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Abstract

Unstable wheel inverted pendulum is modelled and controlled deploying Kane’s method and optimal
partial-state PID control scheme. A correct derivation of nonlinear mathematical model of a wheel inverted
pendulum is obtained using a proper definition of the geometric context of active and inertia forces. Then
the model is decoupled to two linear subsystems namely balancing and heading subsystems. Afterward
partial-state PID controller is proposed and formulated to quadratic optimal regulation tuning method. It
enables partial-state PID to be optimally tuned and guarantees a satisfactory level of states error and a
realistic utilization of torque energy. Simulation and numerical analyses are carried out to analyse
system’s stability and to determine the performance of the proposed controller for mobile wheel inverted
pendulum application.
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1. INTRODUCTION

The application of wheel inverted pendulum (WIP) robot gains high attention from industry and
research communities. Recently, many WIP-based products are available in industry such as
human transporter by Karmen and service robot by Hitachi’s Mechanical Engineering Research
laboratory. They believe this high manoeuvrability wheel system will be the future urban robot
and transporter and even in rural places with rough terrain. Meanwhile in research community,
WIP system has been extensively studied because this simple structure robot serve complex
dynamic [1]. Thus many comprehensive research materials can be found and mainly for
modelling and control aspects.

Over a decade, various types of WIP have been developed along with their mathematical model
[2-5]. The modelling focuses either on kinematic [6, 7] or dynamic issues. In dynamic aspect,
Lagrange [8, 9], Lagrage-Eular [10], and Newton-Eular [11] used to develop nonlinear WIP
mathematical model. However Newton method involved the calculation of unwanted forces and
Lagrange method used Lagrange multiplier in their derivation. Consequently those methods
required tedious and complicated formulation of a large multibody system, hence led to
inefficient computation. Thus, Kane method is the alternative because of its simpler and efficient
mathematical analysis where it is based on partial velocity in multibody dynamic modelling [12].
However, less attention on torque context in term of differential drive nonholonomic and mobile
system led to an unaccurate dynamic equation [13]. Thus this paper defines a proper torque
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geometric context of WIP system, eventually this definition leads to a correct solution of the
nonlinear WIP mathematical model.

In control aspect, advanced and robust control schemes designed to control WIP system. It were
sliding mode control (SMC) [14], backsteping control [15], fuzzy logic control (FLC) [16], and
neural network control (NN) [17]. However, most of those control schemes need high
computationally effort even for single state control [18]. This prevented it to be programmed as a
low level controller in an embedded WIP system. Thus linear controller such as LQR and PID
controllers are more favourable for this fast system [19-21]. Many researches preferred and
showed that the LQR as a modern controller gave better performance compared to conventional
PID controller [22-24]. However the research overlooked the applicability of LQR controller in
input trajectory tracking where the significant state trajectory errors occur [25]. Thus this paper
proposes partial-state PID (PSPID) controller to eliminate the aforementioned problem. Besides,
the controller is formulated to quadratic optimal regulation (QOR) tuning scheme where it
guarantees system stability and satisfactory level of WIP performance.

This paper is organized as follows: development of nonlinear WIP mathematical model is
presented in section 2; section 3 provides a formulation of proposed PSPID controller for the
QOR tuning method; the analysis of the model and the proposed controller is demonstrated by
simulation in section 4; and the conclusion of this paper is in the last section.

2. WHEEL INVERTED PENDULUM ROBOT

Generally, the outline of Kane’s method can be found in following literatures [12, 13]. Thus this
paper will only concentrate on the development of a WIP mathematical model of Kane’s method.
Notation: Throughout this section, iC and iS indicate cos and sin functions with φ== 2i and

θ== 3i . Body iB and point iP refer to bodies B , 1W , 2W and points G , C1W , and C2W .

