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ABSTRACT 

 

 

 

 

It is common to have nonlinear systems of equations to be solved in numerical 

application.  However, such nonlinear systems of equations are difficult to be solved 

either exactly or numerically.  There are several methods that can be used to solve the 

nonlinear systems of equations numerically such as Newton's method, quasi-Newton 

method, and homotopy continuation method.  Some numerical examples of nonlinear 

systems of equations are shown in this study.  Further, a heat transfer process is model 

as a problem that nonlinear system of equations is solved with the methods that had been 

mentioned earlier.  The numerical results are computed by using MATLAB codes and 

the results are compared in order to determine the accuracy of these three methods.   
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ABSTRAK 

 

 

 

 

Sistem persamaan tak linear sering terlibat dalam aplikasi berangka.  Walau 

bagaimanapun, sistem persamaan tak linear ini susah untuk diselesaikan sama ada 

dengan kaedah tepat atau kaedah berangka.  Terdapat beberapa kaedah yang boleh 

digunakan dalam menyelesaikan masalah sistem persamaan tak linear.  Sebagai contoh, 

kaedah Newton, kaedah kuasi-Newton, dan kaedah kesinambungan homotopi yang 

melibatkan sistem persamaan tak linear telah ditunjukkan dalam kajian ini.  Di samping 

itu, proses pemindahan haba adalah sebagai satu masalah yang melibatkan penyelesaian 

sistem persamaan tak linear dengan menggunakan keadah-kaedah yang disebut sebelum 

ini.  Semua pengiraan adalah dilakukan melalui MATLAB komputer kod.  Hasil 

pengiraan yang didapati telah dibandingkan untuk mengetahui tahap ketepatan antara 

tiga kaedah yang digunakan.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Problem 

 

 

In all areas of science and engineering, equations need to be solved.  An equation 

of one variable can be written as  

 𝑓 𝑥 = 0.          (1.1) 

 

 

A numerical value of x that satisfies the equation is a solution to the equation or 

called the root of the equation.  According to Gilat and Subramaniam (2008), the value 

of x can be determined analytically when the equation is simple.  However, it is 

impossible to determine the root of an equation analytically in many situations.  A 

numerical solution of an equation is a value of x that satisfies the equation 

approximately.  This means than the value of f(x) is close to zero but not exactly zero 

when the value of x is substituted into the equation.  

 

 

Nonlinear system in mathematics is a system that does not satisfy the 

superposition principle or the output of the system is not directly proportional to its input.  

The equation in any problem cannot be written as a linear combination of unknown 

variables or functions for a nonlinear system.   
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A linear equation in 𝑥, 𝑦, 𝑧, …  can be written in the form 

 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + ⋯ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡      (1.2)

  

with 𝑎, 𝑏, 𝑐, …  being constant.  

 

Below is shown the examples of linear equation.  

 2𝑥 − 6𝑦 + 𝑧 = 3        (1.3) 

 4𝑠 + 𝑡 − 𝑢 = −1        (1.4) 

 

The equations (1.3) and (1.4) are the linear equations.  

 

 

An equation that consists of expressions such as  

 𝑥𝑦, 𝑥2 , 𝑦−2, (2𝑧 − 𝑦)2,
 𝑥

𝑦
, cos 𝑦 , 𝑒𝑥𝑧 , 𝑧 𝑥 + 𝑦 

 

is known as nonlinear because it cannot write as a linear equation (1.2).  Nonlinear 

equations are more difficult to be solved if compare with linear equations even the 

number of unknowns is small (Linz and Wang, 2003).  

 

 

A nonlinear equation is a function 𝑓 such that  

𝑓 𝑥 = 0         (1.5)

  

and the value of 𝑥 for which f is zero is the root of equation, or zero of function 𝑓.  This 

problem is known as root finding.  A nonlinear equation can be solved numerically by 

using Newton's method, secant method, and fixed- point iteration method.  

 

 

Examples of nonlinear equation are shown at below.  

