DESIGN OF FLOATING WATER WHEEL FOR POWER GENERATION

LIM CHONG HOOI

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering Universiti Teknologi Malaysia

AUGUST 2013

Specially dedicated to my parents and friends

ACKNOWLEDGEMENT

First and foremost, I would like to express my greatest gratitude towards my supervisor, Dr. Md. Afendi bin M. Yusuf for the continuous guidance, encouragement, motivation and support in effort to complete this project.

Besides that, I would like to express my special thanks to Mr. Rizal and Mr. Azrin for providing the guideline and advice. Technicians and lab assistant in Center of Composites, Production Lab and Material Store also deserved special thanks for assisting and giving advice throughout the research.

Last but not least, all the commitments of my friends are gratefully appreciated and I would like to thank all who have helped me directly or indirectly in completing this project. Unfortunately, it is not possible to list all of them in this limited space.

ABSTRACT

Floating water wheel could harvest energy from shallow flowing river to increase the potential of hydropower. Various types of water wheels have been studied by other researchers. However, the details of the design such as ridge/blade profile, number of ridges and submerged depth of floating water wheel have not been clearly established. In this research, experiments were carried out in an aquarium to study the optimum number of ridges, submerged depth and four different ridge profiles for a laboratory-scale floating water wheel. The results showed different ridge profiles and pitches and submerged depths contribute significant effects to the rotation of floating water wheel. The result of the experiment was used as reference for prototype design and fabrication. The prototype was tested in a river and successfully produced voltage from the flowing river. The experiment shows that the optimum number of ridges is 13, the best profile is thin flat ridge and maintaining the floating water wheel at certain submerged depth is important to its performance. The prototype concept is suitable for low head flow and varying water level. It is also portable, easily assembled and maintained and able to convert the kinetic energy of the water current into electrical energy.

ABSTRAK

Kincir air terapung dapat menghasilkan tenaga dari aliran sungai yang cetek meningkatkan potensi untuk menjana kuasa hidro. Pelbagai jenis kincir air terapung telah dikaji oleh penyelidik di seluruh dunia. Walaubagaimanapun reka bentuk terperinci seperti profil rabung, bilangan rabung dan paras kedalaman kincir air terapung di dalam air belum dikaji dengan jelas. Dalam kajian ini, eksperimen telah dijalankan dalam akuarium untuk mengkaji bilangan rabung dan kedalaman paras kincir air yang optimum dan mengkaji empat profil rabung yang berbeza bagi kincir air terapung yang berskala kecil. Keputusan menunjukkan profil dan jarak antara rabung, dan kedalaman paras kincir air jelas memberi kesan yang ketara kepada putaran kincir air. Hasil daripada eksperimen ini telah digunakan sebagai rujukan untuk mereka bentuk dan fabrikasi sebuah prototaip kincir air. Prototaip ini telah diuji di sungai dan telah berjaya terapung serta menjana voltan daripada aliran sungai tersebut. Eksperimen ini telah menunjukkan bahawa bilangan rabung yang optimum ialah 13 dan profil terbaik ialah rabung rata yang nipis dan mengekalkan kincir air terapung pada kedalaman tertentu adalah penting untuk prestasi. Konsep prototaip ini sesuai untuk kelajuan aliran yang rendah dan berubah mengikut paras air. Ia juga mudah alih, senang dipasang dan diselengara dan dapat menukarkan tenaga kinetik daripada aliran air kepada tenaga elektrik.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENT	vii
	LIST OF TABLES	Х
	LIST OF FIGURES	xi
	LIST OF ABBREVIATIONS	xiv
	LIST OF SYMBOLS	XV
	LIST OF APPENDICES	xvii
1	INTRODUCTION	
	1.1 Hydropower	1
	1.2 Background Study	2
	1.3 Problem Statement	3
	1.4 Objectives	3
	1.5 Scope and Limitations	3
	1.6 Significance of Study	4
	1.7 Methodology	4
2	LITERATURE REVIEW	
	2.1 Introduction	6
	2.2 History of Undershot Water Wheel	6
	2.2.1 Ancient Water Wheel Technology	6