2.1. Kinematic of WIP

As shown in Fig. 1, WIP consists of three bodies: the pendulum, B, as the main body and the two
wheels, 1W and 2W . The important points where the gravitational force, g is detected are the
centre of right wheel, C1W , the centre of left wheel, C2W , and the centre of gravity of the main
body G ; point C , the point where the torque exerted from wheels to pendulum in the form of
force. Other vital points on the right and left wheel’s surfaces are P1W and P2W . 1P

~W and 2P
~W

are any point on the right and left wheels. WIP mechanical parameters tabulate in Table 1. The
WIP has 5 degrees of freedoms, hence the independent generalized coordinates are

( ) ( ) ,5;,,,,,,, 2121 =ϕϕθφ== nxqqqq WWnn  (1)

The following assumptions have been made to model the WIP:

1) The linear motor model considered, motor inductance and friction on the armature are
neglected.
2) No slip and wheels always in contact with the ground
3) At every instant, WIP experiences forward and steering forces.
4) Cornering force is neglected
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Based on the 2nd and 3rd assumptions, the constraints 2m = and the nonholonomic constraints are
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Table 1.WIP mechanical parameters.

Symbol Parameter Value
mb Mass of body 15kg

mw Mass of wheel 0.42kg

L Half of lateral body 0.2m

R Radius of wheel 0.106m

Ib2 Inertia of main body in n2 directional 0.63kgm2

Ib3 Inertia of main body in n3 directional 1.12kgm2

g Gravitational constant 9.81ms-2

d A distance between point C and COG of main body 0.212m

iPWF ω
~ˆ is an angular velocity of point iP

~W on the right and left wheels with respect to reference

frame F. xPWF ω 1ˆ and φ1ˆ PWF ω are angular velocities of points sP1W on the right and left wheels
with respect to frame F that due to forward motion and steering motion. Based on (1) and (2), the
generalized speeds, ru , are

( ) ( ) ,;,,,,, 21 mnrxuuuu rr −=θφ==  (3)

The velocity, angular velocity and angular acceleration of point C with respect to reference
frame F are

(a) (b)

Figure 1. (a) Available WIP in UTM laboratory, and (b) free body diagram of WIP in newton Frame
F.
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From (2), angular velocity of points 1P
~W and 2P

~W with respect to reference frame F are
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The angular velocity of robot main body and two wheels with respect to reference frame F are
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GC ω̂ is an angular velocity of point G with respect to robot point C . Based on a rigid body
motion solution in 3D space, the velocity of the COG of the main body and the centre of two
wheels with respect to reference frame F can be formulated as

( ),,,;ˆˆˆˆˆ 21 CCi
PiCPiCFCFPiF WWGPvrvv =+×ω+= (7)

Pir̂ and PiC v̂ are the displacement and velocity of point iP with respect to point C . The

centre of wheels are fixed with respect to point C , i.e 0ˆ =CiWC v , Thus
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GCd̂ and CiWC L̂ are displacements of the COG of main body and the centre of wheels with
respect to point C . The angular acceleration of the main body and the wheels are
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From (7) the acceleration of the COG of main body and centre of two wheels with respect to
reference frame F can be formulated as

( ) ( ),,,;ˆˆˆˆˆˆˆˆˆˆ 21 CCi
PiCPiCCFPiCFCFPiCFCFPiF WWGPavrraa =+×ω+×ω×ω+×α+= (10)

CF â is an acceleration of point C with respect to frame F and dtvda PiCPiC ˆˆ = is an

acceleration of point iP with respect to point C . Based on aforementioned fact, 0ˆ =CiWC a , thus
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Partial velocity and partial angular velocity of the main body and the wheels can be obtained by
differentiating (4), (6) and (8) with ru as shown below.
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2.2. Dynamic of WIP

WIP lies under differential drive type of mobile robot. Thus generated torque, τC, from the motors
to the robot can be represented as

,yawpitchC τ+τ=τ (13)

The yaw torque, yawτ , and pitch torque, pitchτ , are the torques that cause WIP steers by , ϕ, in 2f

directional and move with velocity Cv in 1n directional as shown in Fig. 1(b). However, pitch
torque exerts to robot main body in the form of force. Therefore at every instant, this robot
experiences both forward force and steering torque. Based on Fig. 1(b) and the assumptions, the
active forces are
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Where
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CR̂ and CT̂ are the force and torque exerted on the main body by wheel,
1

ˆ
wR ,

2
ˆ

wR and BR̂ are

forces exerted on the wheel and body by the gravity. wrF and wlF are translated forces from
the wheels torque. The inertia force and inertia torque of the main body and the wheels are