 𝑥2 − 4𝑠𝑖𝑛𝑥 = 0        (1.6) 

 3𝑥2 + 𝑠𝑖𝑛𝑥 − 𝑒𝑥 = 0        (1.7) 
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A system of n equations and n unknowns 𝑥1, 𝑥2 , … , 𝑥𝑛  is nonlinear if exists of 

one or more nonlinear equations.  With n unknowns, 𝑥1, 𝑥2 , … , 𝑥𝑛 , a system of n 

simultaneous nonlinear equations has the form:  

 𝑓1 𝑥1, 𝑥2, … , 𝑥𝑛 = 0, 

 𝑓2 𝑥1, 𝑥2 , … , 𝑥𝑛 = 0, 

  ⋮         (1.8) 

 𝑓𝑛 𝑥1, 𝑥2, … , 𝑥𝑛 = 0. 

 

Following is showing an example of a nonlinear system of equations. 

 𝑓1 𝑥1, 𝑥2, 𝑥3 = 3𝑥1 − 𝑐𝑜𝑠 𝑥2𝑥3 −
1

2
= 0 

 𝑓2 𝑥1, 𝑥2 , 𝑥3 = 𝑥1
2 − 81 𝑥2 + 0.1 2 + 𝑠𝑖𝑛𝑥3 + 1.06 = 0   (1.9) 

 𝑓3 𝑥1, 𝑥2 , 𝑥3 = 𝑒−𝑥1𝑥2 + 20𝑥3 +
10𝜋−3

3
= 0 

 

 

Nonlinear systems of equations appear in numerical applications frequently.  The 

nonlinear systems of equations are usually difficult to solve, either exactly or 

numerically (Scheffel and Hakansson, 2009).  Several methods can be used to solve a 

nonlinear system of equations numerically, such as Newton's methods, quasi-Newton 

methods, steepest descent techniques, and homotopy continuation methods.   

 

 

 

 

1.2 Problem of Statement 

 

 

Recently, nonlinear systems of equations have occurred in many important fields 

such as engineering, mechanics, medicine, chemistry, and robotics.  The aim of this 

study is to solve nonlinear systems of equations using homotopy continuation method 

and compare with Newton's method and quasi-Newton method to see the accuracy of the 

methods.  After that, apply the nonlinear system of equations in the heat transfer 

processes for a coating on the panel surface, and then use these three methods to get the 

approximation solutions.  
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1.3 Objective of The Study 

 

 

The objectives of this research are: 

 

 

i. To solve nonlinear system of equations by using Newton's method, quasi-

Newton method, and homotopy continuation method, and then compare the 

results of these methods. 

 

 

ii. To write computer codes of Newton's method, quasi-Newton method, and 

homotopy continuation method for solving nonlinear systems of equations by 

using MATLAB. 

 

 

iii. To apply the nonlinear systems of equations in the heat transfer processes for 

a coating on the panel surface and solved by using Newton's method, quasi-

Newton method, and homotopy continuation method. 

 

 

 

 

1.4 Scope of the Study 

 

 

In this study, we will solve the nonlinear systems of equations by using several 

methods.  Nonlinear system of equations can be solved by using Newton's methods, 

quasi-Newton methods, fixed-point iteration, steepest descent techniques, homotopy 

continuation methods, Levenberg-Marquardt methods and others.  We have chosen three 

methods that can be used to solve the nonlinear systems.  The first method is Newton's 

method which is the most common method for solving the nonlinear systems of 

equations.  Then, quasi-Newton method which is modified from the Newton's method 

will also be used to solve the nonlinear system of equations.  The last method that will 

use in this study is the homotopy continuation method.   
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There are many problems where nonlinear system of equations occurs such as 

engineering, mechanics, medicine, chemistry, and robotics.  One application is presented 

in this work which is the heat transfer processes for a coating on the panel surface.  This 

problem can be represented by a nonlinear system of equations and here the problem 

will be solved with these three methods.  In addition, computer codes of these three 

methods for solving the nonlinear system of equations will be written by using 

MATLAB to get the numerical solutions.   

 

 

 

 

1.5 Significance of the Study 

 

 

Recently, nonlinear systems of equations appear in numerical applications 

frequently.  Normally, we will use Newton's method and quasi-Newton method to solve 

the nonlinear systems of equations.  In this study, we employ another method, homotopy 

continuation method to use in solving nonlinear systems of equations.  So, this study 

will illustrate the performance of the three methods for solving nonlinear systems of 

equations.  

 

 

In this study, we will understand more about the nonlinear system of equations 

that can be solved using the Newton's method, quasi-Newton method and homotopy 

continuation method.  
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