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ABSTRACT 
 

 

 

One of the exciting developments in material science today is the design and 
synthesis of polymer nanocomposites (PNC) containing electrically-conductive 
polymer and mesoporous MCM-41 that possess novel properties not exhibited by the 
individual organic and inorganic materials.  The physicochemical and conducting 
properties of two types of PNC namely, PEO/Li-MCM-41 and PANI/MCM-41 
prepared by melt and solution intercalation and in situ polymerisation methods have 
been investigated in this thesis.  The aim was to obtain a more detailed 
understanding of how the combination of polymers with the mesoporous 
MCM-41 is related to the conducting properties of the PNC.  Before PEO and 
PANI are combined with MCM-41, several modifications of MCM-41 have been 
done including ion exchange of MCM-41 with lithium chloride, silylation of MCM-
41 with trimethylchlorosilane (TMCS) and functionalization of MCM-41 with 
sulfonic acid.  The PNC obtained was characterized by X-ray diffraction (XRD), 
infrared (IR) spectroscopy, thermogravimetric analysis and chemical analysis, 
followed by 27Al, 7Li and 13C/CP MAS NMR spectroscopy.  It is confirmed that the 
structure of MCM-41 remains intact after combining with the polymers.  The results 
from the conductivity study have proven that the PNC possesses electrical properties.  
It is revealed that the conductivity of PANI/MCM-41 is very much higher than 
PEO/Li-MCM-41 since PANI is a conducting polymer whereas PEO is a polymer 
electrolyte.  The combination of PEO and MCM-41 was expected to increase 
the conductivity of PEO/Li-MCM-41 by intercalation of PEO inside the pores 
of MCM-41.  However, it is demonstrated that unmodified Li-MCM-41 exhibits 
conductivity in the same order of magnitude as the PEO/Li-MCM-41.  The NMR 
results suggested that the interfacial interactions occurring between the PEO and 
Li-Al-MCM-41 is insufficient to improve the conductivity of the PEO/Li-MCM-41 
nanocomposite.  On the other hand, PANI/MCM-41 nanocomposite shows an 
increase in thermal stability of conductivity compared to PANI, although its 
conductivity was lower in the presence of MCM-41.  
 

 

 

 

 

 

 

 



 

 

 
 

ABSTRAK 
 

 

 

 Antara pembangunan yang menarik dalam bidang sains bahan masa kini ialah 
rekabentuk dan sintesis nanokomposit polimer (PNC) yang mengandungi polimer 
mengkonduksi elektrik dan bahan mesoliang MCM-41 yang mempunyai sifat khas 
yang tidak dapat dimiliki bahan asal organik dan tak organik secara individu.  Sifat 
fizikokimia dan kekonduksian bagi dua jenis PNC seperti PEO/Li-MCM-41 dan 
PANI/MCM-41 yang telah disintesis menggunakan teknik interkalasi leburan dan 
larutan serta pempolimeran in situ telah dikaji dalam tesis ini.  Matlamat kajian ini 
adalah untuk memahami secara mendalam kombinasi antara polimer dan bahan 
mesoliang MCM-41 dan hubungannya dengan sifat kekonduksian.  Sebelum PEO 
dan PANI digabungkan dengan MCM-41, beberapa modifikasi telah dilakukan 
terhadap MCM-41 seperti penukaran ion dengan litium klorida, sililasi dengan 
trimetilklorosilana (TMCS) dan pemfungsian dengan asid sulfonik.  PNC telah 
dicirikan dengan menggunakan pembelauan sinar-X (XRD), spektroskopi inframerah 
(IR), analisis termogravimetri dan analisis kimia, diikuti dengan spektroskopi 27Al, 
7Li dan 13C/CP MAS NMR.  Struktur MCM-41 telah dipastikan tidak mengalami 
perubahan selepas bergabung dengan polimer tersebut.  Kajian kekonduksian telah 
menunjukkan bahawa PNC memiliki sifat kekonduksian elektrik.  Kekonduksian 
PANI/MCM-41 adalah jauh lebih tinggi berbanding PEO/MCM-41 disebabkan 
PANI adalah polimer mengkonduksi manakala PEO adalah polimer elektrolit.  
Kombinasi PEO dan MCM-41 secara interkalasi PEO di dalam liang MCM-41 
dijangkakan dapat meningkatkan kekonduksian nanokomposit polimer PEO/Li-
MCM-41.  Sebaliknya, dalam kajian ini Li-MCM-41 tanpa diubahsuai menunjukkan 
kekonduksian yang sama seperti PEO/Li-MCM-41.  Data NMR menunjukkan 
interaksi permukaan berlaku di antara PEO dan Li-MCM-41 tetapi ianya tidak 
mencukupi untuk meningkatkan kekonduksian PEO/Li-MCM-41.  Selain daripada 
itu, nanokomposit PANI/MCM-41 menunjukkan kestabilan terma kekonduksian 
yang meningkat berbanding PANI, begitu pun, kekonduksiannya menjadi lebih 
rendah dengan kehadiran MCM-41.  
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CHAPTER 1 
 

 

 

GENERAL INTRODUCTION 

 

 

 

1.1 Research Background 

 

 Composites are generally defined as materials which are made by physically 

combining two or more existing materials to produce a multiphase system.  The 

phase of the composites formed might differ from the starting material, depending on 

chemical interaction occurred [1].  There are many types of composites such as 

conventional microcomposites and nanocomposites.  Nanocomposites are 

composites in which the components are combined in at least one dimension either 

the length, width or thickness in the size ranges 1-100 nm.  Differing from the 

conventional microcomposite, nanocomposite is combination of two phases in which 

one of the materials has at least one dimension in the nanometer range (10-9 m) and 

gives possibility to synthesize nanostructured materials showing improved chemical 

and physical properties which are not exhibited as individual properties. 

