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Abstract

Unstable wheel inverted pendulum is modelled and controlled deploying Kane’s method and optimal
partial-state PID control scheme. A correct derivation of nonlinear mathematical model of a wheel inverted
pendulum is obtained using a proper definition of the geometric context of active and inertia forces. Then
the model is decoupled to two linear subsystems namely balancing and heading subsystems. Afterward
partial-state PID controller is proposed and formulated to quadratic optimal regulation tuning method. It
enables partial-state PID to be optimally tuned and guarantees a satisfactory level of states error and a
realistic utilization of torque energy. Smulation and numerical analyses are carried out to analyse
system’s stability and to determine the performance of the proposed controller for mobile wheel inverted
pendulum application.
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1. INTRODUCTION

The application of whedl inverted pendulum (WIP) robot gains high attention from industry and
research communities. Recently, many WIP-based products are available in industry such as
human transporter by Karmen and service robot by Hitachi’s Mechanical Engineering Research
laboratory. They believe this high manoeuvrability whedl system will be the future urban robot
and transporter and even in rural places with rough terrain. Meanwhile in research community,
WIP system has been extensively studied because this smple structure robot serve complex
dynamic [1]. Thus many comprehensive research materials can be found and mainly for
modelling and control aspects.

Over a decade, various types of WIP have been developed along with their mathematical model
[2-5]. The modelling focuses either on kinematic [6, 7] or dynamic issues. In dynamic aspect,
Lagrange [8, 9], Lagrage-Eular [10], and Newton-Eular [11] used to develop nonlinear WIP
mathematical model. However Newton method involved the calculation of unwanted forces and
Lagrange method used Lagrange multiplier in their derivation. Consequently those methods
required tedious and complicated formulation of a large multibody system, hence led to
inefficient computation. Thus, Kane method is the aternative because of its smpler and efficient
mathematical analysis where it is based on partia velocity in multibody dynamic modelling [12].
However, less attention on torque context in term of differential drive nonholonomic and mobile
system led to an unaccurate dynamic equation [13]. Thus this paper defines a proper torque

DOl : 10.512V/ijctcm.2013.3601 1



International Journal of Control Theory and Computer Modeling (IJCTCM) Vol.3, No.6, November 2013

geometric context of WIP system, eventualy this definition leads to a correct solution of the
nonlinear WIP mathematical model.

In control aspect, advanced and robust control schemes designed to control WIP system. It were
dliding mode control (SMC) [14], backsteping control [15], fuzzy logic control (FLC) [16], and
neural network control (NN) [17]. However, most of those control schemes need high
computationally effort even for single state control [18]. This prevented it to be programmed as a
low level controller in an embedded WIP system. Thus linear controller such as LQR and PID
controllers are more favourable for this fast system [19-21]. Many researches preferred and
showed that the LQR as a modern controller gave better performance compared to conventional
PID controller [22-24]. However the research overlooked the applicability of LQR controller in
input trgjectory tracking where the significant state trgjectory errors occur [25]. Thus this paper
proposes partial-state PID (PSPID) controller to eliminate the aforementioned problem. Besides,
the controller is formulated to quadratic optimal regulation (QOR) tuning scheme where it
guarantees system stability and satisfactory level of WIP performance.

This paper is organized as follows: development of nonlinear WIP mathematicall model is
presented in section 2; section 3 provides a formulation of proposed PSPID controller for the
QOR tuning method; the analysis of the model and the proposed controller is demonstrated by
simulation in section 4; and the conclusion of this paper isin the last section.

2. WHEEL INVERTED PENDULUM ROBOT

Generally, the outline of Kane’s method can be found in following literatures [12, 13]. Thus this
paper will only concentrate on the development of a WIP mathematical model of Kane’s method.

Notation: Throughout this section, C;and S, indicate cos and sin functions with i =2=¢ and
i=3=0.Body B; and point P refer to bodies B, W,, W, and points G, W, , and W,.

