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ABSTRACT

This study investigated the enantioselective esterification of (R,S)-1-
phenylethanol in isooctane.  Lauric acid was used as acyl donor in the acyl transfer
reaction.  Six commercial immobilized lipases; Lipase PS-C, Lipase Sol-Gel-Ak,
Chirazyme L2, c.-f., C2, lyo, Chirazyme L2, c.-f., C3, lyo, ChiroCLEC-CR and
ChiroCLEC-PC were screened for their resolution activities.  Lipases from
Pseudomanas cepacia (ChiroCLEC-PC) and Candida antarctica Lipase B
(Chirazyme L2, c.-f., C3, lyo) showed higher resolution activities and therefore used
in the subsequent study.  The kinetic studies were carried out in a batch stirred tank
reactor.  The enzyme activity and enantioselectivity were determined by varying the
enzyme loadings, substrate concentrations from 25 - 250 mM, chain length of fatty
acids from C12 – C18, organic solvents with logP value from 1.4 - 4.5, water
contents from 0 – 0.5 %v/v and reaction temperatures from 25 – 50 oC.  Both
enzymes showed the highest activity at the ratio of alcohol to acid 1:3 in isooctane at
35 oC.  Both enzymes are also highly selective toward the (R)-enantiomer of 1-
phenylethanol with the enantioselectivity value, E > 200.  The resolution achieved
enantiomeric excess of substrate, ees up to 97 % when molecular sieve 3Å was added
into the reaction mixture.  A series of reaction progress curves were used to develop
the kinetic model using MATLAB.  The rate equation was derived based on the
principle of mass action law with steady state assumption.  The reaction follows
Ping-Pong Bi-Bi mechanism with the inhibition of substrates and water.  A similar
reaction was carried out in a recirculated packed bed reactor.  The performance of the
enzymes was reduced in this reactor.  The decrease was mainly due to poor bed
permeability and compaction.  A decrease of about 38 – 58 % in term of volumetric
productivity was observed as compared to batch stirred tank reactor.  However, the
productivity of Chirazyme L2, c.-f., C3, lyo (2.74 g/day/g biocatalyst) was much
higher than the productivity obtained in the synthesis of (R)-monobenzoyl glycerol
(0.94 g/day/g biocatalyst) using the same enzyme in packed bed reactor reported by
Xu et al. [246]. The enzymes performance also also reduced in the five fold scaled
up reactor compared to the small scale recirculated packed bed reactor.  The
problems of channelling effect and immobilized enzyme particles compaction
exacerbated the enzymes performance in the scaled up of recirculated packed bed
reactor.
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ABSTRAK