	2.2.2	Evolution of Water Wheel Technology	9		
2.3	Charao	Characteristics of Undershot Water Wheel			
2.4	Design	n Review of Undershot System and Device	18		
	2.4.1	Function	52		
	2.4.2	Water Wheels Supporting Base	52		
	2.4.3	Material and Size	54		
	2.4.4	Vanes/ Buckets Design	55		
	2.4.5	Transmission and Additional Features	56		
2.5	Potent	ial of Small Scale Hydropower	58		
2.6	The C	hallenges	61		
2.7	Design	n Theory	61		
DES	SIGN A	ND EXPERIMENTAL TESTING			
3.1	Introd	uction	66		
3.2	Design	n Criteria	66		
3.3	Floatin	ng Water Wheel Experiment	68		
	3.3.1	Experimental Design	69		
		3.3.1.1 Variables	69		
		3.3.1.2 Apparatus Setup	70		
		3.3.1.3 Assumption and Experiment			
		Procedures	75		
	3.3.2	Experimental Results	76		
	3.3.3	Results Analysis	80		
DD		DE TESTINO AND DISCUSSION			

PROTOTYPE TESTING AND DISCUSSION

4.1	Prototype		84
	4.1.1	Design Criteria	84
	4.1.2	Design Construction	86
	4.1.3	Cost and Weight	88
	4.1.4	Prototype Testing Result Analysis	89
4.2	Discus	ssion	93

5 CONCLUSION

5.1	Conclusion	96
5.2	Future Development and Recommendations	96
REFERENCES		98
Appendices A - B		103-115

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Variations of undershot system	19
2.2	Micro hydro potential sites by state	60
3.1	Design summary from reviewed patents and papers	67
3.2	Design criteria for research study	68
3.3	Purposes of variables finding	69
3.4	Average speed of water wheel (rpm) in different quantity of ridges and submerged depth	76
3.5	Average speed of water wheel (rpm) in different ridges profiles and submerged depth	78
4.1	Prototype Components Cost	88
4.2	The time and percentage of the voltage range in 14390 second	90
4.3	The time and percentage of the voltage range in 960 second	92

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Design methodology flow chart	4
2.1	Water wheel for heavy weights	8
2.2	Hydraulic drop hammer	9
2.3	Alternating motion generator	9
2.4	Villard's hydraulic saw. (a) Original drawing (b) A reconstruction by the French National Library (BNF)	11
2.5	Villard's perpetual motion device	11
2.6	Type of water wheels: (a) overshot wheel; (b) breast wheel; (c) undershot (Zuppinger) wheel	13
2.7	Design principles of undershot or Zuppinger wheels : (a) side elevation and inflow; (b) working principle	14
2.8	Typical undershot water wheels and water flow direction	15
2.9	(a) Undershot water wheel with radial vanes (b) Poncelet's modification	16
2.10	Velocity profile in open channel flow	62
2.11	Water wheels comparison - submerged depth and number of ridges	63
2.12	Drag coefficient on several simple 3D and 2D shapes	65

3.1	Ridge's profile: Thin flat ridge, solid flat ridge, quarter	
	circular ridge, triangular ridge	70
3.2	Floating water wheel model	71
3.3	Wheel supporting arm design modification	72
3.4	Final setup of the water flow in aquarium	73
3.5	Water flow straightener	73
3.6	Water and wheel level observation setup	74
3.7	Tachometer observation setup	74
3.8	Experimental process flow summary	75
3.9	Rpm versus submerged depth for 13 thin flat ridges with error bars	76
3.10	Rpm versus submerged depth for 6-18 thin flat ridges	77
3.11	Rpm versus number of ridges (different submerged depth) for all recorded thin flat ridges	77
3.12	Rpm versus submerged depth for 4 different ridges profiles (13 ridges)	78
3.13	Power versus submerged depth for 6-18 thin flat ridges	79
3.14	Power versus number of ridges for all recorded thin flat ridges	79
3.15	Power versus submerged depth for 4 different ridge's profiles	80
3.16	Ridges distance, radius and angle relationship	83
4.1	Floating water wheel system	86
4.2	(a) Floating water wheel rotation direction (b) Transmission system	87