2.1. Kinematic of WIP

Asshown in Fig. 1, WIP consists of three bodies. the pendulum, B, as the main body and the two
whedls, W, and W, . The important points where the gravitational force, g is detected are the
centre of right wheel, W, the centre of left wheel, W,,, and the centre of gravity of the main
body G; point C, the point where the torque exerted from wheels to pendulum in the form of
force. Other vital points on the right and left wheel’s surfaces are Wy, and Wg, . W5, and W,

are any point on the right and left wheels. WIP mechanical parameters tabulate in Table 1. The
WIP has 5 degrees of freedoms, hence the independent generalized coordinates are

On = (Oa- Qzs-- - Qn) = (X,(p,e, ¢W11¢W2); n=5, (1)

The following assumptions have been made to model the WIP:

1) The linear motor model considered, motor inductance and friction on the armature are
neglected.

2) No dip and wheels always in contact with the ground

3) At every instant, WIP experiences forward and steering forces.

4) Cornering force is neglected
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Based on the 2™ and 3" assumptions, the constraints m =2 and the nonholonomic constraints are
F d)Wﬁl _F G)WPD‘( _F (:)WPM - O,

@)

FAWs, _F AWppy _ F AWepy _
wPZ_wa_w _O’

Table 1.WIP mechanical parameters.

Symbol Parameter Value
m, Mass of body 15kg
my Mass of whesel 0.42kg
L Half of lateral body 0.2m
R Radius of wheel 0.106m
l o Inertiaof main body in n, directional 0.63kgm2
I3 Inertia of main body in ns directiona 1.12kgm2
g Gravitational constant 9.81ms?
d A distance between point C and COG of main body | 0.212m

@ (b)

Figure 1. (a) Available WIP in UTM laboratory, and (b) free body diagram of WIP in newton Frame
F.

F®"® isan angular velocity of point W5, on the right and left wheels with respect to reference

frame F. F@"™% and F@"™ are angular velocities of points Wys on the right and Ieft wheels

with respect to frame F that due to forward motion and steering motion. Based on (1) and (2), the
generalized speeds, u, , are

u, = (upUs,..., ur):(X,(p,é) r=n-m, ©))

The velocity, angular velocity and angular acceleration of point C with respect to reference
frame F are
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vVe=un,,
Fa=uyf, =u,n,, 4)
FaC=u,f, =u,n,,

From (2), angular velocity of points W5, and W, with respect to reference frame F are

P&z —u, L (- sn; +Cong)-u Ly,
R R

. ©)
&% =u, L (-sn, +Cong) -y g,
R R
The angular velocity of robot main body and two wheels with respect to reference frame F are

FG)B:FG)C+CG)G:u2n2 _U3n3,

"G 0 = g v, - Eng s B2 g ©
R R R

Foe =FaC+F @2 =—y L, +u2E72 +LC2 Ny - nl%
R R

€&° isan angular velocity of point Gwith respect to robot point C. Based on arigid body
motion solution in 3D space, the velocity of the COG of the main body and the centre of two
wheel s with respect to reference frame F can be formulated as

F\'}Pi:F \70+F (:JC foi +C\7Pi; (R - GvWCllWCZ)' (7)
f7 and ©v™ are the displacement and velocity of point P with respect to point C. The

centre of wheels are fixed with respect to point C,i.e =0, Thus

FUC=FUC+F GE xCd® +C &% xCd® = ujn, —u,dS;n, +us(dCsn, —dSyn,),
FWer=F §C +F (€ xC et =un, +u,Ln,, 8

FQUe2=FC +F g xCWe2 =yn, —u,Ln,,

€d® and ¢ are displacements of the COG of main body and the centre of wheels with
respect to point C. The angular acceleration of the main body and the wheels are

. F~B
FGB=0d W —yn,-un,,
dt
N FoM - ~Ws LLS, —uu . U +u,LC
FgWm =-d +FwaFmWP:L:E‘I2 S, 2E‘1+u2n2_ i e T ©)
dt R R
A . : _ .
Fgh = "™ [ FoCyF oWs, :E‘%LSZ UyUp E‘l”’znz‘ul U,LC, g,
dt R
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From (7) the acceleration of the COG of main body and centre of two wheels with respect to
reference frame F can be formulated as

FaP'—FaC+F0(C><rP'+F0\)CX( ® xrpl)"'F “xCU7 +687 (R = G, Wey, Wey), (10)

