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Abstract 

In this paper, the optimization of the cooling performance of a rectangular microchannel heat sink is investigated with four different 
gaseous coolants; air, ammonia gas, dichlorodifluoromethane (R-12) and chlorofluoromethane (R-22). A systematic robust thermal 
resistance model together with a methodical pumping power calculation is used to formulate the objective functions, the thermal 
resistance and pumping power. The non-dominated sorting genetic algorithm (NSGA-II), a multi-objective algorithm, is applied in the 
optimization procedure. The optimized thermal resistances obtained are 0.178, 0.14, 0.08 and 0.133oK/W for the pumping powers of 6.4, 
4, 22.4 and 16.5 W for air, ammonia gas, R-12 and R-22, respectively. These results show that among all the gaseous coolants 
investigated in the current study, ammonia gas exhibited balanced thermal and hydrodynamic performances. Due to the Montreal 
Protocol, the coolant R-12 is no longer produced while R-22 will eventually be phased out. The results from ammonia provide a strong 
motivation to conduct more investigations on the potential usage of this gaseous coolant in the electronic cooling industry.  

© 2012 The authors, Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Bangladesh Society 
of Mechanical Engineers 
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Nomenclature 

Aeff effective area available for heat transfer (m2)  
Ahs heat sink cross sectional area (m2) 
At induction tubes cross sectional area (m2) 
Cp specific heat (J/kg.K) 
Dh hydraulic diameter (m) 
f friction factor 
H heat sink height (m) 
Hc channel height (m) 
G volumetric flow rate (l/s) 
hav average heat transfer coefficient (W/m2.K) 
k thermal conductivity (W/m.K) 
L Heat sink length (m) 
Nu Nusselt number 
n number of microchannels 

p pressure drop (mbar) 
ptu tube pressure drop (mbar)  

q heat flux (W/m2)  
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Re Reynolds number  
R thermal resistance (K/W) 
W heat sink width (m) 
wc channel width (m) 
ww wall (fin) width (m) 
Vmf velocity inside the channels (m/s) 
Vmt velocity inside the tubes (m/s) 
Pp pumping power (W) 
Greek symbols 

 channel aspect ratio 
 fin spacing ratio 
 density (kg/m3) 
 dynamic viscosity (kg/m.s) 

� fin efficiency 
Subscripts 
hs Heat sink 
tu,t tube 
tot total 
f fluid (coolant) 
w wall 

1. Introduction 

With the enormous development in the capabilities of the microelectronic mechanical systems (MEMS), the use of the 
microchannel heat sink has acquired great importance because it provides a high heat dissipation rate, compatibility with the 
small allowable space and ultimately a low manufacturing cost. Liquid coolants have been extensively used with the 
microchannel heat sinks for their high capabilities of absorbing heat. However, the associated issues of the high pumping 
power demands [1,2], leakage [3], and passage clogging [4] in the case of the nanofluids usage, have not been fully 
addressed. Air was used as an alternative coolant in many microchannel heat sink systems [5-7]. However, its poor heat 
removal capabilities [8] have limited its applications. In this study, the overall performance of the microchannel heat sink 
using several gaseous coolants is investigated. The coolants are air, ammonia gas, R-12 and R-22. The search for an 
alternative coolant to overcome the difficulties of the liquid coolants was the motivation to consider these gaseous coolants.  
An optimization scheme which incorporates the thermal resistance model as an objective functions formulator and the non-
dominated sorting genetic algorithm (NSGA-II) as an optimization performer is employed to investigate the overall 
performance of the considered system under these different gaseous coolants. 

2. Mathematical model 

Figure 1 illustrates the schematic drawing of the rectangular microchannel heat sink under investigation in the current 
study.  

 

 
 
 
 
 

Fig. 1.  Schematic drawing of the microchannel heat sink. 