Kajian ini menyelidik tindakbalas pengesteran terhadap (R,S)-1-feniletanol secara
enantioselektif dalam isooktana.  Asid laurik digunakan sebagai penderma asil dalam
tindakbalas perpindahan asil.  Enam jenis lipase tersekatgerak komersil seperti Lipase PS-C,
Lipase Sol-Gel-Ak, Chirazyme L2, c.-f., C2, lyo, Chirazyme L2, c.-f., C3, lyo, ChiroCLEC-
CR and ChiroCLEC-PC disaring kesesuaiannya dalam resolusi ini.  Di antara enzim ini,
lipase daripada Pseudomanas cepacia (ChiroCLEC-PC) dan Candida antarctica Lipase B
(Chirazyme L2, c.-f., C3, lyo) digunakan dalam kajian seterusnya.  Kajian kinetik dijalankan
dalam satu reaktor berkelompok.  Aktiviti dan enantiopilihan enzim ditentukan dengan
mengubah nilai kuantiti enzim, kepekatan substrak dari 25 – 250 mM, kepanjangan rantai
karbon asid lemak dari C12 – C18, pelarut organik bernilai logP dari 1.4 – 4.5, kandungan
air dari 0 – 0.5 %v/v dan suhu tindakbalas dari 25 – 50 oC.  Kedua-dua enzim ini
menunjukkan aktiviti yang tertinggi dalam nisbah alkohol kepada asid, 1:3 dalam isooktana
pada 35 oC.  Enzim-enzim tersebut sangat memilih terhadap (R)-enantiomer daripada 1-
feniletanol dengan nilai enantiopilihan, E > 200.  Resolusi ini mencapai enantiomerik
lebihan substrak, ees sehingga 97 % apabila penapis molekul 3Å ditambahkan dalam larutan
tindakbalas.  Satu siri lengkuk perkembangan tindakbalas digunakan untuk membangunkan
model kinetik menggunakan MATLAB.  Persamaan kadar diterbitkan berdasarkan prinsip
hukum tindakan jisim dengan andaian keadaan mantap.  Tindakbalas ini mengikuti
mekanisme Ping-Pong Bi-Bi dengan rencatan kedua-dua substrak dan air.  Tindakbalas yang
sama dijalankan dalam satu reaktor lapisan terpadat jenis edaran semula.  Pencapaian enzim
menurun dalam reaktor itu.  Penurunan ini terutamanya disebabkan oleh masalah ketelapan
dan kemampatan enzim dalam turus.  Penurunan sebanyak 38 – 58 % produktiviti isipadu
berlaku berbanding dengan reaktor berkelompok.  Walaubagaimanapun, produktiviti bagi
Chirazyme L2, c.-f., C3, lyo (2.74 g/hari/g biomangkin) adalah jauh lebih tinggi daripada
produktiviti yang diperolehi oleh Xu et al. [246] dalam sintesis (R)-monobenzoil gliserol
(0.94 g/hari/g biomangkin) menggunakan enzim yang sama dalam reaktor lapisan terpadat.
Prestasi enzim juga menurun dalam reaktor yang dibesarkan skalanya sebanyak lima kali
ganda berbanding dengan reaktor bersaiz kecil.  Masalah kesan saluran dan pemadatan zarah
enzim tersekatgerak mengurangkan prestasi enzim dalam reaktor lapisan terpadat jenis
edaran semula yang diperbesarkan skalanya.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to the Overall Study

The development of chirotechnology is currently getting much attention,

especially from pharmaceutical and fine chemical industries.  This ever-increasing

trend of utilizing enzyme chirality in biotransformation is mainly due to the stability

and selectivity of enzymes [1,2].

Enzymes, especially lipases are relatively stable in organic media.  Although

the idea of enzyme working in nonaqueous system media goes against the

conventional practice, the reaction schemes have been confirmed by several

researches over the past few years [2,3,4,5,6].  Furthermore, the performance of

lipases is much better in organic solvents than in aqueous media [7].  Many organic

substances such as fatty acids and lipids are also well dissolved in organic solvents.

The reactions involving these organic substances are difficult to carry out in aqueous

media.

In more recent years, several studies showed that enzyme selectivity,

especially enantioselectivity could be further enhanced in organic media [8].  This

finding along with the high market requirement for enantiopure chiral compounds

has intensified the study on the enantioselectivity of enzymes.

The enantioselectivity of enzymes is used to prepare enantiomerically

enriched compounds.  Among the enzymatic methods, kinetic resolution is the
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simplest and the most economical approach [9].  The method is based on the

difference in the transformation rate of one enantiomer over the other.  The

theoretical yield of the transformation is 50 %.

Kinetic resolution is usually used to prepare chiral alcohols from racemic

compounds.  This is because chiral alcohols are versatile and important synthons for

the preparation of complex chemical substances.  The resolution is carried out either

via esterification or transesterification.  Esterification requires an acid, whereas

transesterification requires an ester as acyl donor in the acyl transfer reaction.  The

selection of a suitable acyl donor is very important in the resolution.  It enhances not

only the reaction rate, but also enzyme enantioselectivity.

Many researches have used vinyl ester as acyl donor [9,10,11,12,13] in the

resolution.  This activated ester is more reactive and makes the reaction irreversible.

However, the liberated by-product, acetaldehyde may inactivate the enzymes.

The use of conventional acyl donor such as long chain fatty acid would not

create such a problem.  Long chain fatty acids are the natural substances of lipases.

The only by-product is water in the esterification reaction.  Water may promote the

reverse reaction toward hydrolysis direction.  However, a proper control of water

activity would reduce the problem.  Furthermore, a small amount of water is required

for enzyme activation.  Therefore, enzyme could maintain its active conformation

throughout the reaction.

