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ABSTRACT 

A catalytic carbon dioxide reforming of methane with the effect of oxygen 

was carried out on 1 wt% of Rhodium (Rh) on Magnesium Oxide (MgO) and ZSM-5 

catalysts.  The effect of parameters on the methane conversion, synthesis gas 

selectivity and H2/CO ratio were studied. Three main parameters: temperature, 

O2/CH4 ratio and catalyst weight in 100 ml/min total feed flow rate, have been 

identified as the major factors that control the process.  The results indicated that 

Rh/MgO showed better catalyst reactivity and stability even though at temperature 

higher than 800 C.  Thus, the optimization of the combined CORM and partial 

oxidation of methane over Rh/MgO catalyst was carried out.  The optimization study 

was performed with the help of experimental design and two mathematical 

approaches: empirical polynomial and artificial neural network.  Empirical 

polynomial models were employed to analyze the effect of parameters on the 

response factor and the correlation coefficient, r, was above 85%.  However, the feed 

forward neural network correlation coefficient was more than 95%.  The feed 

forward neural network modeling approach was found to be more efficient than the 

empirical model approach.  The optimum condition for maximum methane 

conversion was obtained at 850 C with O2/CH4 ratio of 0.14 and 141 mg of catalyst 

resulting in 95% methane conversion.  A maximum of 40% hydrogen selectivity was 

achieved at 909 C, 0.23 of O2/CH4 ratio and 309 mg catalyst.  The maximum H2/CO 

ratio of 1.6 was attained at 758 C, 0.19 of O2/CH4 and 360 mg catalyst.  The 

utilization of neural network in predicting the reaction for other catalyst was also 

tested by introducing other reaction data in the network.  The result showed a feed 

forward neural network was able to predict the output of the reaction even for 

different reaction or catalysts. 
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ABSTRAK 

Kesan oksigen terhadap mangkin 1 % berat Rhodium di dalam Magnesium 

Oksida (MgO) dan ZSM-5 dikaji untuk proses pembentukan semula metana dengan 

menggunakan gas karbon dioksida (CORM).  Kesan parameter terhadap penukaran 

metana, kepemilihan gas sintesis dan nisbah H2/CO diselidiki.  Tiga parameter 

utama: suhu, nisbah reaktan (O2/CH4) dan berat mangkin dalam 100 ml/min jumlah 

halaju suapan dikenalpasti sebagai faktor utama yang mengawal proses tersebut.  

Keputusan menunjukkan bahawa Rh/MgO mempunyai keaktifan dan kestabilan yang 

lebih baik walaupun pada suhu melebihi 800 C.  Oleh itu, optimasi untuk kombinasi 

CORM dan oksidasi separa metana menggunakan mangkin Rh/MgO dijalankan.  

Proses optimasi dibuat dengan bantuan rekabentuk eksperimen dan dua pendekatan 

matematik: polinomial empirik dan rangkaian saraf buatan.  Model polinomial 

empirik yang diterbitkan untuk menganalisa kesan parameter terhadap faktor 

keluaran dan pekali kolerasinya, r adalah melebihi 85%.  Walau bagaimanapun, 

pekali kolerasi untuk suapan hadapan rangkaian saraf adalah melebihi 95%.  Oleh 

itu, suapan hadapan rangkaian saraf adalah lebih efisen daripada model polinomial 

empirik.  Penukaran metana tertinggi sebanyak 95% dihasilkan pada suhu 850 C

dengan nisbah O2/CH4 sebanyak 0.14 dan 141 mg mangkin.  Kepemilihan hydrogen 

secara maksima sebanyak 40% boleh dicapai pada suhu 909 C, nisbah O2/CH4

sebanyak 0.23 dan 309 mg mangkin.  Nisbah maksima H2/CO sebanyak 1.6 

dihasilkan pada suhu 758 C dengan nisbah O2/CH4 sebanyak 0.19 dan 360 mg 

mangkin digunakan.  Penggunaan suapan hadapan rangkaian saraf untuk meramal 

tindakbalas bermangkin yang lain juga dikaji untuk tindakbalas yang berbeza di 

dalam rangkaian yang sama.  Keputusan menunjukkan suapan hadapan rangkaian 

saraf berupaya meramal tindakbalas walaupun untuk tindakbalas atau mangkin yang 

berlainan.
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CHAPTER 1 

INTRODUCTION

1.1 General Introduction 

C1 chemistry refers to the utilization of single carbon-bearing molecules, 

such as carbon monoxide, synthesis gas (a mixture of carbon monoxide (CO) and 

hydrogen (H2), carbon dioxide (CO2), methane (CH4), and methanol (CH3OH), for 

the production of valuable chemicals, petrochemical intermediates, and ultra-clean 