The microchannel heat sink comprised of n number of microchannels attached to each other with an adiabatic covering 
plate bonded on top to close the microchannels. Induction tubes are used to transport the coolant to and from the 
microchannels to avoid the bypass flow and to provide a sufficient length for the flow to reach the fully develop status. The 
above mentioned microchannel system performance is evaluated using a systematic thermal resistance model and a 
methodical pumping power calculation. The approach offered by Wen and Choo [9] and Kleiner et al. [10] to evaluate the 
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total thermal resistance and pumping power are followed and modified where needed.  Kleiner et al. [10] model was used 
because it was experimentally verified and it showed superior thermal and hydrodynamic performance compared to the 
previous conventional air-cooled microchannel heat sink systems. 

 

2.1. Thermal performance model 

The thermal performance of a microchannel heat sink is evaluated through its total thermal resistance. The total thermal 
resistance of any heat sink is described as the ratio of the temperature difference between the maximum temperature of the 
substrate and the coolant inlet temperature, to the heat flux. The maximum temperature is normally located at the end of the 
microchannels and the heat flux is assumed to be uniformly applied to the back side of the microchannel heat sink. The total 
thermal resistance of the heat sink is given by: 

 
                                                                                                                                                                                (1)  

 
where Tsurf,max and Tin are the highest and the inlet temperatures of the substrate and the coolant, respectively. Eqn. (1) can be 
expressed in terms of the dominated components of the total thermal resistance, 
 
                                                                                                                                                                                (2)        
 
where Rconv and Rcapa  are the convective and capacitive thermal resistances, respectively. The first term in Eqn. (2) can be 
expressed as, 
 
                                                                                                                                                                                (3) 
 
 
The effective area for heat transfer in Eqn. (3) can be defined as, 
 

)2( cceff HwnLA                                                                                                                                          (4) 
 
The number of the microchannels and the fin efficiency are calculated according to the following equations, 
 

                                                                                                                                                                   (5) 
 
 

 
                                                                                                                                                                                (6)  
 
where m is the fin parameter given by, 
 
                                                                                                                                                                                (7)  
 
where kw is the thermal conductivity of the heat sink material which is assumed to be made of aluminum. The second term 
in Eqn. (2) is the capacitive thermal resistance which can be expressed as, 

 
                                                                                                                                                                          (8) 
  
 
                                                                                                                                                                         (9)  
 
The convective and capacitive thermal resistance expressions are further simplified using the channel aspect ratio ( ) 

and the fin spacing ratio ( ) along with several other auxiliary equations as follows, 
 
                                                                                                                                                                        (10) 
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                                                                                                                                                                        (11) 
 
 
                                                                                                                                                                        (12) 
 
 
                                                                                                                                                                        (13)  
 
 
                                                                                                                                                                        (14) 
 
Substituting Eqns. (10-14) into Eqns. (3, 8) results in the final expression of the total thermal résistance as, 
 
                                                                                                                                                                         (15)  
 
The average heat transfer coefficient appearing in Eqn. (15) is evaluated using the Nusselt number correlation given by 

Kim and Kim [11] for a laminar fully developed flow, 
 
                                                                                                                                                                        (16) 

 

2.2. Hydrodynamic performance model 

In the current study, the hydrodynamic performance of the microchannel heat sink is assessed using a pressure drop 
calculation and the associated required pumping power. The methodology offered by Kleiner et al. [10] where induction 
tubes are employed to transfer the coolant is used and modified. The total pressure drop is given by, 

 
tuhstot ppp                                                                                                                                       (17)  

 
where ptot , phs and pt are the total, heat sink and tubes pressure drops, respectively. The pressure drop [10] inside the 
microchannel is modified and the final expression for the total pressure drop is 
 
                        (18) 
                             (20) 
 
 
Finally the pumping power can be evaluated through the following equation, 
 
                                                                                                                                                                              (19)  
 
The friction factor that appears in the total pressure drop equation is evaluated using the correlation provided by Copeland 
[12], 
 
                                                                                                                                                                              (20)  
 
where B is a geometrical parameter given by , 
 
 
                                                                                                                                                                              (21) 
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3. Optimization procedure 

In this paper, two design variables are selected; the channel aspect ratio ( ) and the fin spacing ratio ( ). The limits of 
these design variables are taken from Kleiner et al. [10] with 23.742 <  < 59.808 and 0.254 <  < 0.5. The system is treated 
as a multi-objective function with the thermal resistance (Eqn. 15) and the pumping power (Eqn. 19) being the first and the 
second objectives. These objective functions are optimized using the NSGA-II. 