( )

( ),,,;ˆˆ̂ˆˆ̂ˆˆ

,,,;ˆˆ

21
*

21
*

WWBBIIT

WWGPamR

i
BiF

Bi
BiF

Bi
BiF

Bi

CCi
PiF

PiPi

=ω⋅×ω−⋅α=−

=⋅−=
(16)

Where BG mm = , WW mm
Ci

= , 3322 nnnn 32
ˆ̂

bbBi III += and 3322 nnnn
32

ˆ̂
WWW III

i
+= . The inertia of

the wheels is considered as 22 4
2

LmRmI WWW += and 42
3

RmI WW = . The generalized active

force and inertia force are given as

( ) ( )

( ) ( ),,,,,,),3,2,1(;ˆ~ˆ~

,,,,,),3,2,1(;ˆ~ˆ~

2121
*

1

*

1

*

21
11

WWBBWWGPrTRvF

CBWWCGPrTRvF

iCCiBi

k

i

Bi
r

F
Pi

j

i

Pi
r

F
r

iCCiBi

k

i

Bi
r

F
Pi

j

i

Pi
r

F
r

===⋅ω+⋅=

===⋅ω+⋅=

∑∑

∑∑

==

== (17)

Where j is the number of points subjected to applied forces and k is the number of rigid bodies
subjected to applied torques. Three motion equations of WIP (19) are obtained by equating the
dynamic equation of motion (18),

,0* =+ rr FF (18)
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Then state space representation of the WIP (20) is solved using Cramer rule. The matrix variables
are listed as in the appendix.
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3. PARTIAL STATE-PID CONTROLLER

Notation: Throughout this section, i index indicates the balancing and heading subsystems by
equalized it to θ and φ .

3.1. Linear WIP model

To design a linear controller, the nonlinear WIP model is linearized by setting tilt angle, 0≈θ ,
and heading angle, 0≈ . The linear WIP system can be represented into two subsystems, first is
“balancing” subsystem which is regarding the rotation and motion about 3n and 1n directional
and second is “heading” subsystem which is describing the rotation about 2n directional. These
subsystems can be formulated as
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Here iA , iB and iC are state constant system matrix, system input matrix and system output

matrix with appropriate dimension. in
i R∈x and R∈iu are defined as state variable and control
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Equation (23) showed 4=θn for balancing subsystem and 2=φn for heading subsystem.
The matrix variables are listed as in the appendix. Using decoupling technique, the relationship of
control input and φu to the wheel torques are
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3.2. Augment subsystem with PSPID

Fig. 2 shows closed loop WIP system. In such in order system, input matrix, ir , and proposed
PSPID controller are
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1ir , , ( )1−inir are the input variables, iPK , iIK , and iDK are proportional, integral and derivative

gain vector of PSPID controller. Based on (23) and (25), the PID controllers for the balancing and

heading subsystems are [ ]TDIP KKK 1111 θθθθ =PIDK , [ ]TDIP KKK 3333 θθθθ =PIDK and

[ ]TDIP KKK 1111 φφφφ =PIDK . The control input iu is
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Figure 2. Closed loop WIP structure with PSPID.
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iinβ is a coefficient with arbitrary selected value. Thus input signal iu is
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It is obvious in (29) si’=βisi, thus
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Based on above formulation, equivalent 1+in order subsystem dynamic can be formulated from
the combination of the original state (23) and (31). The 1+in state vector is written as
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β


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(32)

Here
iinβ is set to one. The output matrix iC is set to

;
10

0




= i

i

C
C (33)

The rank of controllability matrix ][ 2
i

n
iiii

i
ii

BABABAB  of system (32) is 1+in . This

means the linear system (32) is completely controllable.

3.3. Optimal PSPID

To apply QOR tuning method, Frobenius Canonical form of system (32) is considered by
following transformation.

