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ABSTRACT 

 

In this study, various types of human running dynamic loads are numerically 

studied and compared to assess serviceability characteristics of light and slender 

composite footbridges, with and without the implementation of Textile 

Reinforcement Concrete (TRC) as compliment composite material. Running, which 

is a common human activity, has been categorized with respect to its intensity as 

jogging, normal running, and sprinting. In the model verification, the acquired first 

natural frequency of structure has shown good agreement with the value reported in 

the literature. The structural performance of the slender composite footbridge is then 

evaluated in regard to the serviceability requirement given by the current design 

standards. It is generally found that the maximum acceleration of the composite 

footbridge due to the excitation of one person running varies under different running 

types because of diversities in the velocity and the step frequency. Furthermore, it is 

shown that the investigated structure provides sufficient human comfort against 

vibration for all examined types of running loads. In the present study, the use of 

numerous layers of the TRC demonstrates that the serviceability properties are 

improved by enhancing the layers numbers. Besides, the TRC employing the high 

strength carbon as fabric is more effective than AR-glass on the improvement of 

serviceability properties. 

. 
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ABSTRAK 

 

Dalam kajian ini, pelbagai jenis beban manusia larian dinamik. Dikaji dan 

dibandingkan secara berangka untuk menilai ciri-ciri kebolehkhidmatan 

jambatankak komposit dan ringan langsing, dengan dan tanpa implementasi konkrit 

(TRC) sebagai bahan gantian komposit. Larian, yang merupakan aktiviti biasa 

manusia, telah dikategorikan melalui intensiti sebagai berjoging, berjalan biasa, dan 

berpecut. Dalam pengesahan model, frekuensi asli pertama struktur yang diperolehi 

telah menunjukkan persetujuan yang baik dengan nilai yang dilaporkan dalam 

literatur. Prestasi struktur jambatan komposit langsing kemudian dinilai berdasarkan 

keperluan kebolehkhidmatan yang diberikan oleh piawaian reka bentuk semasa. 

Secara umumnya, kajian mendapati bahawa pecutan maksimum jambatan komposit 

disefalkan pengujaan oleh larian individy berubah mengikut kepelbagaian halaju dan 

frekuensi langkah. Kajian juga menunjukkan bahawa struktur yang disiasat 

memberikan keselesaan manusia yang mencukupi terhadap getaran untuk semua 

jenis bedan larian diperiksa. Dalam kajian ini, penggunaan pelbagai lapisan TRC 

telah menunjukkan bahawa sifat-sifat kebolehkhidmatan adalah lebih baik dengan 

meningkatkan bilangan lapisan. Selain itu, TRC menggunakan karbon kekuatan 

tinggi sebagai kain adalah lebih berkesan daripada AR-kaca dalam penambahbaikan 

sifat kebolehkhidmatan. 
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CHAPTER 1 

INTRODUCTION 

1.1       Introduction 

Lightweight and slender footbridges as modern structures attract 

considerable attention in recent years. Although from the structural point of view, 

the prevalent design and construction proficiencies are truly established for 

footbridges, in the recent years more accurate analyses are required for some 

sophisticated structures [1]. The vast majority of the studies indicated that in slender 

and light structures, the footbridges natural frequencies domain frequently coincide 

with frequencies of dynamic load like human walking, running, dancing and 

jumping [2-3]. The footbridge vibration response is considered through an analysis 

in terms of natural frequency, acceleration, displacement and velocity. The 

debatable subject in procedure of footbridges analysis is the modeling of the human 

induced loads like people running which is limited in experimental evidence [1]. 

Therefore, in this study we are aiming to generate fundamental research knowledge 

on the vibration characteristics of slender footbridge composite structures induced 

by human running in order to evaluate serviceability requirement of these structures 

against the current design standards. 
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On the other hand, in present design, usage of high quality materials and 

knowledge about their properties to achieve more slender structures have been 

widely attended. Applying substitute and supplementary high performance fiber 

materials with the aim of repairing or strengthening on the surface of concrete is 

effective in durability of the lightweight and slender structures. One of these 

customary composite materials is fiber reinforcement concrete (FRC). Fiber 

reinforced concrete (FRC) is widely spread in area of construction materials due to 

its mechanical productivity and eligible execution. The FRC is a blend of 

disorganized chopped fibers which have incomplete distributions through cross 

section (Figure 1.1).  

To eliminate this problem, Textile Reinforcement Concrete (TRC) with 

advantages of FRC and steel reinforcement concrete is utilized. TRC is consisting of 

continuous rovings in two directions and three directions as reinforcements that lead 

to an increase in load bearing capacity. Each rovings are consisting of over hundreds 

filaments. For sufficient bond between the fibers and matrix, fibers are embedded in 

fine grained concrete. Furthermore, due to corrosion resistance of non-metallic 

(fibers) materials, concrete cover is not imperatively required in TRC as in contrast 

to steel reinforcement concrete. Generally, the serviceability properties of reinforced 

concrete structures are appraised in terms of load bearing capacity subjected to 

tension and compression through a short term loading. Experimental evidences point 

that using layers of textile reinforcement concrete for strengthening of reinforced 

concrete slabs are effective in serviceability [4]. 
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Figure 1.1: Reinforcing systems of concrete 

1.2       Problem Statement 

The main problem of this project is to generate fundamental research 

knowledge on the vibration characteristics of slender footbridge composite 

structures subjected to different types of loading, which are induced by human 

activities, in order to evaluate their compliance against the serviceability and 

comfort requirement in the current design standards. Excessive acceleration and 

displacement due to dynamic loads are major problems in footbridges. To eliminate 

these problems, the footbridge dynamic response is determined through an analysis 

in terms of frequency, acceleration and displacement. On the other hand, the key 

issue of dynamic analyses is the availability of reliable models for the structure and 

for loads, and in particular case, the effect of applying TRC as compliment 

composite material on the serviceability properties is still limited. This issue 

therefore provides motivation for the current study. 
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1.3       Objectives of Study 

The main objectives of this project are: 

 To develop comprehensive finite element models to carry out 

dynamic computer simulations for composite footbridges due to 

human activities. 

 To study and compare various types of human running dynamic loads 

such as jogging, normal running and sprinting to assess vibration 

characteristics of the light and slender composite footbridges. 

 To investigate the effect of the textile reinforcement concrete (TRC) 

as substitute or supplementary material in dynamic response of 

composite footbridges in terms of different application of layers 

numbers. 

1.4       Scope of Study 

This investigation involves a footbridge composite system subjected to 

different human running induced loadings. The primary scope of this project is to 

present linear elastic analyses as basic principles of design criteria to evaluate 

vibration serviceability of composite footbridges under various human running 

induced loads. In the present research, the structural system includes a reinforced 

concrete slab and three dimensional steel beams. The Textile Reinforced Concrete 

(TRC) as supplementary composite material to improve serviceability requirement 

was utilized on the surface of reinforced concrete slab. The outputs were in terms of 

critical accelerations and displacements. In the case of textile composite, two types 

of bi-dimensional orthotropic fabrics were employed as reinforcements. The fabrics 

were alkali resistance glass and high strength carbon which were used in different 

textile composites to compare their effect in serviceability properties. These fibers 
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are bundled in rovings which consist up to several thousand single filaments 

embedded in the fine grained concrete.  

1.5       Significance of Study 

This study provides a basic numerical methodology regarding human 

running induced load on lean structures. In addition, the lack of knowledge and 

hence the research gap of the effect of TRC on serviceability features are to be 

practically addressed. 
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