Fa® is an acceleration of point C with respect to frame F and ©a™ =d%"/dt is an
acceleration of point P with respect to point C. Based on aforementioned fact, €a% =0, thus
FészF0C+FdCxcaG+Fa)Cx( xC§e )+F CxC(C4C4C,
dt
= (Ul + U3dC3 - Uid% - Uid%)’ll - (U3d33 + UZdC:a)hlz - (U2d33 + U2U3dC3)n3,

FoC 11
Faer = dV™ +FaCxCD’V01+Fa)Cx(F C CD’VCI) (ty + UL )ny —uLing, )
dt
FaC
FaWez = dVZ 4 FGCyC Ve +Fc1)c><(F © CD"’CZ) (U, —u,L)n, +u?Lng,
dt

Partial velocity and partial angular velocity of the main body and the wheels can be obtained by
differentiating (4), (6) and (8) with u, as shown below.

o FoPi
iR =0V (r=123),(R =G,CWey We,),

ou, (12)

" =00 (1 =123),(8 =B, AWLW,)

au,

2.2. Dynamic of WIP

WIP lies under differential drive type of mobile robot. Thus generated torque, t¢, from the motors
to the robot can be represented as
Te =Tgen + T (13)

pitcl yaw:

The yaw torque, ty,,, and pitch torque, T, , ae the torques that cause WIP steers by , ¢, in f,

directiona and move with velocity v.in n, directiona as shown in Fig. 1(b). However, pitch

torque exerts to robot main body in the form of force. Therefore a every instant, this robot
experiences both forward force and steering torque. Based on Fig. 1(b) and the assumptions, the
activeforcesare

|§"c =Yg +YoN, +Y3Nng,

Tc =0yny +d,n, + 3303,

Ry = ~Myan,, (14)
Ry, =My Qn,,
éB =-mggn,,
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Where

y,=OW wI:Twr+TW| i=1
I
H 0 otherLW|se, | (15)
5 = Her Fui )LCZ = (Twr _Twl)_cz; =2
i =0 R
= 0

otherwise,

R. and T. are the force and torque exerted on the main body by wheel va Ry, ad Ry are
forces exerted on the wheel and body by the gravity. F

and F,, are trandated forces from
the wheels torque. Theinertiaforce and inertiatorque of the main body and the wheels are
Ry = -mp 187 (R = G1Wc1 Weo)

Ty =768 Oy =" 6P x I (16 (B = BW,W,),

(16)
Where mg =mg, my, =my, I:Bi =1NoN, + 1 gngng and I:\M

lw,N2No + 1y Ngng . The inertia of
the wheels is considered as 1, =m,R?*/4+m,L? and I,,, =m,R?/4. The generalized active
force and inertiaforce are given as

F VlePI+ZF Bi

Wy IIFB,

F

r

-3 (r =123),(R =6.C.Wey We, ) (B =€)
1=1
i VPl ERP| + z F ~Bi

(17)
Wy ErB. (r :l2,3),(F1 :G:Wchcz)v(B' = BVVl’WZ)

dynamic equation of motion (18)

Where j is the number of points subjected to applied forces and k is the number of rigid bodies
subjected to applied torques. Three motion equations of WIP (19) are obtained by equating the

F +F =0,

(18)
%ﬂ] +2m, +2 %EG m,dC,8 = Car * T +(¢2 +62)rr\)d%,
R

E”h(d%) +2mNL2+|b2+2|w2+2(LCT2)2|ms§’:( wr T\M)LCZ Bem, d“S,Cs, (19)

MydCs% + (Myd? + 1,5 = mydgS, + Pm, 428G,
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Then state space representation of the WIP (20) is solved using Cramer rule. The matrix variables
arelisted asin the appendix.

X(t) = A(X, Dx(t) + B(x,t)u(t) + f(x,t)

X0 © 1 0 0 0 OmxJ 00 OD 000
0 000 Ay 0 Agpiq Ba BZZD .0
©0 00 1 0 ol Do w0, 200 (20)
’D %) 00 A, O &5% %41 B42%\MH+%:4D
0 H oo 0 0 1 Oo o0 Oo O
0 O 00 0 0.0
@ 00 0 0 AgHoed BBe BeO gog

3. PARTIAL STATE-PID CONTROLLER

Notation: Throughout this section, i index indicates the balancing and heading subsystems by
equdizeditto 6 and ¢@.