transportation fuels.  C1 chemistry could also be used to produce high-purity 

hydrogen or premium chemicals from synthesis gas or from methanol.  The main 

resources of C1 molecules are natural gas, coal, biomass, and organic wastes. 

Figure 1.1 exhibits the profile of natural gas reserves versus natural gas 

consumption from 1980-1999.  It shows that the rate of natural gas discovery is 

higher than the rate of natural gas consumption.  Thus, it is necessary to develop a 

conventional natural gas utilization technologies not only for combustion to supply 

energy requirement, but also to convert the natural gas to higher value added 

products for example the production of environment friendly dimethyl ether (DME) 

as liquid fuel and also for ammonia production. 
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1995

1985

Figure 1.1 The world proven reserves of natural gas versus consumption from 

the year of 1980 to 1999 (United States Energy Information Administration, 2000). 

  COE = Crude Oil Equilibrium 

Most natural gas reserves in Malaysia are situated at remote areas.  As shown 

in Table 1.1, Malaysia has about 85.8 trillion standard cubic feet of natural gas and 

ranks as the 11th world’s largest natural gas reserve (Sarmidi et al., 2001).  It is 

reported that Malaysia still has many remote gas reserves waiting for exploitation. 

(Kementrian Tenaga, Komunikasi dan Multimedia Malaysia, 1999).  Besides that, 

the numbers of global proven natural gas reserves have increased by a factor of four 

over the last 25 years (Bitter, 1997).  
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Table 1.1: Gas reserves in Malaysia (Kementerian Tenaga, Komunikasi dan 

Multimedia Malaysia, 1999) 

Region Trillion standard cu ft 

Peninsular Malaysia (Duyung, Jerneh, etc.) 34.4

Sabah 43.7

Sarawak 7.7

Total 85.8

1 trillion = 1 × 1012

1 cu ft = 0.028317 cu meter 

In addition, CO2 is released to the atmosphere when solid waste, fossil fuels 

(oil, natural gas and coal) and wood are burned.  Furthermore, CO2 and CH4 are also 

found in biogas and flue gas.  For example, in a well designed chamber, bio-

decomposable materials in agricultures industries and waste water treatment process 

is decomposed to biogas and the gas mainly consisted of CH4 and CO2.

The main reason to utilize CO2 is it can help to reduce the green house effect.  

Malaysia’s greenhouse gas emissions totalled 144 million tonnes in term of CO2

equivalent in 1994.  Net emissions, after accounting for sinks of 68 million tonnes, 

amounted to 76 million tonnes CO2 equivalent.  On a per capita basis, net emissions 

amounted to 3.7 tonnes CO2 equivalent.  In terms of greenhouse gas, CO2 accounted 

for 67.5% and nitrous oxide (N2O) 0.1% of total CO2 equivalent emissions.  The fuel 

combustion energy sector accounted for 86.7% of the total CO2 emissions and 

traditional biomass fuels accounted for 86.4% of the total N2O emissions (Ministry 

of Science, Technology and Environment, 2000). 

Synthesis gas is a very important petrochemical feedstock. It is the first step 

in a serial reaction to convert gas from hydrocarbons (e.g. natural gas, bio-gas etc.) 

into liquid form (e.g. gasoline, kerosene, diesel, petroleum wax etc) and higher value 

products (e.g. ammonia, alcohol etc).  Synthesis gas can be produced via direct and 

indirect conversion.  However, indirect conversion of natural gas to liquid fuels via 

synthesis gas is more efficient than scheme presently known for direct conversion 
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(Aasberg-Petersen et al., 2001).  There are three types of process involved in indirect 

conversion of natural gas; Steam Reforming of Methane (SRM), Partial Oxidation of 

Methane (POM) and Carbon Dioxide Reforming of Methane (CORM) as shown 

Table 1.2. 