,iii xTz = (34)

Where )1( ×ii mz and )( iii mm ×T are transformation state variable vector and transformation
matrix. Index 1+= ii nm , and iT matrix define as

,; 1

1

−

−

=


















=
iiini

i

c
T

n
ii

ii

i

i

A

A
Weq

q

q

q

T 1

1

1

1


(35)

1q
i

is im×1 vector, ][ i
m

iiic
i

ii
BABABW = and unit vector ]100[ =

iine , the

Frobenius canonical form of WIP subsystems can be express as
,iiiii uCC BzAz += (36)
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Where

,

1

0

0

,
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



==























α−α−α−α−

==

−−

−






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



iii

imimiim

iiii

iii

BTB

TATA

c

1
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(37)

The input signal is

[ ]
[ ],)()(),(

,

;

21

)1(21

tztztz

KKKK

u

i

ii

imii
T

i

CimmCiCiCii

iii





=

=

−=

−

z

K

zKC

(38)

And also feedback gain

,1
C TKK −= iii (39)

The desired m order characteristic equation of matrix iii CCC KBA − is

),()()()det( 12)1(
1

1 ciimcimi
m

cimi
m

i KsKsKsAsI
ii

i
i

i +α++α+++α+=− −
−  (40)

As shown, system (32) is completely controllable, then iCK can be tuned by QOR method. The
QOR problem is a quadratic performance index function for the integral function. The index is in
the form of quadratic performance of continuous-time linear time-varying function.

( )∫ ++= ft

ii
T
iii

T
ifiif

T
i dttututtttI

0
)()()()(

2

1)()(
2

1 RzQzzPz f
(41)

Where the final time,
ft , is fix. ifP , iQ , are chosen to be symmetry positive semidefinite, and iR to

be symmetry positive definite. The QOR optimal control problem is to drive the state vector
)(tiz to the origin from any nonzero initial values of states. The problem objective is to find )(tu i ;

ftt ≤≤0 , such that the objective function (41) is minimized. Choosing the appropriate weighting

matrix iQ , iR , and therefore get the optimal control rate with optimal control theory. For an
infinite time

ft , ifP must satisfy following reduced Riccati equation.

01 =+−+ −
ii

T
iiiii

T
ii

QPBRBPAPPA fcfcff cc
(42)

With predetermined weighted matrix, optimal control is
)()()( 1

fiifii
T

ii tttu
i

zKzPBR Cfc
−=−= − (43)
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The control law makes the linear feedback system stable, then by adopting Lyapunov second law,
the nonlinear feedback system is stable. Weighting matrix iQ and iR are

[ ]11
22

11

;

00

0

0

00

rR

q

q

q

Q

iimm

=





















=









(44)

Finally, based on (39) and (30), PSPID controller is directly tuned for subsystems (23). The
formulation makes the proposed controller has both of PID controller and QOR advantages.

Following steps can be applied to tune PID controller using QOR technique:

Step 1. Construct im order system (32) from the combination of the original system (23) and (31).
Step 2. Transform this im order system to a Frobenius Canonical form based on transformation
formula (34).
Step 3. Tune icK gain by appropriately tuning iQ and iR (44) matrices.

Step 4. Compute iK in (30) from icK by transformation formulation (14).
Step 5. Lastly Based on (30), set PID gains (25) accordingly.

4. RESULT AND DISCUSSION

4.1. Model analysis

In QOR tuning scheme, )3.46565.2287,2.583,83.112,(diag=θQ , )10.01,(diag=φQ and

10×1 -3== φθ RR were set for LQR controllers. For PSPID controller, the matrices sQ are

)0.013.4656,5.2287,2.583,83.112,(diag=θQ , )0.011,0.01,(diag=φQ and 10×1 -3== φθ RR . Thus the

following LQR and PSPID controller are obtained:

[ ] [ ]

,
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1.1

8.11

,

5.21

3.18

0.106

;

9.18

3.18

1.27

,12,4.493;129,4.493,8.106,2.91

1

31
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

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
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
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−
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−=−=

φ

θθ

φθ
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PIDPID
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KK
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euBeAe +=

K−

u x

Figure 3. Equivalent 1+in order error vector of system (2) with PID controller
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4.1.1. Open loop stability

The stability of WIP depends on the balancing of its main body. To investigate this behaviour, the

pole analysis of the balancing submatrix, ′
θA , from constant matrix θA was conducted. The

poles are obtained by solving following equation

,0
1

det]det[
43

=






−

−
=′− θθ sA

s
s

L
n AI (45)