3.1. Linear WIP model

To design a linear controller, the nonlinear WIP mode is linearized by setting tilt angle, 6=0,
and heading angle, ¢ = 0. The linear WIP system can be represented into two subsystems, first is
“balancing” subsystem which is regarding the rotation and motion about n,; and n, directional
and second is “heading” subsystem which is describing the rotation about n, directiona. These
subsystems can be formulated as

() =Ax O +Bu®); (=609)

21
yi(t) =Cix; () (1)

Here A;, B, and C, are state constant system matrix, system input matrix and system output
matrix with appropriate dimension. x; JR" and u; OR are defined as state variable and control
input with n, number of state variables. The state vector of balancing and heading subsystems are
Xg = (x, X, 8, 9) and x, = ((p, ('p). The characteristic polynomial of both subsystems given as

det(sl —A;) =8S" +as" T+ + 8y S+ ay. (22)

Where & =[a, a&; ... &,] is a characteristic vector with coefficientsa, =1, a, =det(-A))
and a, =-trace(-A;) . Both balancing and heading subsystems are

0 Omxo DOD

1
0
0 Am Og, B

0 0 1DEBD oo O
0

d 0 23
AgaL O%D 411 [ 23
1Teg 00 O

%’D OM i HJ v

i
%D:
B0
%D

0
:
:
1)
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Equation (23) showed ng =4 for balancing subsystem and n,=2 for heading subsystem.

The matrix variables are listed asin the appendix. Using decoupling technique, the relationship of
control input and u, to the wheel torques are

Ty, = 0.5ug +0.5U,,
T\M = Oa.le —0.5U(p,
3.2. Augment subsystem with PSPID

(24)

Fig. 2 shows closed loop WIP system. In such n, order system, input matrix, r;, and proposed
PSPID controller are

n' =l 0 .. lin-y O (i=60)
0 Kpy 0 Kpg - Kpog 00
i K pi g_ %Pu Pi3 FiC-) O (25)
Kpipi = a<li mKie 0 Kig - Ky 0

K piB E}<Di1 0 Kpiz + Kpin-g OH

sy iy -1) € the input variables, Ky, K, and Kp; are proportional, integral and derivative
gain vector of PSPID controller. Based on (23) and (25), the PID controllers for the balancing and
heading subsystems are Kppg =[Kpa Kiw Kol s Kpigs =[Kpes Kigs Kpge]'  and
Kpiog = Kpa  Kig KD@]T. The control input u; is

U =Koy =yi) + Ky, (6 -y)dt+ Ko, i(ri -y, (26)

The output matrix is y; (t) = C;x; (t) =, (t) where x;, =[x; 0 ... X 0] . For simplicity,
set al input variable to zero (r; =0, ), hence the control input is

U = —KppinXi =K IinJ-yidti (27)
$=y is defined, hence (27) will be
Ui =K pinXi =K inSi, (28)
1y Tor | WIP
Uy decoupling ;| mobilerobot Y >
— > systemn
PID, s

Figure 2. Closed loop WIP structure with PSPID.

The second term in (28) can be simplified to ascaar by afollowing formula
Kiisi = Kji(Biasiy +BigSiz + - + Bi(y -0Si(n -1)-

(29)
= KiiaGin + KyigGiz +- + Ky -1y Gigy -1
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Bi, IS acoefficient with arbitrary selected value. Thusinput signal u; is
U, =-KX;;
Ki=[Kes Kpi = Komey Kil (30)
%" =[xy, %, 0.50)

Itisobviousin (29) §’=Bs, thus

§ =Bi5 =BiCix; =Cp X;;

Ch, :[Bil 0 - Biy) 0], (31)

Based on above formulation, equivalent n; +1 order subsystem dynamic can be formulated from
the combination of the origina state (23) and (31). The n +1 state vector iswritten as

X ®OO_CA 00x,(0)0, (B[ (32)

Hod &, osod Y

Here B, iSsetto one. The output matrix C; isset to

= _[€ 0g
C= B 1F (33)
The rank of controllability matrix [B; A;B; A?B; -~ A"B;] of system (32) is n; +1. This

means the linear system (32) is completely controllable.
3.3. Optimal PSPID

To apply QOR tuning method, Frobenius Canonical form of system (32) is considered by
following transformation.