4.3	Floating water wheel system floats on the downstream	89
		0)
4.4	Deep side output voltage in 14930 seconds	89
4.5	Deep side output voltage range in 14930 seconds	90
4.6	Floating water wheel system sat on the upstream river	
	bed	91
4.7	Floating water wheel operated when water level	
	increases during heavy flow	91
4.8	Shallow location output voltage in 960 seconds	91
4.9	Shallow location output voltage range in 960 seconds	92

LIST OF ABBREVIATIONS

Cont.	-	Continue
N/A	-	Not available
etc.	-	Et cetera
rpm	-	Revolutions per minute
m	-	Meter
cm	-	Centimeter
mm	-	Millimeter
CAD	-	Computer-aided design
RM	-	Ringgit Malaysia
No.	-	Number

LIST OF SYMBOLS

E_{in}	-	Input energy
т	-	Mass
g	-	Gravity =9.81m/s
h	-	height
ν	-	Velocity
Н	-	Velocity head
<i>V_{max}</i>	-	Maximum velocity
у	-	Flow bed-normal distance measure upwards
h	-	Flow depth
1/m	-	Power-law exponent or index
F_D	-	Drag force
ρ	-	Density
A	-	Summation of submerged ridges' frontal area
C_D	-	Drag coefficient
Т	-	Torque
R/r	-	Radius
θ	-	Angle
W	-	Ridge's Width

Ν	-	Total No. of Ridges
Ι	-	Ridge's number
L/h	-	Liter per hour
Р	-	Power (watt)
Ω	-	Angular rotational speed (rad/s)
S	-	Second
S	-	Circular pitch
m/s	-	Meter per second
rad/s	-	Radian per second

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A1	US Patent 96,182	103
A2	US Patent 98,891	103
A3	US Patent 231,041	104
A4	US Patent 244,221	104
A5	US Patent 320,184	104
A6	US Patent 385,261	105
A7	US Patent 408,075	105
A8	US Patent 414,484	105
A9	US Patent 473,941	106
A10	US Patent 578,745	106
A11	US Patent 603,929	107
A12	US Patent 730,260	107
A13	US Patent 757,909	107
A14	US Patent 873,845	108
A15	US Patent 1,029,127	108
A16	US Patent 1,263,865	108
A17	US Patent 1,333,443	109

xviii

A18	US Patent 1,631,647	109
A19	US Patent 2,694,366	109
A20	US Patent 4,280,789	110
A21	US Patent 4,516,033	110
A22	EP 0758052	111
A23	US Patent 5,430,332	111
A24	UK Patent Application GB 0816315.6	112
A25	US Patent Application Publication US	
	2011/0179787 A1	112
B1	Overall design in CAD	113
B2	Floating water wheel exploded view	114
В3	Transmission system exploded view	114
B4	Frame design	115

CHAPTER 1

INTRODUCTION

1.1 Hydropower

Renewable energy has imperatively become the alternative source of energy to replace fossil fuel as the major energy source, in light of the drastic depletion of fossil fuel due its application in most areas nowadays. In 2008, Sayigh [1] published a study about renewable energy in worldwide progress, which shows that among the six billion population, 1.8 billion have no electricity while 50 % of the inhabitants in Asia and Africa do not have reliable supply of electricity. The world population doubles itself every 50 years while energy demand doubles itself every 30 years and electricity demand doubles itself every 10 years [1]. There exists an urgent need to look into more reliable renewable energy source.

Hydropower is one of the renewable energy and is used in many countries to provide electricity in mega watt sizes. Similar to the present large-scale hydro power, mini-hydro and pico-hydro can also generate equivalent electrical power [1]. In view of the vast non-harvested energy in streams, rivers, irrigation raceway and et cetera, the small, mini and pico type of hydropower bears high potential and research on small scale hydropower will be inevitably increased in the near future.

