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ABSTRACT 

 

 

 

Crosstalk, signal attenuation, and nonblocking type are considered the most 

critical issues that limit the switch density in photonic switches. The research is a 

theoretical study to develop high-density photonic switch architectures with reduced 

crosstalk and attenuation and improved nonblocking performance. Four photonic 

switching networks have been proposed based on lithium niobate (LiNbO3) 

directional couplers. They are called NWN, NSN, SCS, and NMN networks. Ideas 

from the theory of circuit switching have been considered and space dilation 

techniques have been adopted using new approaches. The properties of the proposed 

networks have been examined and formulated. Comparison with other well-known 

designs has also been presented and analyzed. All proposed networks suit unicast 

connections with the NMN network also capable of multicasting. The NWN is 

nonblocking in the wide sense while the others are strictly nonblocking. The 

optimum switch dimension for the proposed networks was found to be 16. With this 

size the insertion loss of the NWN, NSN, SCS, and NMN networks is 17, 17, 15, and 

21 dB, respectively. This signal attenuation is lower than the constraint of 30 dB 

beyond which optical amplifiers may be needed. The respective signal-to-noise ratio 

with this size is 11.549, 11.549, 20, and 13.979 dB, which is also higher than the 11 

dB required for achieving a good bit error rate performance. The penalty to achieve 

these results is more hardware complexity that is reflected by the number of couplers 

used and the number of waveguide crossovers required. Waveguide crossovers can, 

however, be reduced if some stages or subnetworks of the switch are fabricated on 

separate substrates. 
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ABSTRAK 

 

 

Cakapsilang, pelemahan isyarat terhantar dan ciri-ciri tak terhalang adalah 

isu-isu yang besar yang perlu diambilkira apabila merekabentuk rangkaian pensuisan 

fotonik. Penyelidikan ini adalah berkaitan kajian tentang teori struktur binaan untuk 

mengurangkan cakapsilang dan pelemahan serta memperbaiki kebolehupayaan tak 

terhalang. Empat rangkaian pensuisan fotonik telah direkabentuk berasaskan 

pengganding berarah lithium niobate (LiNbO3). Mereka dinamakan sebagai 

rangkaian NWN, NSN, SCS, dan NMN. Idea daripada teori pensuisan litar dan 

kaedah pengembangan baru telah digunakan. Ciri-ciri rangkaian yang direkabentuk 

telah diuji dan dirumuskan. Perbandingan keputusan dengan rekabentuk yang telah 

dikenali dan analisa ciri-cirinya telah dipersembahkan. Semua rangkaian yang 

dicadangkan memenuhi penyambungan ekasiar. Rangkaian NMN juga memenuhi 

penyambungan jenis berbilang siar. Rangkaian NWN adalah tidak terhalang dalam 

erti kata deria lebar, manakala rangkaian yang lain langsung tidak terhalang. Ukuran 

optima suis bagi rangkaian yang telah dicadangkan didapati sebagai 16. dengan saiz 

ini kehilangan sisipan bagi rangkaian NWN dan NSN adalah 17 dB, SCS adalah 15 

dB, manakala NMN adalah 21 dB. Kehilangan sisipan ini adalah lebih rendah 

daripada had andaian halangan 30 dB, yang mana bagi kehilangan sisipan yang lebih 

tinggi, penguat adalah diperlukan. Nisbah isyarat-hingar pada saiz ini bagi rangkaian 

NWN dan NSN adalah 11.549 dB, SCS adalah 20 dB, manakala NMN adalah 13.979 

dB. Ini adalah lebih tinggi dari 11 dB yang diperlukan untuk mencapai kadar bit 

kesilapan yang mempunyai kebolehupayaan yang lebih baik. Namun, perkakas keras 

yang lebih kompleks diperlukan untuk mencapai keputusan yang telah 

dipersembahkan. Ini dapat dilihat daripada bilangan pengganding dan pandu 

gelombang bersilang yang diperlukan. Persilangan pandu gelombang akan dapat 

dikurangkan jika fabricasi aras atau sub rangkaran bagi suis dilakuhan di atas bahan 

substrat yang berlainan.  
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CHAPTER I 

 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 
 

The increasing number of users of the Internet has pushed the growing 

demand for more bandwidth. Multimedia traffic, which combines the voice, data, and 

video, consumes large amount of bandwidth. There is not enough capacity of 

transmission in today’s networks to support the exponential growth in user’s traffic. 