z = TiX;, (34)

Where z(m x1) and T;(m xm) are transformation state variable vector and transformation
matrix. Index m =n; +1, and T; matrix define as

D qil D
i =
I —
109N 0 g = g (35)
U -4
@Iilpini lIZI
g, is 1xm vector, W, =[B; AB; - AM"B] and unit vector ,=[0 0 -- 1, the

Frobenius canonical form of WIP subsystems can be express as
z; = Agz; +Bgiu;, (36)
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Where
oo 1 0O
0 0
L e
Ag =TiAT, =g : ' E : %
0o 0 0 1 g
Him = Qim-y  ~igm -2 —auf (37)
00
0
By =TiB; = é}?%
HD
0
Theinput signd is
u = Kgiz;;
Ki:[KCil Kaz -+ Keim-y Keim} (38)
2" =[240). 220) 2y ®)]
And aso feedback gain
Kei :KiTi_ll (39)
The desired m order characteristic equation of matrix Ag —BgK ¢ is
det(sl - A) =s" +(a;, + Kcim)sm_l+"'+(ai(m—1) +Kei2)s+ (Ui + Kgia), (40)

As shown, system (32) is completely controllable, then K ; can be tuned by QOR method. The

QOR problem is a quadratic performance index function for the integral function. The index isin
the form of quadratic performance of continuous-time linear time-varying function.

= Lo TPz )+ 20T 00,2, + ol OR v ) (41)
2 2

Wherethefina time, ¢, , isfix. p, ,q,, are chosen to be symmetry positive semidefinite, and r; to

be symmetry positive definite. The QOR optimal control problem is to drive the state vector
z,(t) to the origin from any nonzero initia values of states. The problem objectiveisto find y, () ;

0st<t,, such that the objective function (41) is minimized. Choosing the appropriate weighting

matrix qQ,, r,, and therefore get the optimal control rate with optima control theory. For an
infinitetime ¢, p, must satisfy following reduced Riccati equation.

ATP; +PAG - PBGR "B P; +Q; =0 (42)

With predetermined weighted matrix, optimal control is
Ui(t)='Ri_1BLPfiZi(tf)='K cizi(ty) (43)

10
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The control law makes the linear feedback system stable, then by adopting Lyapunov second law,
the nonlinear feedback system is stable. Weighting matrix ¢, and r, are

u X

eé=Ae+Bu, >

\4

-K
Figure 3. Equivalent n, +1order error vector of system (2) with PID controller

g O ° B

0 ¢ : 44
o=t ) Srelul “9

] O

EO 0 qmlm\g

Finally, based on (39) and (30), PSPID controller is directly tuned for subsystems (23). The
formulation makes the proposed controller has both of PID controller and QOR advantages.

Following steps can be applied to tune PID controller using QOR technique:

Step 1. Construct m order system (32) from the combination of the original system (23) and (31).
Step 2. Transform this m order system to a Frobenius Canonica form based on transformation
formula (34).

Step 3. Tune K, gain by appropriately tuning Q, and R, (44) matrices.

Step 4. Compute K;; in (30) from K 4 by transformation formulation (14).

Step 5. Lastly Based on (30), set PID gains (25) accordingly.

4. RESULT AND DISCUSSION

4.1. Model analysis

In QOR tuning scheme,  Q, =diag(83.112,2583,5.2287,34656),  Q,=diag(0.01,)  and
Rg =R, =1x10° were set for LQR controllers. For PSPID controller, the matrices Qs are
Qp = diag(83.112,2.583,5.2287,3.4656,0.0) ,  Q, =diag(0.01,1,0.00ahd Ry =R,=1x10° . Thus the
following LQR and PSPID controller are obtai ned:

Ko =-[91.2,106.8,493.4,129} K , = -[493.4,12)]

3 27.10 (1-106.00
Kpipar = % 18-3%’( PIDB3 = 5_18-3 %
B-18.95 2155
a1.8g
K pig = 10
EB.1H

11
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4.1.1. Open loop stability

The stability of WIP depends on the balancing of its main body. To investigate this behaviour, the
pole analysis of the balancing submatrix, Ae' , from constant matrix A, was conducted. The
poles are obtained by solving following equation

detfsl , ~Ag] = detEr AS43L _SE: 0 (45)

Thusthe poles are

= \/ (mg +3m,, Jm,dg ,
(mg +3rr\,v)(mbd2 +1 BB)_(de)Z
5, =- \/ (mg +3my Jmydg '
(mg + 3”\/\/)(”‘0(12 +1 B3)_ (mgd)?