1.2 Background Study

A hydropower harvester can be generally divided into two parts: its horizontal axis - fondly referred to as "hydro turbine", and its vertical axis - fondly referred to as "water wheel".

The turbine was introduced back in the early 19th century, during which turbine manufacturing became a major industry and manufacturers came out with a wide range of catalogues to suit a variety of conditions and purposes [2]. Although the turbine ensures better performance than the water wheel, specific turbines could only be used in specific conditions, resulting in the need for designers to come out with different types of turbine. In order to harvest energy, the common hydro turbine needs to be fully submerged in the water. As such, its impact on the environment, particularly on aquatic life is much higher compared to the water wheel. Besides that, the complexity of turbines requires maintenance which is troublesome for normal users, especially those situated in rural areas.

The typical water wheel can be divided into three common categories, namely "overshot", "breast shot" and "undershot", providing advantages on both ecologic and economic costs [3]. Large-scale hydropower requires large dams and is extremely expensive in initial and construction cost due to the necessary construction of dams, reservoirs and canals meant to build up sufficient hydraulic head to regulate and direct the water flow towards the water wheel. However, the running costs are low. On the other hand, small scale type of hydropower can harvest energy in rivers and water channels even though these places are narrow or shallow. Its potential to rural areas and disaster areas is high especially the movable type of hydropower harvester. One of the movable hydropower harvesters is the floating type of undershot water wheel.

1.3 Problem Statement

Residents in rural areas are constantly facing insufficient electricity and electricity shortages. The presence of flowing rivers, mini-hydropower becomes an alternative solution. However, as most hydropower harvesters are fixed in position and do not vary with water level, these harvesters are frequently blocked by debris and require expertise for maintenance of the complex structure. Furthermore, the harvesters cannot operate in optimum performance where there is a change in water level, especially during the monsoon season. This research was carried out to study, design and develop a floating water wheel device which is portable and which varies with water level.

1.4 Objectives

The objective of this research is to design a floating water wheel device which varies with water level, is portable, requires simple maintenance and is able to convert kinetic energy of the water flow into electrical energy.

1.5 Scope and Limitations

This research was conducted to study floating water wheel performance in laboratory scale and in actual condition. Experiment study limits its coverage on four parameters only. Its main purpose is to investigate the effect of the parameters which are submerged depth, four different ridge/blade profiles and different number of ridges on the floating water wheel performance through experiment.

The study of the prototype only focuses on its functionability. The design of the prototype based on the optimum results from the experiment. Its aim is to prove the prototype design is workable in actual environment.

1.6 Significance of Study

Various types of water wheels have been studied by other researchers. However, the detailed designs such as ridge/blade profiles, number of ridges and submerged depth of floating water wheel have not yet been studied so far. The results obtained from the experiment here and the performance of the prototype could be used as a reference for further development. The further development will bring a large impact to rural areas in terms of electrical energy supply.

1.7 Methodology

Figure 1.1: Design methodology flow chart.

As seen in Figure 1.1, the foremost step of this research is problem identification, as presented in Section 1.3. This is followed by a study on the evolution of undershot water wheel, reviews on several patented designs, a study on the concept and theory of the open flow water wheel and a study on water wheel calculation on certain parameters. The design advantages is then summarized from the literature review and abstracted to suit this research study. Subsequently, a series of experiments is carried out to study unestablished parameters of the floating water wheel, from which the results of a few parameters are analyzed to generate more detailed design criteria for the prototype. Finally, the prototype is fabricated and tested at the river side to show that the design idea is workable in slow flowing water. A counter rotating generator is then used to convert the output to electricity, and its voltage is recorded by the data logger to be followed by data analysis. Finally, the conclusion is drawn up and some recommendations are suggested at the end of the research.