3.1. The applied algorithm 

The objective functions considered in the current study posses a competing nature in which the increase in one results in 
a decrease in the other. The NSGA-II known for its strong capability in optimizing multi-objective functions [13], is used to 
perform the optimization process. The methodology applied to perform the optimization and hence to generate the Pareto 
optimal front is fully described in Ahmed et al. [14]. 

4. Results and discussion 

In this section, the overall performance of the considered system is investigated for four different coolants, air, ammonia 
gas, R-12 and R-22. For a constant volumetric flow rate (G = 5.3 l/s) and under the same operating conditions (Table 1), the 
performance of the system with air as a coolant is used as a benchmark for comparison with other coolant performances as it 
can be seen in Figs. 2 and 3 for ammonia gas, and R-12 and R-22, respectively.  

 
 

 

 

 

 

 

 

 

Fig. 2.  The overall performance of the considered system with air  vs. ammonia gas. 

 

 
 
 
 

 
 
 
 
 
 
 

 

Fig. 3.  The overall performance of the considered system with air vs. R-12 and R-22. 
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It can clearly be seen from Fig. 2 that ammonia gas behaves better than air as a cooling fluid. It provided a significant 
reduction in the total thermal resistance and pumping power for the same operating conditions. This behavior is attributed to 
the excellent thermophysical properties of ammonia. The specific heat capacity and the thermal conductivity of ammonia 
are better than air in the expected range of operating temperature. As for air vs. R-12 and R-22 (Fig. 3), the latter two 
provided much lower thermal resistance than air but at the expense of the required pumping power. The Montreal Protocol 
has stopped any industrial application of R-12 due to its significant contributions to the Global Warming Phenomena 
(GWP) and Ozone Depleting Potential (ODP).  

Table 1 Assumed parameters and thermophysical properties at 27 oC. 

Parameters Values 

Heat sink lateral dimensions, (W×L) (cm2) 5×5 

Channel height, Hc (cm) 2.5 

Induction tubes length, Lt (m) 0.5 

Induction tubes diameter, Dt (mm) 19 

Thermal conductivity of aluminum, kw(W/m.K) 238 

 
 
R-22 lowers the thermal resistance significantly compared to air but with a very high pumping power requirement too.  It 

can be seen that ammonia gas showed a reasonable performance in both aspects, thermal and hydrodynamic, compared to 
the other coolants considered in this research. Known for its environmental friendly behavior and not requiring sophisticated 
machinery to be produced, ammonia gas can be a very suitable alternative for air and water generally used in the heat sinks. 
The optimized results of the current study are listed in Table 2. 

Table 2. Optimized results of the current study. 

Parameters Air Ammonia gas R-12 R-22 

Thermal resistance, R (K/W) 0.178 0.14 0.08 0.113 

Pumping power, Pp (W) 6.4 4 22.4 16.5 

Channel aspect ratio,  51.799 59.692 58.912 59.785 

Fin spacing ratio,  0.272 0.267 0.254 0.254 

 
 

5. Conclusions 

In this research, the overall performance of a rectangular microchannel heat sink is examined for four different coolants, 
air, ammonia gas, R-12 and R-22. Ammonia gas showed balance thermal and hydrodynamic performances under the same 
operating conditions compared to the other coolants investigated in this study.  R-12 and R-22 provided a lower thermal 
resistance but they cannot be considered due to the high pumping power demands and their environmental issues. The 
results obtained provide motivation for further efforts to be spent on exploration of other coolant performances in the area of 
microchannel heat sinks industry. 
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