(46)

This showed one of its pole was positive. The fact shows, if the WIP not accelerates (ie. v, = 0),

the robot body will fall. Another fact is the mass of robot body, the mass of the wheel and the
COG of the main body will determine the magnitude of this pole.

4.1.1.1. Effect of main body COG on tilt angle, 6, control

Firstly, robot body was assumed as a point of mass, I,; =m,d?. Therefore the unstable pole was

S = w (47)

(my +6m,,)d
The vaue of the poleistabulated in table 2 as d change, d 0[0.1,2] .

Table 2.Variation of unstable pole over d.

dm) (o1 [o3 Jos5 J[o7 Joo [11
Su 9542 | 5509 |4.267 |3.606 |3.181 |2.877

From the table 1, pole became larger when d was shorter. This matches the fact that the robot will
be harder to balance when COG of the main body islower as shown in Fig. 3. However for higher
d, larger torque will be required.

Proof: To hold the pendulum at vertical, defines the displacement of point C, x. must be equal to
circumference, C,, that had been made by 6 at point d .

Xc =Cy4 =6d, (48)

Thus
m,6d (49)

12
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It is proven by newton's law, larger forceisrequired if d becomeslarger.
4.1.1.2. Effect of mass of body on tilt angle, 8, control
Table 3 below shows that when the mass of the body increase to 20kg the unstable pole only
increase about 1 from itsinitial value. Thus the effect isless significant on the tilt angle balancing

control. Thisistrue as shown in Fig. 4(a).

Table 3. Variation of unstable pole over m,.

mo(kg) | 1 2 4 6 10 20
Su 5451 | 5777 | 6110 | 6.279 | 6.451 | 6.609

4.1.1.3. Effect of mass of wheel on tilt angle, 6, control

Table 4 shows that when the mass of wheel increase to 2kg the unstable pole only decreases about
0.6 from its initial value. Thus the effect is less significant on the tilt angle balancing control as
shown in Fig. 4(b).

Table 4. Variation of unstable pole over m,,.

mu(kg) 02 | 04| 06 ] 08 ] 1 2
Sut 6.675 | 6.564 | 6.465 | 6.377 | 6.298 | 5.999

4.1.1.3. Inertia forces over initial condition

From the model, the motors need to generate enough amount of torque to compensate inertia
forces, F*4, F*,, and F*5 while balancing and moving in the Cartesian plane. Thus these inertia
forces were analysed over threeinitial conditions of position, X, tilt angle, 6, and heading angle, ¢.
Three initial conditions are considered, (x,8,$)=(0.01745m,0,0), (x,0,¢)=(0,0.01745rad,0), and
(x,0,4)=(0,0,0.01745rad).

Figure 3. Responses of () tilt angle and (b) input torque over various COG of robot main body

13
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Figure 4. Response of (a) tilt angle of over various mass of body and (b) tilt angle of over
various mass of wheel

L

il oL 1 ) 5 13 15 =0 ] 1 o 3 ]
P Wy dn=l=n Tirmned o)

@ (b) (©)

Figure 5. Responses of (&) Inertiaforce F3, (b) Inertiaforce F3, and (c) Inertiaforce F5 dueto x, 6,
and ¢ initial conditions.