The traditional copper wire, even coaxial cable, is limited by electronic speeds to a 

few Gbps. Radio has a total channel bandwidth of 25 GHz which is still insufficient 

[1]. In contrast fiber can offer a huge bandwidth of nearly 50 Tbps. Optical networks 

are emerging as a replacement of traditional copper wire networks. Optical networks 

using optical switches instead of electronic devices along the signal path are also 

emerging from laboratories into field trials. 

 

In communication networks, switches form an important part that provides a 

facility for moving data from node to node until they reach their destinations. The 

basic function of a switch is to forward the data arriving at its inputs to the 

corresponding outputs while supporting control and management functions. 

 

Within recent years there has been a significant amount of interest in 

applying the new and developing photonic technology in telecommunications 

switching networks [1]. As the transmission plant has converted its facilities to fiber, 

there is an economic interest in completing the optical path through the switching 
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network to the terminal facilities without requiring optical-to-electrical (O/E) and 

electrical-to-optical (E/O) conversions. The subject of this thesis is optical switching, 

which will be a crucial technology to avoid O/E and E/O in these networks. Optical 

switching and its challenging issues are covered in the first two sections of this 

chapter. In the following sections the problem formulation, the research scope, the 

contribution and the organization of the thesis are introduced. 

 

 

 

1.2 Optical Switching  

 

As its name implies, optical switching involves the switching of optical 

signals rather than electrical signals using optical switching elements or components. 

The advantages of this technology include: decreased switching time, less cross-talk 

and interference, increased reliability, increased fault-tolerance, enhanced 

transmission capacity, economical broadband transport network construction, and 

flexible service provisioning [2]. 

 

Most of these advantages stem from the fundamental properties of light. 

Light is composed of photons, which are neutral bosons unaffected by mutual 

interactions. Thus, multiple beams of photons with different frequencies can cross 

paths without significant interference. Only the switching speed and capacitance of 

transmitters and receivers limit the speed of optical links [3]. These characteristics 

are highly desirable in developing high-capacity, flexible communication systems. 

However, using optical frequencies which is between 100 and 1000 THz, still has 

some difficulties, especially with optical component design that requires its own 

technology because of the extremely small wavelength that need micro-metric 

manipulations [4]. 

 

Optical switches can be implemented with either free-space optics or guided 

wave technology. Free-space optical switches utilize beam splitters, mirrors, and 

lenses while guided wave switches use structures (fibers or waveguides) within 

which electromagnetic waves are guided for propagation [3]. In this thesis we 

consider optical implementation with guided wave technology. Two types of guided 
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wave optical switching system can be identified. The first is a hybrid approach in 

which optical signals are switched but the switches are controlled electronically 

implying that the routing must be carried out electronically. The speed of electronic 

switch control signals can be much less than the bit rate of the optical signals being 

switched and is limited by factors such as clock skew and RC time constant [3]. This 

type of switching is usually implemented with electronically controlled optical 

switching elements (SEs) such as the titanium diffused lithium niobate (Ti:LiNbO3) 

directional couplers. They are described in chapter II.  

 

The second approach is all-optical switching in which, not only the signals 

switched are optical, but the switches are controlled optically too. The processing 

necessary to calculate the switch setting, is also optical. This overcomes the speed 

mismatch problems associated with the hybrid approach and allows the potential for 

extremely high bit rates. However, such systems are not likely to become practical in 

the near future [5]; hence, only the hybrid approach was chosen here because it 

represents a mature technology. 

 

 

 

1.3 Optical Switching System Issues 

 

Although optical switches based on directional couplers hold great promises 

and have demonstrated advantages over their electronic counterparts they also 

introduce new challenges such as how to deal with the unique problem of crosstalk in 

the SEs and how to minimize the number of waveguide crossovers [5]. These issues 

add to the common challenges of switching systems design which include the system 

architecture, unicast/multicast capability, blocking/nonblocking property, control 

complexity, number of SEs, number of drivers, system attenuation, and system signal 

to noise ratio (SNR). These issues are discussed in detail later in the thesis but we 

highlight them briefly in the following subsections. 
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1.3.1 System Architecture 

 

A large photonic switch needs a good switching architecture to interconnect 

basic switching elements. To minimise cost and provide good switching 

performance, the architecture needs to minimise the number of crosspoints, the 

number of crossovers, the power loss, the crosstalk, and the internal blocking. 

Several architectures have been proposed for optical switching [3, 8-15]. These 

architectures have been constructed using various optical switching elements 

including directional coupler switches. In addition, many of the classical switching 

architectures found in the electronic and communication domains could be 

implemented with photonic switching elements in the optical domain [17]. These 

architectures include Clos, Benes, and crossbar, to name a few. 