REFERENCES

- 1. Sayigh, A. Worldwide progress in renewable energy. *Renewable Energy*, 2009.
- 2. Smith, N.A.F. Water power. *History Today*, 1980. 30(3): 37-41.
- 3. Dubas, M. A new ancient water mill: remembering former techniques mountains. Springer Netherlands. 2008.
- 4. Reynolds, T.S. *History of the vertical water wheel, stronger than a hundred men.* The Johns Hopkins University Press. 1983.
- 5. Mays, L.W. A very brief history of hydraulic technology during antiquity. *Environmental Fluid Mechanics*, 2008. 8(5): 471-484.
- 6. Munro, J. Industrial energy from water-mills in the European economy, fifth to eighteenth centuries: the limitations of power. University of Toronto, Department of Economics. 2001.
- 7. Rao, J.S. *Water wheels history of rotating machinery dynamics*. Springer Netherlands. 2011.
- 8. Paz, E.B., Ceccarelli, M., Otero, J.E., Sanz, J.L.M., Paz, E.B., Otero, J.E. and Sanz, J.L.M. *Chinese inventions and machines: a brief illustrated history of machines and mechanisms*. Springer Netherlands. 2010.
- Needham, J. Science and civilisation in China. Cambridge University Press. 1975.

- 10. Wang, Z. Nong Shu. Shang Wu Yin Shu Guan. 2009.
- Denny, M. The efficiency of overshot and undershot waterwheels. *European Journal of Physics*, 2004. 25(2): 193-202.
- 12. Meier, A.B. *A brief history of perpetual motion*. Smashwords. 2011.
- Bautista Paz, E., Ceccarelli, M., Echávarri Otero, J., Muñoz Sanz, J.L., Paz,
 E.B., Otero, J.E. and Sanz, J.L.M. *Medieval machines and mechanisms: a* Brief illustrated history of machines and mechanisms. Springer Netherlands. 2010.
- Müller, G. and Kauppert, K. Performance characteristics of water wheels. Journal of Hydraulic Research, 2004. 42(5): 451-460.
- 15. Howard, R.A. A primer on waterwheels. *Bulletin of the Association for Preservation Technology*, 1983. 15(3): 27-33.
- Müller, G. Water wheels as a power source. Access on 23 April 2013
 [cited on 4 August 2013]. Available from: http://hmf.enseeiht.fr/travaux/CD0708/beiere/3/html/bi/3/fichiers/Muller_hist o.pdf.
- 17. Müller, W. *The water wheels: technical drawings*. Veit & Comp. 1899.
- 18. Müller, W. *The water wheels*. Veit & Comp. 1939.
- 19. Anderson, J.S. *Improvement in water wheels*. U.S. Patent 96182. 1869.
- 20. Sory, A.W. Improvement in current water-wheels. U.S. Patent 98891. 1870.
- 21. Hensey, W. Undershot water-wheel. U.S. Patent 231041. 1880.
- 22. Fountain, L.D. and McDonald, J. *Water power*. U.S. Patent 244221. 1881.

- 23. Smythe, F.T. *Floating water elevator*. U.S. Patent 320184. 1885.
- 24. Garrison, C.M. *Means for utilizing the current force of running water*. U.S. Patent 273202. 1888.
- 25. Brown, H. Water motor. U.S. Patent 408075. 1889.
- 26. Bauer, J. *Water wheel*. U.S. Patent 414484. 1889.
- 27. Mather, A.C. *Water-power*. U.S. Patent 473941. 1892.
- Highsmith, J.H. Overshot or undershot wheel for propellin machinery. U.S. Patent 578745. 1897.
- 29. Stickel, J. Floating power-house. U.S. Patent 603929. 1898.
- 30. Harris, C.E. Water eleveator. U.S. Patent 730260. 1903.
- 31. Gilliland, T.F. Portable power dam. U.S. Patent 757909. 1904.
- 32. Crow, W.H. Portable power dam. U.S. Patent 873845. 1907.
- 33. Jameson, N.W. *Water power appliance*. U.S. Patent 1029127. 1912.
- 34. Dale, J.T. Current motor. U.S. Patent 1263865. 1918.
- 35. Rennolds, P.J. *Tide-water power*. U.S. Patent 1333443. 1920.
- 36. Robinson, H.W. Current motor. U.S. Patent 1631647. 1927.
- 37. Miller, J.R. Water wheel pump. U.S. Patent 2694366. 1954.
- 38. Graden, L.E. *Water elevating wheel*. U.S. Patent 4280789. 1981.
- Olson, M. Apparatus for converting flow of water into electrical power. U.S. Patent 4516033. 1985.