 

 Recently, polymer-inorganic nanocomposite received wide attention in the 

field of materials science both in industrial and academia [2,3].  The most interesting 

is to synthesize intercalated polymers in inorganic materials such as layered silicates, 

mesoporous materials and zeolites.  Two major findings have stimulated the revival 

of interest in these materials; first, the report from Toyota research group of a Nylon-

6/montmorillonite (MMT), for which very small amounts of layered silicate loading 

resulted in pronounced improvements of thermal and mechanical properties [2]; and 

second the observation from Vaia et al., that it is possible to melt-mix polymer with 
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layered silicates without use of organic solvent [3].  Today, efforts are being 

conducted globally, using almost all types of polymer matrices. 

 

 In general, organic polymer and inorganic materials have contrasting 

properties.  Organic polymers are hydrophobic, flexible, tough, and are easy to 

process, but they can also relatively easily damaged either chemically or 

mechanically.  In contrast, the inorganic materials are mostly hydrophilic, typically 

much harder and have good chemical stability but are also brittle and difficult to 

process.  Many properties including strength, conductivity and chemical stability are 

dramatically improved after combining the polymer with inorganic materials [1,2,3].  

These examples clearly illustrate some of the characteristic of polymer-inorganic 

nanocomposites.   

 

 There are many approaches that have been used by researchers to synthesize 

intercalated polymer-inorganic composites.  The most important aspect in the 

preparation of these composites is to increase the interaction between polymer and 

inorganic materials.  Different techniques have been used to synthesize intercalated 

polymer-inorganic composites such as melt intercalation technique, solution 

intercalation technique and in situ polymerization [2].  Besides that, in order to 

prepare homogeneous and intercalated composites of organic polymer and inorganic 

materials, many researchers have attempted to change chemical properties of these 

materials in order to increase similarity between them.  For example, hydrophobicity 

of inorganic materials has been increased in order to make organic polymers easier to 

intercalate in the inorganic materials.  

 

 

 

1.2 Research Objectives 

 

 In this thesis we wish to investigate the physicochemical properties of 

electrically-conductive polymer-mesoporous MCM-41 nanocomposite.  MCM-41 

was chosen as the inorganic host because of its extremely high surface area which is 

more than 1000 m2/g and large pore size with the diameter between 15 and 100 Å.  
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Polyethylene oxide (PEO), an electrolyte polymer and polyaniline (PANI), a 

conducting polymer have been used as source of polymers. 

 

 In this study, polymer-mesoporous material nanocomposite is synthesized by 

means of intercalation techniques.  It is important to note that there are two possible 

structures of nanocomposites which consist of intercalated nanocomposites and 

conventional nanocomposites.  Polymer chain is intercalated in the pores of MCM-

41 in intercalated nanocomposites, meanwhile, the polymers are located on the 

external surface of MCM-41 in conventional nanocomposites.  For a maximum 

interfacial interaction between polymer and mesoporous MCM-41, conventional 

nanocomposites should be minimized.  One expects that increase interfacial 

interaction efficiency can increase the conductivity properties of the nanocomposite.  

However before this objective can be achieved, basic knowledge about that structure-

property of the nanocomposite is required.  Only with this knowledge, polymer-

MCM-41 can be designed in order to obtain products with the desired properties.  

This defines the objective of the present investigations: 

 

 “The primary aim of this investigation is to obtain a more detailed 

understanding of how the combination of polymers with mesoporous MCM-41 

is related to the conducting properties.” 

 

 

 

1.3 Scope of Thesis 

 

This thesis deals with the study of structure-conducting properties of the 

combination of polyethylene oxide (PEO) and polyaniline (PANI) with mesoporous 

MCM-41 prepared by melt and solution intercalation techniques.  These two types of 

polymers have attracted world-wide academic and industrial attention during the last 

decade.  Typically, these materials show promising performances in the practical 

applications of electrically-conductive polymer composites, i.e. for a solid polymer 

fuel cell.  Despite the extensive research in this field, various aspects are not clarified 

yet.  For instance, the interfacial interaction of polymer-mesoporous silica is much 

debated as well as the various described preparation procedures.  Chapter 2 concerns 



 4

with the extensive characterization and conducting properties of various kinds of 

PEO/Li-MCM-41 nanocomposites prepared by melt and solution intercalation 

techniques. X-ray diffraction (XRD), Fourier transform infrared spectroscopy 

(FTIR), thermogravimetric analysis (TGA), solid state MAS NMR and conductivity 

measurement were used to characterize these polymer nanocomposites (PNC) in an 

attempt to correlate the structure and conductivity.  In Chapter 3, PANI/MCM-41 

nanocomposites have been prepared by in situ polymerization technique.  Thermal 

stability of conductivity of the polymer nanocomposites (PNC) was studied in order 

to know the effect of MCM-41 in PANI/MCM-41 nanocomposites.  Finally, 

concluding remarks will be given in Chapter 4. 
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MCM-41, as analyzed by solid-state NMR, is relatively high.  This causes the 

retardation of the mobility of Li+ ions in the PNC.  It can be concluded that the 

interactions that occur in the nanocomposites are insufficient to improve conductivity 

of the PEO/Li-MCM-41 nanocomposites.   

 

PANI/MCM-41 nanocomposite was obtained by in situ polymerization 

method. Before the polymerization, MCM-41 was functionalized with sulfonic acid.  

It is revealed that although conductivity measurement shows that conductivity of 

PANI was reduced after addition of MCM-41, its thermal stability of conductivity 

was significantly enhanced.  As a global guide for future actions, this work opens 

new perspectives for the use of PANI/MCM-41 nanocomposite as a conducting 

material at high temperature.  
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