A comparable result was obtained when lauric acid was used as acyl donor in

the resolution of (R,S)-1-phenylethanol.  The resolution could achieve the

enantiomeric excess of substrate up to 97 % if molecular sieve 3Å was added into the

reaction solution.  The high performance of fatty acid as acyl donor in the secondary

alcohol resolution has also been reported by several researchers [14,15,16,17,18].

The results are comparable with the result obtained when the other types of acyl

donor such as vinyl acetate [9,10,11,13] and anhydride [19,20] were used in the

resolution.
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The precise mechanism involves in the lipase-catalyzed reaction is still

unclear.  However, the enantiopreference of enzyme can be recognized by substrate

mapping using Kazlauskas rule [21].  For example, (R,S)-1-phenylethanol has a large

phenyl group and a small methyl group in its molecular structure.  The compound

has a significant difference in the size of the substituents. Therefore, it can be

resolved efficiently using high enantioselectivity of lipases.

In this study, the efficiency of lipases in the resolution was determined by

kinetic analysis.  Kinetic studies were carried out using the data obtained from batch

stirred tank reactor.  The concentration of substrates was varied at the fixed reaction

conditions.

Similar reaction was also carried out in a recirculated packed bed reactor.

The performance of the enzymes was compared in both batch stirred tank reactor and

recirculated packed bed reactor.  The enzyme performance decreased in term of

initial reaction rate, productivity and equilibrium time in recirculated packed bed

reactor.  The reactor was then scaled up for the resolution.

A series of reaction progress curves at different substrate concentrations was

used to develop a kinetic model.  The mathematical model was written into program

file using MATLAB.  The mechanism of the resolution was Ping-Pong Bi-Bi

mechanism with the inhibition of substrates and water.

1.2 Objective and Scopes of the Study

The objective of this research was to study an enzymatic resolution of (R,S)-

1-phenylethanol via enantioselective esterification with lauric acid catalyzed by

immobilized lipases in isooctane in a recirculated packed bed reactor.

In the preliminary study, the resolution reaction was carried out in a batch

stirred tank reactor.  Kinetic studies were carried out by varying enzymes and

substrates concentration at the fixed reaction conditions.  The other parameters such
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as chain length of fatty acid, organic solvent, reaction temperature, water content and

glycerol effect were also investigated in order to understand the behaviour of the

enzymes.  A kinetic model was developed using a series of reaction progress curves

by MATLAB.  This kinetic study is essential to obtain the mechanistic information

of enzyme reaction.

The similar reactions were carried out in a recirculated packed bed reactor.

The performance of enzymes in the reactor was investigated and compared with the

batch stirred tank reactor.  The recirculated packed bed reactor was then scaled-up to

the preparative scale.  The performance of enzymes in the resolution was also

compared between the scaled up and the small scale recirculated packed bed reactor.

1.3 Identification of Research Problem

The chemical method for the preparation of optically active 1-phenylethanol

requires heavy metal catalyst, namely Ruthenium (II) complexes and lithium

aluminium hydride complexes in the asymmetric reduction of acetophenone [22,23].

In addition to the negative impact on the environment, this method also unable to

produce chiral 1-phenylethanol with sufficient optical purity (48 % eep) compared to

the enzymatic approach.

Although enzyme aminoacylases [24,25] and NADH-dependent

phenylacetaldehyde reductases [26] had successfully been used, lipases are still

considered as the most suitable enzyme for preparing enantiomerically pure 1-

phenylethanol.  Lipases, especially from the genera of Pseudomonas can produce 1-

phenylethanol with high enantiomeric excess, >99 % [10,12,13].  Lipase-catalyzed

reaction could be carried out in a wide variety of reaction conditions.  They require

no cofactor and readily available at low cost.

The asymmetric reduction of prochiral ketones and the enantioselective

oxidation of single enantiomer are another two possible microbial methods of chiral

alcohol preparations [27].  The yeast-mediated reduction required the regeneration of
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coenzyme NAD(P)H and hence energy sources must be added to the system.