- 40. Kang, Chonju-si, H.S. and Chollabuk-do. *Runnning water waterwheel*. EP 0758052. 1995.
- 41. Dunn, E.D. Movable and adjustable dam. 5430332. 1995.
- 42. Lowery, M. Hydro electric barrel generator. U.K. Patent GB 0816315.6. 2008.
- 43. Griffin, R.A. *Hydraulic energy conveter*. U.S. Patent 2011/0179787 A1. 2011.
- 44. Booker, J.D., Mellor, P.H., Wrobel, R. and Drury, D. A compact, high efficiency contra-rotating generator suitable for wind turbines in the urban environment. *Renewable Energy*, 2010. 35(9): 2027-2033.
- Shen, W.Z., Zakkam, V.A.K., Sørensen, J.N. and Appa, K. Analysis of counter-rotating wind turbines. *Journal of Physics: Conference Series*, 2007. 75(1): 1-9.
- 46. Müller, G. and Wolter, C. The breastshot waterwheel: design and model tests. *Proc. ICE Eng. Sustainability*, 2004. 157(4): 203-212.
- 47. Campbell, R.J. Small hydro and low-head hydro power technologies and prospects. Congress Research Service. 2010.
- Wiemann, P., Müller, G. and Senior, J. Review of current developments in low head, small hydropower. *32nd IAHR Conference*. July 01-06, 2007. Venice, Italy: International Association of Hydraulic Engineering & Research. 2007. 1-10
- Müller, G., Denchfield, S., Marth, R. and Shelmerdine, B. Stream wheels for applications in shallow and deep water. *32nd IAHR Conference*. July 01-06, 2007. Venice, Italy: International Association of Hydraulic Engineering & Research. 2007. 707-717

- Chang, F.L. and Guan, S.S. Establishment of a quality scale (QFD) for creative product design service. *Management and Service Science (MASS)*, 2011 International Conference. August 12-14, 2011. Wuhan: IEEE. 2011. 1-5
- 51. Chan, L.K. and Wu, M.L. Quality function deployment: a literature review. *European Journal of Operational Research*, 2002. 143(3): 463-497.
- 52. Wang, L., Lee, D.J., Liu, J.H., Chen, Z.Z., Kuo, Z.Y., Jang, H.Y., You, J.J., Tsai, J.T., Tsai, M.H., Lin, W.T., Lee, Y.J. and IEEE. *Installation and practical operation of the first micro hydro power system in Taiwan using irrigation water in an agriculture canal.* IEEE. 2008.
- Raman, N. and Hussein, I. Reconnaissance study to identify micro hydro potential sites in Malaysia. *European Journal of Scientific Research*, 2010. 41(3): 354-372.
- 54. Cheng, N.S. Power-law index for velocity profiles in open channel flows. *Advances in Water Resources*, 2007. 30(8): 1775-1784.
- 55. Chen, C. Unified theory on power laws for flow resistance. *Journal of Hydraulic Engineering*, 1991. 117(3): 371-389.
- 56. Scott, J. Drag of cylinders & cones. Access on 24 April 2013 [cited on 24 April 2013]. Available from: http://www.aerospaceweb.org/question/aerodynamics/q0231.shtml.
- 57. Elghali, S.E.B., Balme, R., Le Saux, K., Benbouzid, M.E.H., Charpentier, J.F. and Hauville, F. A simulation model for the evaluation of the electrical power potential harnessed by a marine current turbine. *IEEE Journal of Oceanic Engineering*, 2007. 32(4): 786-797.