Fig. 5 shows the effect of these three initia conditions. In this work, WIP’s motors have
maximum torque T, may = 4Nm. Thusit isimportant to determine the radius of the wheels. Based

on force and torque relationship, the wheels radius R must be less than the ratio of maximum
whedls torque and maximum heading inertia force, 2t may / Fimax - It Was shown in Fig. 5(a),

maximum heading inertia force Fﬁmax) is about 81.22N when robot needs to compensate tilt angle
initial error. Thus, based on thisfact, R should less than 0.098m

4.2. Controller analysis
4.2.1. Basicinput test

A WIP system with LQR controller tested on three types of input, unit step, ramp function, and
exponential function. The test showed the suitability of input to the mobile WIP system
application. Fig. 6 shows, LQR controller was the best on unit step input. However its
performance deteriorated when operates on others input function as shown in Fig. 7 and Fig. 8.
Fig. 7 shows, WIP with LQR had position and heading states error on ramp input. Fig. 8 shows,
WIP with LQR had position, velocity, heading angle, heading angular velocity state errors occur
in exponential input. For mobile WIP application, unit step input was not suitable where it
required tremendous large amount of torque as maximum as 45Nm as showed in Fig. 6(c). In
contrast, ramp and exponentia type input functions are suitable input for the WIP system; these
inputs do not only have velocity information, it also enables the WIP system to be driven in
optimum velocity using permissible torque energy as shown in Fig. 7(c) and Fig. 8(c).
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4.2.2. Cartesian motion

WIP was tested on two types of mation, rectilinear and curvilinear motions. WIP needed to be
held in a vertical while moving to a specify distance either in a straight line or in a curve. Below
are the equations of position input and heading angle input for both rectilinear and curvilinear
motions.

— Pos
n(t)=—"2—
Xm( ) 1+ e_T(t_TC)

— — Hea
t)=——Mneéa
@n(t) PP =Rl

(50)

The constants T=0. 3, Tc=20 for both types of motions. The constants Pos=5, Hea=0 and
Pos=1.251, Hea=m/4 were respectively for rectilinear and curvilinear motions. Both inputs have
s-shape trgjectory and its slope is maximum time t=T...

From both Fig. 9 and 10, system with PSPID controller had better dynamic performance over the
system with LQR controller. Comparatively, WIP with PSPID controller took only 40s to reach at
specified position and orientation compare to WIP with LQR controller which took twice time
longer (about 80s) as shown in Fig. 10(e). It verified that the trajectory error can be reduced to
zero by adding an additional pole at zero to the system; and this process was achievable by
implementing PSPID controller to the WIP system. Moreover on QOR tuning formulation,
required torque of the WIP system with PSPID can be guaranteed within permissible torque
limitation.
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Figure 6. Responses of (a) state x, (b) state ¢ and (a) torques Ty, Tw ON unit step input.
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Figure 7. Responses of (a) state X, (b) state ¢ and (c) torques Ty, Ty ON ramp input.
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and (e) torques Ty, Tw ON

16



International Journal of Control Theory and Computer Modeling (IJCTCM) Vol.3, No.6, November 2013

Figure 10. Responses of (a) state x, (b) state X , (c) state B, (d) state 0 , (e) state ¢, (f) state ¢
and (g) torques Ty, Tw ON curvilinear motion.

5. CONCLUSION

Nonlinear dynamic mathematical model of a WIP system successfully derived. Applying right
geometric context of the active force and inertia force led to a correct derivation of the WIP
system using Kane’s method. Furthermore, an optimal PSPID controller had been proposed to
control the system for better dynamic performance. The controller had both advantages of PID
and QOR tuning method.

Theoretical design, simulation and numerical results depicted that: 1) the nonlinear dynamic
model correctly derived, 2) WIP system with proposed controller had a satisfactory dynamic
performance where the trgjectory error was very small, 3) QOR tuning scheme used and this
guarantee stability of WIP system, and 4) WIP required low magnitude of torque and this permit
practical implementation.

Further research should concern on: 1) variable type of WIP modd since it is closer to human
transporter and WIP service robot application and 2) design and implementation of the proposed
controller in a microcontroller based system as a standalone and low level controller since of its
simple and easy redlization.
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APPENDI X

Nonlinear and linear WIP state variables

Dipy = (m, + 3”\/\/)("‘0(12 +1 53)— (m,d cos6)?,
Dipp =M, (dsin®)? +1,, + EﬂLZ LR (Lcoscp)ZEnN,

2
_(ma2+15mdsned , _ (md2(-cos?6)+ 1,,mdsinep
Aoy = v Agg = ;
Dipy Dipy
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