Thus the poles are

( )
( )( ) ( )

( )
( )( ) ( )

,
3

3

,
3

3

2
3

22

2
3

21

dmIdmmm

dgmmm
s

dmIdmmm

dgmmm
s

BBbWB

bWB

BBbWB

bWB

−++

+−=

−++

+=

θ

θ

(46)

This showed one of its pole was positive. The fact shows, if the WIP not accelerates (ie. 0=θu ),
the robot body will fall. Another fact is the mass of robot body, the mass of the wheel and the
COG of the main body will determine the magnitude of this pole.

4.1.1.1. Effect of main body COG on tilt angle, θ, control

Firstly, robot body was assumed as a point of mass, 2
3 dmI bb = . Therefore the unstable pole was

( )
( )

,
6

3
1

dmm

gmm
s

wb

wb

+

+=θ (47)

The value of the pole is tabulated in table 2 as d change, ]2,1.[od ∈ .

Table 2.Variation of unstable pole over d.

d(m) 0.1 0.3 0.5 0.7 0.9 1.1

Sθ1 9.542 5.509 4.267 3.606 3.181 2.877

From the table 1, pole became larger when d was shorter. This matches the fact that the robot will
be harder to balance when COG of the main body is lower as shown in Fig. 3. However for higher
d, larger torque will be required.

Proof: To hold the pendulum at vertical, defines the displacement of point C , Cx must be equal to
circumference, dC , that had been made by θ at point d .

,dCx dC θ=≡ (48)

Thus

,
22 t

dm

t

xm
amF bCb

CbC
θ=== (49)



International Journal of Control Theory and Computer Modeling (IJCTCM) Vol.3, No.6, November 2013

13

It is proven by newton's law, larger force is required if d becomes larger.

4.1.1.2. Effect of mass of body on tilt angle, θ, control

Table 3 below shows that when the mass of the body increase  to 20kg the unstable pole only
increase about 1 from its initial value. Thus the effect is less significant on the tilt angle balancing
control. This is true as shown in Fig. 4(a).

Table 3. Variation of unstable pole over mb.

mb(kg) 1 2 4 6 10 20

Sθ1 5.451 5.777 6.110 6.279 6.451 6.609

4.1.1.3. Effect of mass of wheel on tilt angle, θ, control

Table 4 shows that when the mass of wheel increase to 2kg the unstable pole only decreases about
0.6 from its initial value. Thus the effect is less significant on the tilt angle balancing control as
shown in Fig. 4(b).

Table 4. Variation of unstable pole over mw.

mw(kg) 0.2 0.4 0.6 0.8 1 2

Sθ1 6.675 6.564 6.465 6.377 6.298 5.999

4.1.1.3. Inertia forces over initial condition

From the model, the motors need to generate enough amount of torque to compensate inertia
forces, F*1, F*2, and F*3 while balancing and moving in the Cartesian plane. Thus these inertia
forces were analysed over three initial conditions of position, x, tilt angle, θ, and heading angle, ϕ.
Three initial conditions are considered, (x,θ,ϕ)=(0.01745m,0,0), (x,θ,ϕ)=(0,0.01745rad,0), and
(x,θ,ϕ)=(0,0,0.01745rad).

(a) (b)

Figure 3. Responses of (a) tilt angle and (b) input torque over various COG of robot main body
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Fig. 5 shows the effect of these three initial conditions. In this work, WIP’s motors have
maximum torque Nmwr 4(max) =τ . Thus it is important to determine the radius of the wheels. Based

on force and torque relationship, the wheels radius R must be less than the ratio of maximum
wheels torque and maximum heading inertia force, *

(max)1(max)2 Fwrτ . It was shown in Fig. 5(a),

maximum heading inertia force *
(max)1F is about 81.22N when robot needs to compensate tilt angle

initial error. Thus, based on this fact, R should less than 0.098m
.
4.2. Controller analysis

