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Abstract—This study applies Adaptive Neuro Fuzzy 
Inference System (ANFIS)-based TCSC controller for 
damping oscillations. ANFIS which tunes the fuzzy 
inference system with a back propagation algorithm based 
on collection of input-output data makes fuzzy system to 
learn  ANFIS controller is designed to damp out the low 
frequency local and inter-area oscillations of the 
Multimachine power system. Direct inverse control 
techniques are used in the design-of TCSC ANFIS 
controller which is derived directly from neural networks 
counterpart’s methodologies of the power system and the 
controller network to provide optimal damping. By 
applying this controller to the TCSC devices the damping of 
inter-area modes of oscillations in a multi-machine power 
system is handled properly. The effectiveness of the 
proposed TCSC ANFIS controller is demonstrated on two 
area four machine power system (Kundur  system) which 
has provided a comprehensive evaluation of the learning 
control performance. Finally, several fault and load 
disturbance simulation results are presented to stress the 
effectiveness of the proposed TCSC controller in a multi-
machine power system and show that the proposed 
intelligent controls improve the dynamic performance of the 
TCSC devices and the associated power network 
 
Index Terms—TCSC, Neural Network, Power system 
oscillations, linear models, ANFIS and Fuzzy 

I. INTRODUCTION 

 The concept of Flexible Ac Transmission Systems 
(FACTS) is made possible by the application of high 
power electronic devices for power flow and voltage 
control FACTS are being increasingly used to better 
utilize the capacity of existing transmission systems and 
is a technology based solution to help the utility industry 
deal with changes in the power delivery business. A 
major thrust of FACTS technology is the development of 
power electric based systems that provide dynamic 
control of the power transfer parameters transmission 
voltage, line impedance and phase angle [1-3]. 
Power system oscillations occur due to the lack of 
damping torque at the generators rotors. The oscillation 
of the generators rotors cause the oscillation of other 
power system variables (bus voltage, bus frequency, 
transmission lines active and reactive powers). Power 
system oscillations are usually in the range between 0.1 
and 2 Hz depending on the number of generators 

involved in[4, 5]. Local oscillations lie in the upper part 
of that range and consist of the oscillation of a single 
generator or a group of generators against the rest of the 
system. In contrast, inter-area oscillations are in the lower 
part of the frequency range and comprise the oscillations 
among groups of generators. 
To improve the damping of oscillations in power system, 
a Power System Stabilizers (PSSs) applied on selected 
generators can effectively damp local oscillation modes 
while for interarea oscillations a supplementary controller 
can be applied to TCSC devices. Most of these 
controllers are designed base on conventional approach 
that is designed based on a Linearized model which 
cannot provide satisfactory performance over a wide 
range of operation points and under large disturbances 
[6]. Neural networks, enjoy a variety of advantages (e.g., 
high speed, generalization capability and learning 
ability), are a viable choice for non-linear control design. 
They have been successfully applied to the identification 
and control of dynamical systems especially in the field 
of adaptive control by making use of on-line training [7, 
8]. Direct and indirect adaptive control with MLP and 
RBF neural networks has been discussed in[8,9] for such 
systems which relies on continuous online training of the 
identifier and controller network. 
Dash et al.[9] Presents single-neuron and multi-neuron 
Radial Basis Function Controller (RBFNN) for the UPFC 
control in single machine-infinite-bus and three-machine 
power systems and claimed to provide the best transient 
stability performance of the power system. This is 
because output layer of RBF can be optimized fully using 
traditional linear modeling techniques but, before linear 
optimization can be applied to the output layer of an RBF 
network, the number of radial units must be decided and 
then their centers and deviations must be set. 
The use of Neuro-fuzzy to aid in controlling power 
oscillation damping in large power system has been 
studied for some years [10-13] by several researchers. 
In this paper, the implementation of TCSC ANFIS 
algorithm for Multi-machine power system has been 
described. Initial values of membership functions and 
rule base of the FLC have been obtained using the 
knowledge of dynamic behavior of the TCSC devices in 
multimachine power system[14] then membership 
functions’ values have been optimized by the ANFIS. 
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The performance of the TCSC ANFIS controller with the 
conventional controller for a number of operating 
conditions has been compare. 