Furthermore, only about 10 % of acetophenone was converted to 1-phenylethanol as

catalyzed by yeast cells [27].  On the other hand, the enantioselective oxidation

required an oxygen sources for the reaction.  The reaction could produce (R)-1-

phenylethanol with sufficient optical purity (> 90%) only after 80 hours of

continuous production.

Most of the studies on the enantioselective resolution of racemic secondary

alcohols are focused on aliphatic secondary alcohols such as 2-octanol

[28,29,30,31,32,33,34,35] and terpenic alcohol especially menthol

[6,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51].  Much less study is

concentrated on sterically aromatic secondary alcohol such as 1-phenylethanol

[9,10,11,13].  Therefore, the steric restriction of enzyme active site is rarely studied.

The majority of reactions involved in the resolution are transesterification.

Vinyl acetate was used as acyl donor [9,10,11,12,13,52,53].  Even though vinyl

acetate is more reactive, the reaction can produce acetaldehyde as by-product.  This

volatile acetaldehyde has been proven may cause enzyme deactivation, especially

when lipases from Candida rugosa and Geotrichum candidum were used [54].

However, only a few papers studied on the enantioselective esterification of 1-

phenylethanol using lauric acid as acyl donor [14,15,16,18].

Until now, a relatively less effort has been spent on the development of

bioreactor for enzymatic reaction in organic media.  Many studies were focused on

small scale and in batch mode.  The scale-up from a small laboratory scale to a

preparative scale needs intensive studies on the underlying reaction and transport

processes.  Therefore, a quantitative understanding of the reaction and enzyme

reactor is necessary for preparative scaling up of the packed bed reactor.
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1.4 Importance of the Study

The importance of this study, primary lies on the premise that there is an

advantage in producing natural products from natural sources using enzymatic

method.  Product that is produced from enzymatic reaction is considered natural and

is perceived to have better quality, thereby enhancing its economic value [55,56,57].

The substrates used in this chiral esterification are derived from plants.  The first

substrate, 1-phenylethanol is an essential oil from Humulus lupulus [58], Tagetes

minuta, Tagetes erecta and Tagetes patula [59], olive oil [60] and chestnut honey

[61].  The second substrate, lauric acid is a middle chain fatty acid that can be

obtained from palm kernel oil (40-52%) and coconut oil (44-52%).

The aim of this study is to diversify the application of lauric acid.  Instead of

using toxic acyl donor such as vinyl acetate and anhydride, lauric acid was used to

resolve the racemic alcohol into its enantiomers.  High reaction rate as well as high

enantiomeric excess could be obtained by using lauric acid.  Furthermore, water is

the only by-product, which is easier to be handled as compared to the hazardous by-

product, namely acetaldehyde.

Another valuable output from this research is the wide application of

optically active 1-phenylethanol in industries.  The optically active 1-phenylethanol

is used as chiral building block and synthetic intermediate in fine chemical,

pharmaceutical and agrochemical industries [19,62,63].  In pharmaceutical industry,

1-phenylethanol is used as ophthalmic preservative [64].  This chiral compound may

also inhibit cholesterol intestinal adsorption and thus decrease high cholesterol level

[60].

The other application area of the enantiomers is in chemical analysis.  Both

the (R)- and (S)-enantiomer of 1-phenylethanol are used as chiral reagent for the

determination of enantiomeric purity [65], for the resolution of acid [66] and for the

asymmetric opening of cyclic anhydrides and expoxides [65].  It is also used as

auxiliary in butadienes for asymmetric Diels-Alder reaction [66].
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Since (R)-1-phenylethanol contains mild floral odour, it is used as hyacinth-

like fragrance in cosmetic industries [67].  It is also used as perfumery ingredient

[68].  Moreover, (R)-1-phenylethanol can be used in Solvatochromic dye [69].

The study of chiral esterification of (R,S)-1-phenylethanol is also essential in

providing basic knowledge of enzyme reaction in organic media.  The knowledge is

useful in predicting the enzyme performance towards more bulky aromatic secondary

alcohols.  The simplest example is 1-phenylethanol’s homologes such as 1-

phenylpropanol and 1-phenylbutanol.  Thus, this study is an important step to

produce more complicated structural chiral compounds.