 

 

 

1.3.2 Unicast/Multicast Capability 

 

Two types of switching system architectures can be defined, unicast and 

multicast. In the unicast (point-to-point) architecture, one input goes to one and only 

one output channel. In the multicast (point-to-many points) architecture, every output 

is able to listen to any input, even if other output channels are listening to the same 

input [12, 17]. Multicast architectures typically have larger attenuations than unicast 

architectures because the input optical power must be divided among several output 

channels. In addition to directional couplers, other devices such as splitters and 

combiners are needed for multicast architectures. 

 

 

 

1.3.3 Blocking/Nonblocking Property 

 

For a given switching architecture, there might be no route for a required 

connection even when the destination output port is idle. This is called internal 

blocking. The internal blocking probability should be reduced to zero to have a 

nonblocking switching system. There are three conditions of nonblocking. A 
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switching network is rearrangeably nonblocking if all permutations are possible but 

some existing connections may need to be torn down and rearranged to allow the 

new connection to be added [6]. A switching network is wide sense nonblocking if an 

algorithm exists for setting up the paths in a way that guarantees that any future 

connection can always be made without requiring rearrangement of existing paths. A 

switching network is strictly nonblocking if any input to any unused output 

connection can always be made without rearrangement regardless of the connecting 

algorithm used [6, 17]. 

 

 

 

1.3.4 Control Complexity 

 

As the connecting algorithms become more complex, they require more 

computational and set-up time. The trend for algorithmic complexity generally 

moves in the opposite direction where no algorithms are required for strictly 

nonblocking architectures and significant control and computational complexity are 

needed for the rearrangeably nonblocking architectures [15]. 

 

 

 

1.3.5 Number of Switching Elements 

 

The total number of SEs (or crosspoints) directly reflects the system design 

cost. Various architectures require different numbers of SEs for the same switch 

dimensionality, NxN, for example. The number of SEs along the signal path (i.e. the 

number of stages crossed) determines how the signal will be attenuated because of 

the loss these SEs will insert in the path [5]. Thus, the total number of SEs and the 

number of stages in a system should be as minimum as possible. 
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1.3.6 Number of Drivers 

 

Most of the architectures require an electronic driver for each directional 

coupler. Some of the architectures can, however, tie several directional couplers to 

the same driver circuit. The number of drivers becomes a problem if the cost, power 

dissipation, or board real estate associated with each driver is large [32]. 

 

 

 

1.3.7 System Attenuation 

 

The number of directional couplers, crossovers, bends, substrates and fibers 

that a given signal path passes through determines the signal attenuation [7]. Signal 

attenuation can be compensated for with the addition of optical amplifiers, repeaters 

or regenerators but this increases the system cost and generates additional noise. It is 

therefore better to keep the signal attenuation to the minimum. 

 

 

 

1.3.8 System Signal-to-Noise Ratio 

 

Every directional coupler and crossover that the signal path passes through 

leaks some optical power (noise) into the desired channel. This undesired noise 

power or crosstalk should be reduced. In other words, the SNR should be as high as 

possible for a good bit-error-rate (BER) performance. Here the worst-case SNR is the 

important parameter [8]. The differential SNR, which is the ratio of the best-case 

SNR to the worst-case SNR, is usually not relevant. 

 

 

 

1.3.9 System Crossovers 

 

Much architecture requires the signal paths to cross through one another on 

the optical substrate between the SEs in order to embed a specific topology. This 
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crossover between waveguides in integrated optics is more costly than its counterpart 

between two wires in VLSI. Although these passive integrated optical waveguide 

crossovers appear feasible, they can cause crosstalk, signal attenuation, and increase 

the manufacturing complexity [9].  Crossovers should therefore be minimized when 

designing large directional coupler based photonic switching systems. 

 

 

  

1.4 Problem Formulation 

 

Several switch architectures have been reported for optical switches 

fabricated on Ti:LiNbO3 directional couplers [7-17]. All proposals considered the 

crosstalk, attenuation, and nonblocking type as the most critical issues that limit the 

switch density and try to improve one or more of them at the expense of more 

hardware. Each issue may single out a different architecture as being better than 

others. However, the overall optimal architecture depends on the relative weighting a 

designer would assign to the various issues.  Designing directional-coupler-based 

high-density nonblocking optical switching systems with improved crosstalk, 

nonblocking, and attenuation properties is still a room for research. The challenge is 

to develop new switch architectures and to investigate the tradeoffs, which can be 

made between the performance issues. 