Table 1.2: Sources of synthesis gas and their applications (Ross et al., 1996; 

Bitter, 1997) 

Reaction

HR,298K

kJ/mol) Applications

CORM CH4 + CO2  2CO + 2H2 +247 Oxoalcohols,

Polycarbonates,

Formaldehyde 

(1.1)

POM CH4 + ½O2  CO + 2H2 -36 Methanol

synthesis,

Fischer-tropsch

Synthesis

(1.2)

SRM CH4 + H2O  CO + 3H2 +206 H2 production, 

Ammonia

Synthesis

(1.3)

Therefore, efficient and cheaper large scale process plant is required to 

accommodate the future use of synthesis gas.  Although catalysis is only one of the 

several key factors for these developments, it plays an important role for advanced 

reactor designs, feedstock flexibility, and control of carbon formation.  Thus, the 

catalysis of reforming reactions has long been a field of research in order to get 

industrial economical process output and applicable catalysis. 



5

Today, the route to liquid, higher value products from gas is through 

conversion via synthesis gas (synthesis gas) as shown in Figure 1.2.  The main gas-

to-liquids GTL interest now is in Fischer–Tropsch (F–T) synthesis of hydrocarbons.  

While synthesis gas for GTL can be produced from any carbon-based feedstock such 

as hydrocarbons, coal, petroleum coke and biomass, the lowest cost routes to 

synthesis gas so far are based on natural gas.  Thus, the focus for GTL has been 

largely on associated gas, so-called stranded or remotely located gas reserves, and 

larger gas reserves that are not currently being economically exploited.

Figure 1.2 General application of synthesis gas (syngas) to higher value added 

product. (Fleisch et al., 2002)

1.2 Research Background and Problem Statement 

CORM is an interesting route of synthesis gas production.  It is the most 

favourable due to its lower cost process compared to other catalytic reforming of 

methane processes due to the lower feedstock requirements (Ross et al., 1996).  

Thus, many researchers have been involved in investigating to produce synthesis gas 

via catalytic CORM.  The major obstacle preventing the commercialization of 

CORM is catalyst deactivation due to coking or sintering.  Therefore, many 
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researchers modify on catalysts by loading the support with metal in order to reduce 

the catalyst deactivation.  Not only that, combination reaction of methane reforming 

reaction such as SRM and POM or POM and CORM is energically favourable when 

combining endothermic and exothermic reaction and produces a controllable H2/CO

ratio.

The most common catalyst support used for reforming reaction is -Al2O3.

There are limited literatures about the usage of ZSM-5 and MgO catalyst in 

reforming reaction.  ZSM-5 is a mixture of SiO2 and Al2O3.  It has a unique pore 

structure and high surface area material.  However, MgO is an orthogonal crystal 

structure with Mg and O elements and has a small surface area.  Most of the Group 

VIII metals such as Fe, Ni, Ru, Rh and Pt are more catalytically active towards 

reforming reaction.  However, Rh not only exhibits high activity and stability, but 

also has a high resistance to the coke formation on the catalyst surface (Mark and 

Meier, 1997).  Chen et al.(1997)illustrated that Rh is the best promoter among other 

nobel for the Ni0.03 Mg0.97O.  Wang and Au (1997) suggested that high metal surface 

material is potentially to have a higher degree of metal dispersion.  In addition, Chin 

(2002) found that Rh metal loaded catalyst shows excellent reactivity and stability 

compared to Ni catalysts on ZSM-5 support.  Furthermore, the Rh metal loaded on 

MgO support exhibits extraordinary catalyst reactivity and stability (Wang and 

Ruckenstein, 2000).  Thus, the capability of Rh metal loaded on ZSM-5 and MgO 

support in CORM and combination reaction of CORM and POM are very interesting 

field to investigate. 