II. TCSC MODEL: 

     A typical TCSC module consists of a Fixed series 
Capacitor (FC) in parallel with a Thyristor Controlled 
Reactor (TCR) as shown in Fig. 1. The TCR is formed by 
a reactor in series with a bi-directional thyristor valve that 
is fired with an angle ranging between 90 and 180° with 
respect to the capacitor voltage[15]. 
Consider a line l, having line reactance XL, connected 
between buses k and m. If the reactance of TCSC placed 
in the line l is Xc, the percentage of compensation of 
TCSC (kc) is given by: 

C

L

Xkc
X

=  (1) 

The line power flows are functions of the degree of 
compensation of the TCSC. The real power (Pkm) and 
reactive power (Qkm) in a line l (connected between buses 
k and m), with TCSC having degree of compensation kc 
and neglecting the line resistance, can be written as: 
 

km k m c k mP = V V B(x ) sin( )θ − θ  (2) 

mk kmP  = P−  (3) 

2
k km k m km k mQkm = V  (Y + B) V V (Y + B) cos( )− θ − θ  (4) 

2
m km k m km k mQmk = V  (Y +B) V V (Y +B) cos( )− θ − θ  (5) 

The equivalent substance of the TCSC is given by: 

C l C
km

l C l C

x /x kB(xc) = - B
x (1 x /x ) (k 1)

=
− −

 
(6) 

The TCSC reactance is varied by varying the real power 
error (Pref-P). 

III. TCSC ANFIS CONTROLLER 

    Neuro-fuzzy techniques have emerged from the fusion 
of Artificial Neural Networks (ANN) and Fuzzy 
Inference Systems (FIS) and form a popular framework 
for solving real world problems. A neuro-fuzzy system is 

based on a fuzzy system which is trained by a learning 
algorithm derived from neural network theory. While the 
learning capability is an advantage from the viewpoint of 
FIS, the formation of linguistic rules base will be 
advantageous from the viewpoint of ANN 

B. Structure of TCSC ANFIS  
The fuzzy inference systems for this system is a two-

input and one output first-order Takagi and Sugeno’s 
fuzzy if-then rules and are used in the ANFIS architecture 
with twenty five rules whose block diagram is illustrated 
here in Figure.2.  
The input to the TCSC ANFIS is the speed deviation and 
change of speed deviation. The linguistic rules, 
considering the dependence of the plant output on the 
controlling signal, are used to build the initial fuzzy 
inference structure. The inputs scaling blocks maps the 
real input to the normalized input space in which the 
membership functions are defined. The output scaling 
block is used to map the output of the fuzzy inference 
system to the real output needed.  
The inputs signals are fuzzified using five fuzzy sets Ai 
and Bi, i=1 to 5. Any continuous and piecewise 
differentiable functions are qualified candidates for node 
functions of premise parameters of the ANFIS structure 
[16]. This work considers the Gaussian function as the 
initial fuzzy membership function, with maximum equal 
to 1 and minimum equal to 0 and is given by 

2 2( ) expi i iX x cμ σ⎡ ⎤= − −⎣ ⎦  (7) 

Where ci is the center vector of the function, which has 
same dimension as input vector,σi is a specific parameter 
of the Gaussian function, and the Gaussian function μihas 
the only max value at the center ci. The initial values of 
premise parameters are set in such a way that the MF’s 
are equally spaced in the range [-1 1]. The outputs of the 
inference system are linear membership functions and the 
rule base with five fuzzy if-then rules of (TS) Takagi and 
Sugeno’s type given by 

if Δω is A1 and Δω(t-1) is A2 then  fi = pi Δω + qi Δω(t-1)  + ri 

Where Δω and Δω(t-1) are the inputs of the systems 
while A1 and A2 are fuzzy sets in the antecedent, and pi, 
qi and ri are the consequent parameters.

 
Figure.2 Fuzzy Logic Controller Structure 
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Figure 1: TCSC Model  
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A. ANFIS Training 
   The steps for ANFIS training to adapt the initial fuzzy 
premise parameters for construction of the proposed 
optimum input output pattern to perform the desired 
control action at various operating conditions is 
presented. ANFIS uses a hybrid learning algorithm to 
recognize consequent parameters of Sugeno-type fuzzy 
inference systems. It applies a combination of the least 
squares method and Backpropagation gradient descent 
method for training fuzzy inference system membership 
function parameters to follow a given training data set. 
The neuro-fuzzy system owes much from the feedforward 
neural network with supervised learning capability [10] 
The output of the fuzzy system for approximation of 
premise parameter set [ ci,  σi] is trained by the ANFIS in 
five layers of networks , the node functions are as 
follows: 

Layer1  

1

1

i i

i i-5

O A ( x )  i=1:5

O B ( y )  i=6:10

μ

μ

=

=
 (8) 

Where x (or y) is the input to the node i and Ai,(or Bi-5) is 
the fuzzy set associated with this node. Oi specify the 
degree to which the given input x(or y) satisfies the 
quantifier A. Parameters in this layer are referred to as 
premise parameters and are denoted by the parameter set 
[ci, σi]. 
Note: for this research x and y signifies Δω and Δω(t-1) 
respectively. 

Layer2  

The outputs of the nodes labeled π in layer two are a 
result of multiplication of inputs from the layer one 
nodes. Each node output generates the firing strengths by 
multiplying membership function parameters. In  general 
any other T-norm operators that perform fuzzy AND can 
be used  as the node function in this layer[12]. 