4.2.1. Basic input test

A WIP system with LQR controller tested on three types of input, unit step, ramp function, and
exponential function. The test showed the suitability of input to the mobile WIP system
application. Fig. 6 shows, LQR controller was the best on unit step input. However its
performance deteriorated when operates on others input function as shown in Fig. 7 and Fig. 8.
Fig. 7 shows, WIP with LQR had position and heading states error on ramp input. Fig. 8 shows,
WIP with LQR had position, velocity, heading angle, heading angular velocity state errors occur
in exponential input. For mobile WIP application, unit step input was not suitable where it
required tremendous large amount of torque as maximum as 45Nm as showed in Fig. 6(c). In
contrast, ramp and exponential type input functions are suitable input for the WIP system; these
inputs do not only have velocity information, it also enables the WIP system to be driven in
optimum velocity using permissible torque energy as shown in Fig. 7(c) and Fig. 8(c).

(a) (b)

Figure 4. Response of (a) tilt angle of over various mass of body and (b) tilt angle of over
various mass of wheel

(a) (b) (c)

Figure 5. Responses of (a) Inertia force F⃰1, (b) Inertia force F⃰2, and (c) Inertia force F ⃰3 due to x, θ,
and ϕ initial conditions.
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4.2.2. Cartesian motion

WIP was tested on two types of motion, rectilinear and curvilinear motions. WIP needed to be
held in a vertical while moving to a specify distance either in a straight line or in a curve. Below
are the equations of position input and heading angle input for both rectilinear and curvilinear
motions.

( )
( )

( )
( )

,
1

,
1

c

c

TtTin

TtTin

e

Heat

e

Postx

−−

−−

+
−=φ

+
=

(50)

The constants T=0. 3, Tc=20 for both types of motions. The constants Pos=5, Hea=0 and
Pos=1.25π, Hea=π/4 were respectively for rectilinear and curvilinear motions. Both inputs have
s-shape trajectory and its slope is maximum time t=Tc.

From both Fig. 9 and 10, system with PSPID controller had better dynamic performance over the
system with LQR controller. Comparatively, WIP with PSPID controller took only 40s to reach at
specified position and orientation compare to WIP with LQR controller which took twice time
longer (about 80s) as shown in Fig. 10(e). It verified that the trajectory error can be reduced to
zero by adding an additional pole at zero to the system; and this process was achievable by
implementing PSPID controller to the WIP system. Moreover on QOR tuning formulation,
required torque of the WIP system with PSPID can be guaranteed within permissible torque
limitation.

(a) (b) (c)

Figure 6. Responses of (a) state x, (b) state ϕ and (a) torques τwr, τwl on unit step input.

(a) (b) (c)

Figure 7. Responses of (a) state x, (b) state ϕ and (c) torques τwr, τwl on ramp input.
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(a) (b) (c)

(d) (e)

Figure 9. Responses of (a) state x, (b) state x , (c) state θ, (d) state θ and (e) torques τwr, τwl on
rectilinear motion.

(a) (b) (c)

Figure 8. Responses of (a) states x, x , (b) states ϕ, φ and (c) torques τwr, τwl on exponential
input.
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5. CONCLUSION

Nonlinear dynamic mathematical model of a WIP system successfully derived. Applying right
geometric context of the active force and inertia force led to a correct derivation of the WIP
system using Kane’s method. Furthermore, an optimal PSPID controller had been proposed to
control the system for better dynamic performance. The controller had both advantages of PID
and QOR tuning method.

Theoretical design, simulation and numerical results depicted that: 1) the nonlinear dynamic
model correctly derived, 2) WIP system with proposed controller had a satisfactory dynamic
performance where the trajectory error was very small, 3) QOR tuning scheme used and this
guarantee stability of WIP system, and 4) WIP required low magnitude of torque and this permit
practical implementation.

Further research should concern on: 1) variable type of WIP model since it is closer to human
transporter and WIP service robot application and 2) design and implementation of the proposed
controller in a microcontroller based system as a standalone and low level controller since of its
simple and easy realization.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 10. Responses of (a) state x, (b) state x , (c) state θ, (d) state θ , (e) state ϕ, (f) state φ

and (g) torques τwr, τwl on curvilinear motion.
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APPENDIX

Nonlinear and linear WIP state variables
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