickel is reduced, the strength and strain hardening rate also 

increased (Pan et al. 2007, Molloy et al. 2011).  

 

 

Performance of nickel electrodeposits is related with their microstructure 

(such as grain size, surface morphology and crystal orientation), which depended on 

electroplating conditions (such as, current density, current efficiency and time) and 

composition of plating bath. Xuetao et al. (2008) studied the influence of pulse on-

time, off-time, peak current density and saccharin on the grain size, surface 

morphology, crystal orientation, and microhardness. Furthermore, substrate 

roughness is one of the electrodeposition parameter that is sometimes difficult to 

control as well as important in terms of quality and functionality. Vitry et al. (2010) 

indicated that mechanical preparation (such as grinding) may be difficult to 

implement because of the complicated geometries but also proved that surface 

roughness can affect the coating appearance. The effect of surface roughness on 

nickel characteristics was investigated by Bulasara et al. (2011) who found that 

surface roughness did not contribute much to the performance characteristics of 

plating efficiency and thickness. Boonyongmaneerat et al. (2009) noticed that current 

density is one of the processing parameters that controls the microstructure and 

hence the apparent hardness of the composite. In additional, micro-hardness and 

surface morphology of a nickel coating were hardly influenced by getting optimum 
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setup parameters for electrodeposition. Ranjan et al. (2011a) found that micro-

hardness of the nano-composite of nickel coating increases with the increase in the 

stirring rate up to 450 rpm.  

 

 

 

 

1.2 Problem Statement 

 

 

Poor adhesion of diamond coating is the main technical barrier for 

commercialization of diamond-coated tools. During high temperature diamond 

deposition process, the presence of cobalt in cemented carbide suppresses diamond 

growth. Co leaching from the WC–Co substrate catalyzes the formation of non-

diamond carbon (sp2 bonded), instead of sp3 bonded diamond. The weak graphite 

layer at the interface results in poor adhesion between the diamond coating and the 

substrate. 

 

 

Removing the Co binder from the substrate using Murakami reagent and acid 

etching is usually conducted to grow adhered diamond coatings. However, the 

substrate's mechanical properties and toughness are significantly reduced after 

etching. Etching WC grains with Murakami solution desirably increases the substrate 

surface roughness substantially but also causes increase in the surface Co content. It 

can be realized that substantial surface roughness with low cobalt content is the most 

desirable surface for deposition of diamond film. A large amount of residual stress 

will be produced due to mismatch of the coefficient of thermal expansion (CTE). The 

film could easily delaminate from the substrate right after deposition. Diffusion 

barriers (interlayer) such as Cu, Cr, Ni, Ti-based layer and CrN have been developed 

to prevent the Co catalyst effect but the hardness and other interlayer properties still 

needs to be improved. 
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It has been observed that mechanical interlocking effect caused by a rough 

surface can contribute significantly to improve hardness and adhesion of interlayer. 

Enhancement of surface roughness through interlayer surface is beneficial in that the 

nickel can well-retained in the cavity and improve hardness and provide well 

anchored roots for subsequently grown of nickel layer. There is however lacking of 

experimental information regarding the nickel properties when being deployed as an 

interlayer. Also, mathematical models for various interlayer responses are also not 

available. The availability of such model will enable the determination of optimal 

process condition. 

 

 

 

 

1.3 Objectives of the Research 

 

The objectives of this research are as follows: 

 

1. To evaluate the various nickel coating properties obtained when using 

different nickel electroplating parameters on tungsten carbide, WC-6%-Co 

substrate. 

2. To develop mathematical models and provide experimental evidences for 

predicting various nickel coatings properties. 

3. To optimize the condition of nickel electroplating parameters in terms of 

current density, bath temperature and surface roughness of substrate to 

achieve high quality of nickel coating properties based on the Design of 

Experiment models. 
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1.4 Scope of the Research 

 

This study was limited to the following: 

 

1. Tungsten carbide, WC-6% Co with diameter 12mm was used as substrate and 

electroplating technique was employed for deposition purpose. 

2. Electroplating parameters were studied include current density, bath 

temperature and surface roughness of substrate and for the whole deposition 

process, pH value of nickel solution was kept constant at 4. 

3. Response variables evaluated include coating hardness, thickness and surface 

morphology. 

 

 

1.5 Significance of the Research 

 

 

This study focuses on obtaining on effective nickel interlayer on tungsten 

carbide substrate using suitable electroplating parameters. The suitability of the 

interlayer was evaluated in terms of the coating hardness and thickness. Additionally, 

suitable empirical models were developed using the experimental data for describing 

the relationship between the various responses and the related factors. With the 

completion of this research, the viability of using the electroplating process as an 

alternative process for obtaining the interlayer can be produced. The mathematical 

models obtained will facilitate the determination of the suitable process setting as 

well as the prediction of the responses investigated. 
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