 

 

 

1.5 Objectives and Scope 

 

The objective of this research is to propose and develop switch architectures 

for optical switching systems that are nonblocking, have low attenuation, and high 

SNR (i.e. low crosstalk). Thus the thesis is a theoretical study of optical switching 

architectures that addresses the nonblocking, SNR, and attenuation issues and 

investigate how high the density of these switches can reach. The physical 

implementation of the proposed switch architectures is out of the scope of this work.  
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1.6 Research Methodology 

 

This thesis proposes a class of optical switching systems for unicast 

communication and one switching system for multicast communication. First, 

different existing proposals will be reviewed. Second, dilated networks will be 

studied in more detail and their ability to embed different topologies and to realize 

connection permutations will be examined. Then algorithms for establishing an 

arbitrary set of connections will be studied. Based on the finding, new optical 

switching system models were designed with some necessary modifications to 

overcome their associated drawbacks. The space dilation technique was applied for 

unicast systems using new approaches. For multicast systems, however, splitters and 

combiners were used to ensure the multicasting property. To measure the 

performance the relevant characteristics are defined and compared with the existing 

switching systems. The mathematical expressions used are derived based on the 

methods and assumptions described in the corresponding references [10, 18]. The 

research methodology is a theoretical approach that will follow these steps: 

 

1. Existing design approaches will be studied carefully: 

The study will cover the network design proposals and their mathematical models 

as well. 

2. The definition of the proposed photonic switching system: 

Here, the definition necessary to describe the topology of the proposed system 

will be stated. 

3. The derivation of the proposed architecture properties: 

This step addresses the characteristics of the system model. 

4. Performance analysis will be made for the proposed system: 

The analysis will include nonblocking property, SEs count, SNR, attenuation, 

and crossover count. 

5. Based on the analysis, the proposed systems will be compared with other 

well-known proposals in the literature.  
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1.7 Contributions Of The Thesis  

 

 The work in this research addressed the design issues of photonic switching 

networks using optical space-division switching networks based on the titanium 

diffused lithium niobate directional couplers. It focused on the improvement of 

nonblocking type, the reduction of signal losses, and the increase of SNR.Based on 

the suggested solutions we provided methods to design high-density nonblocking 

optical networks. 

 

 Three new switch architectures for unicast connection and one for multicast 

connection have been proposed for photonic switching networks. Their design ideas 

have been presented and their properties have been derived and formulated. Some 

characteristics of the proposed networks have been analyzed and compared with 

other well-known photonic switching network topologies.  

 

For the wide-sense nonblocking network, the NWN, two new preservable 

states that guarantee any future connection without bringing the basic elements of the 

network into a forbidden state have been presented. The construction of the NWN 

network from these elements has then been explained. 

 

Two new approaches for applying space dilation concept on lightwave 

networks have been presented and utilized for designing two basic elements. Based 

on these elements two new architectures for photonic switching networks have been 

proposed. They are the strictly nonblocking network, the NSN, and the single-

crosstalk-stage network, the SCS. Both architectures are shown to be nonblocking in 

the strict-sense. The SCS network has the best SNR among the proposed networks.  

 

For multicast connections the NMN network is proposed. The NMN network 

can realize all possible connection patterns needed for multicasting including the one 

in which signals can be blocked from reaching the outputs even if they have already 

been lunched at the inputs of the network.  
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1.8 Thesis Organization 

 

The thesis is organized as follows; chapter two briefly summarizes the 

important blocks in a communication system and reviews optical networks. It also 

describes some candidate devices to implement the optical switching system. Chapter 

three surveys previous work proposed in the literature for nonblocking high density 

optical space switch architectures and discusses their advantages and disadvantages. 

In chapter four an alternative architecture for wide sense nonblocking photonic 

switching is proposed. In chapter five and chapter six two strictly nonblocking 

photonic switches are introduced with the latter specifically designed to maintain a 

constant SNR of the switch regardless of its size. In chapter seven a multicast 

photonic switch is proposed. The design idea for each proposed switch is presented 

and explained. The properties of these designs are derived and the tradeoffs involved 

are addressed. Comparisons between the proposed networks and those surveyed in 

chapter three are made and discussed in chapter eight. This chapter also includes 

design optimization. Chapter nine concludes the thesis and recommends some 

possible rooms for future research based on the ideas presented and the studies 

carried on this thesis.  
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