The development of mathematical model that represent the process can be 

used to study the process or reaction behaviour.  Nevertheless, traditional method of 

developing the mathematical model via kinetics study is cumbersome.  A new 

application on modelling such as empirical model and artificial neural networks 

model development can be employed.  Empirical model developed via experimental 

design techniques in order to interpret experimental data.  Artificial neural network is 

a new non-linear statistical technique inspired by models developed for explanation 

of human brain activity.  Even though, detailed mechanistic models are used much 

more often than empirical models or artificial neural network for interpretation of 

catalytic processes, experimental design and mathematical modelling techniques are 
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the mathematical tools normally used to optimize a process because they allow the 

gathering of maximum process information with reduced number of experiments 

(Larentis et al., 2001).

The hypotheses of this research are: 

1. combination reaction of CORM and POM shows better reactivity than 

CORM reaction itself. 

2. neural networks model approach gives smaller error than empirical 

model and be able to predict the process output although with limited 

data.

1.3 Research Objectives 

Computer technology such as experimental design and artificial neural 

network can be used to reduce time spent and experimental cost in research.  Thus, 

the objectives of this research are: 

1. to study the reactivity of Rh supported catalysts in CORM and 

combined CORM and POM reaction.  

2. to develop model based on experimental design and artificial 

neural network 

3. to apply neural network in predicting the catalyst performance in 

different reaction even with limited data available.  

1.4 Scope of Study 

The research focuses on modelling via different approaches in catalytic 

CORM in order to optimize the process conditions.  The catalyst is prepared via 

wetness incipient impregnation. Rhodium (Rh) metal is used on ZSM-5 and MgO 
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supports.  Catalyst testing is carried out in fixed bed 9.1 mm inner diameter and 30 

cm long vertical quartz tube reactor.  The effect of temperature, catalyst weight in 

100 ml/min of total flow rate and ratio of O2/CH4 are studied.  16 experiments are 

carried out according to the arrangement set by the design of experiment.  Three 

operating parameters are evaluated to reach the optimization point of methane 

conversion, hydrogen selectivity and H2/CO ratio.  The product of the combined 

CORM and POM is analyzed by TCD gas chromatography. 

Two mathematical models approach are developed to represent the process 

and predict the methane conversion, hydrogen selectivity and H2/CO ratio for best 

catalyst reactivity.  The second order polynomial empirical model is developed via 

STATISTICA v.6 software using Response Surface Methodology.  The normalized 

variables are employed to compare the relative importance of the model.  A feed 

forward neural network is developed as well in which neural networks toolbox from 

Matlab V.6.1 is used to model and simulate the process.  A network with one input 

layer, one or more hidden layers and an output layer consisting of nodes that 

interconnect the layers is composed.  Both models are compared and analyzed via 

ANOVA.

The CORM and POM reaction data with different catalysts application are 

used to test the ability of neural network to predict a few reactions in a network.  A 

feed forward neural networks is developed.  Three different networks are constructed 

namely; retraining NN, data combination NN and stacked NN.  Neural network 

toolbox from Matlab V 6.1 is used to model and simulate the process.  These three 

networks are compared and analyzed via ANOVA.   
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Besides employment of Design of Experiments, attempt to utilize Genetic 

Algorithm (GA) on reforming of methane process for modelling and optimization 

purposes should be done.  There is an interest to apply Genetic Algorithms which is 

well suited in the field of combinatorial catalysis to discover optimal catalyst 

compositions within a limited number of experiments ( Rodemerck et al., 2004). In 

addition, a hybrid process modelling and optimization of Neural Network and 

Genetic Algorithms may become appropriate in modelling process. (Nandi et. al.,

2003).

Many researchers usually neglect the thermal and pressure effects in the 

process while simulating the process.  Thus, simulation work should consider 

isothermal and non-isothermal operation in order to analyze the role of heat 

management in the process.  In addition, pressure drop should be considered to 

picture the real reforming process. 

For an economically viable and environmentally benign process, utilisation of 

methane and carbon dioxide from biomass degradation plant or incineration plant can 

be used as a reactant even though Natuna Oil Field has a special composition of 

natural gas composition in the world in which 70% and 30% of the composition are 

carbon dioxide and methane respectively.  However, H2SO4 in natural gas is still 

available even though in small amount.  Thus, separation H2SO4 is required. So, an 

integrated process from biomass degradation or incineration plant implementing a 

system that recycle the unreacted reactant is also necessary to provide an effective 

and efficient process. Therefore, more studies need to be done before scaling it up to 

pilot scale process. 
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