2
( ) ( ( 1)) 1,...5

i i

i
i A BO w t        iμ ω μ ω= = Δ × Δ − =  (9) 

Where μAi and μBi ( 1=1-5 ) represent the fuzzified rules 
and 

2

iO  ( i=1-25 ) is the firing strength. 

Layer 3 

Fixed nodes with function of normalization, that is mean 
the outputs of these nodes are basically the ratios of the 
ith output of the previous layer to the sum of all output of 
the previous layer 

3
1, 2..... 25i i

i
i

wO w            i  
w

= = =
∑

         (10) 

Layer 4 

The nodes in layer 4 are adaptive nodes and the ith node 
has the following output: 

4
( ( 1) )i

i i i i i iO w f w p q t rω ω= = Δ + Δ − +         (11) 

pi , qi and ri are referred to as the consequent parameter 
set. They can also be trained using ANFIS learning 
algorithm. 

Layer 5 

Layer 5 is a fixed node with function of summation 
which computes the overall output as the summations of 
all incoming signals 

5

i
i i

i
O overall  output w f= =∑  (12) 

Figure 3 show a 2-input, ANFIS with 25 rules. Five 
membership functions are associated with each input, so 
the input space is partitioned into twenty five fuzzy 
subspaces, each of which is governed by fuzzy if-then 
rules. The premise part of a rule delineates a fuzzy 
subspace, while the consequent part specifies the output 
within this fuzzy subspace. 

C. ANFIS LEARNING ALGORITHM 
   The choice of learning algorithm is based on trade-off 
between computation complexity and resulting 
performance. The learning method adopted in this work is 
the hybrid learning rule that combines the least-squares 
estimator and the gradient descent method[11]. This 
hybrid learning technique speeds up the learning process 
compared to the gradient method alone, which exhibits 
the tendency to become trapped in local minim 

D. ANFIS DIRECT INVERSE CONTROL 

   Direct inverse control is the most common design 
techniques for ANFIS controllers which are derived 
directly from neural networks counterpart’s 
methodologies. However, certain design techniques are 
exclusively dedicated to ANFIS[17]. 
The simplest approach for controller design is a 
completely open-loop control strategy, in which the 
controller is the inverse of the process. This method 
seems straightforward and only one learning task is 
needed to find the inverse model of the plant.  

 

Δω

1Δω(t ) −

Rn

Δω

1Δω(t ) −Δω

∑

1Δω(t ) −
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E. Training phase of ANFIS TCSC 
   The training data is obtained by simulating a power 
system with TCSC device that is subjected to a wide 
range of possible disturbances. The rotor speed output 
and its one step outputs are used as training data that are 
Δω(t) and Δω(t-1) and the control action data u(t) as 
input to the model are obtained by simulating the system 
under the above conditions. The training data are 
arranged in this form [Δω(t), Δω(t-1),u(t)']. 

The Anfis inverse model is subsequently applied as the 
controller for the process by inserting the desired output, 
the reference ωd (t+1), instead of the output ω (t+1). 

IV. SIMULATION RESULTS  

   The test systems used for applying TCSC ANFIS is two 
area four machines system normally called Kundur 11-
bus system as shown in figure 2. 
Figures 5 and 6 illustrate the membership functions 
before and after training. It is interesting to observe that 
the sharp changes of the training data surface around the 
origin is accounted for by the movement of the 
membership functions toward the origin. The training 
error curve and 3D surface curve are shown in Figure.7 
and 8. 

A. Performance Evaluation of TCSC ANFIS  
    Case 1: For this case study, a three phase faults is 
applied at bus 8 for a 1s and cleared after1.05s with a 
heavy load  
demand from area 2 of 650MW with all the tie-lines in 
place. Figure 9 present the inter-area modes of 
oscillations for TCSC ANFIS controller.  
Case 2: For this case study, a three phase faults is applied 
at bus 8 for a 1s and cleared after1.05s with a normal load 
demand from area 2 of 400MW but with the tie-lines 7-8 
outage. Figure 10 shows the response of ANFIS 
controller which stabilized the system within 8 second 
.From figure 9 and 10 the superiority of TCSC ANFIS is 
clearly observed  

Figure 4 Two area test system with TCSC ANFIS Controller 
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Figure 5 Initial membership functions 
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Figure 6 final membership functions 
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Figure 7 error curves for Anfis training  
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Figure 8 3D surface curves 
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CONCLUSION 

 In this study, TCSC ANFIS Controller is proposed 
for damping oscillations and the effectiveness of the 
proposed control system is compared with Conventional 
controller under some disturbances. The controller is 
tested on a well known bench mark power system model 
proposed by Kundur called two area four machines 
system. From the results it can be concluded that the 
TCSC ANFIS Controller produces no steady state error 
and acceptable overshoot under some disturbances. 
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