The study on the effects of solvent polarity and chain length of fatty acid in

combination with the kinetic modelling would provide new knowledge of substrate

and enzyme interactions.  The understanding of the interactions is essential in protein

engineering in order to control enzyme activity for synthetic biocatalyst.  Thus, this

knowledge is useful for creating tailor-made biocatalysts for specific applications.

The knowledge of the resolution behaviour in the recirculated packed bed

reactor is important for the preparation of optically active 1-phenylethanol in a larger

scale production.  This is because packed bed system is readily scaled up using

commercially available large radius columns.  This study paves the way for the

investigation of continuous production of high yield and purity of 1-phenylethanol.

Therefore, a better understanding of the process would lead to a better design of

enzyme reactor and reaction conditions.
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a better understanding of the behaviour of enzymatic resolution. This understanding

is essential for process prediction and optimization.

7.2 Recommendations for future study

Several recommendations are suggested for future study on the enzymatic

resolution of (R,S)-1-phenylethanol with lauric acid in organic media.  Firstly, a

wider range of organic solvents should be tested for the resolution.  It is important to

determine a specific logP value that can alter the enantioselectivity of enzymes.  The

value indicated that the catalytic confirmation of enzymes started to change at certain

polarity level of solvents. This finding is crucial in improving the optical purity of

product.

A reliable method to continuously control the water activity at the optimal

level during the reaction needs to be developed. This can be carried out by directly

adding a suitable salt hydrate pair into the reaction mixture. However, the effects of

the salt on the reaction as well as on the enzyme itself have to be studied in detail.

The addition of molecular sieves into the reaction mixture has been proven to

improve the reaction conversion.  Nevertheless, it is suggested to do some

modifications on the reactor configuration in order to allocate molecular sieves in a

proper way.  A certain amount of molecular sieves can be kept in a bag and hang it in

the middle of reaction solution.  This method can reduce the problem of abrasion on

the molecular sieves by the stirrer.

In the packed bed reactor system, molecular sieves can be packed in another

column after the enzyme column.  The water produced after the reaction will pump

together with the reaction solution through the molecular sieves column for water

removal.  The efficiency of molecular sieves is dependent on the flow rate of

solution.  In addition to flow rate, the quantity of molecular sieves required in the

reaction has to be determined.
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It is recommended to carry out the resolution catalyzed by ChiroCLEC-PC in

a micro-scale recirculated packed bed reactor.  The enzymes can be packed in this

micro-scale reactor column without the need for packing materials.  Hence, a real

behaviour of the enzymes in the packed bed reactor system can be studied.  The

complexity because of the integration of enzymes with packing material can be

eliminated.

In determining the reaction mechanism, it was found that there are two

possible mechanisms can represent the reaction.  The effort of optimization the value

of elementary rate constants of Ping-Pong Bi-Bi mechanism with the irreversible

inhibition of (R,S)-1-phenylethanol, lauric acid and water has been done.  Although

the difference between the mechanisms is only the reversibility step of water

inhibition, the behaviour of the enzymes was greatly different in these two

mechanisms.  Hence, an intensive work should be carried out to compare the

difference between the mechanisms. This will definitely improve the knowledge of

enzyme behaviour in the resolution in organic media.

This study assumed (R,S)-1-phenylethanol as one chemical compound

represented by the alphabet of capital B in the kinetic modelling process.  However,

one of the most important parameters, namely enantioselectivity is not considered in

the modelling process.  The model based on the elementary catalytic steps is actually

essential for the prediction of enantiomeric ratio value.  This is because the present

methods of E value determination are only of limited accuracy [148].  In order to

take this kinetic parameter into account, the (R)- and (S)-enantiomer of the racemic

alcohol may consider as two different chemical compounds.  Now, the reaction

becomes a tri-bi reaction.  The resolution could achieve 100 % conversion of (R)-

enantiomer thereotically.  The presence of (S)-enantiomer does not inhibit the

resolution can be also determined from the model.  Therefore, the enantioselectivity

value can be calculated from the rate ratio of (R)- and (S)-enantiomer of the alcohol.
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