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ABSTRACT 

 

 

 

 

Stock market prediction is one of the fascinating issues of stock market 

research. Accurate stock prediction becomes the biggest challenge in investment 

industry because the distribution of stock data is changing over the time. Time series 

forcasting, Neural Network (NN) and Support Vector Machine (SVM) are once 

commonly used for prediction on stock price. In this study, the data mining operation 

called time series forecasting is implemented. The large amount of stock data 

collected from Kuala Lumpur Stock Exchange is used for the experiment to test the 

validity of SVMs regression. SVM is a new machine learning technique with 

principle of structural minimization risk, which have greater generalization ability 

and proved success in time series prediction.  Two kernel functions namely Radial 

Basis Function and polynomial are compared for finding the accurate prediction 

values. Besides that, backpropagation neural network are also used to compare the 

predictions performance. Several experiments are conducted and some analyses on 

the experimental results are done. The results show that SVM with polynomial 

kernels provide a promising alternative tool in KLSE stock market prediction. 
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ABSTRAK 

 

 

 

 

Peramalan pasaran saham merupakan salah satu isu yang hangat diperkatakan 

dalam penyelidikan pasaran saham. Ramalan saham yang tepat menjadi cabaran 

utama akibat daripada harga saham yang sentiasa berubah mengikut masa. Ramalan 

data bersiri, rangkaian neural dan SVM merupakan teknik-teknik yang biasa 

digunakan dalam ramalan harga pasaran saham. Dalam kajian ini, operasi 

perlombangan data yang dipanggil peramalan telah dilaksanakan. Jumlah data saham 

yang banyak telah dikumpul dari Kuala Lumpur Stock Exchange untuk tujuan 

experimen bagi menguji keberkesanan regresi SVM. SVM adalah satu pembelajaran 

mesin yang terbaru dengan prinsip ‘structural minimization risk’ yang mempunyai 

kemampuan pengitlakan yang tinggi serta terbukti kejayaannya dalam siri peramalan 

masa.  Dua jenis fungsi kernel iaitu Radial Basis Function (RBF) dan polynomial 

telah digunakan sebagai perbandingan untuk mencari nilai ramalan yang paling tepat.  

Rambatan balik rangkaian neural juga diuji bersama untuk perbandingan dalam 

menilai prestasi ramalan. Beberapa experimen telah dibuat dan analisa pada hasil 

kajian telah dijalankan. Keputusan kajian menunjukkan bahawa SVM dengan 

polynomial kernel menjadi satu peralatan pilihan yang baik dalam ramalan pasaran 

saham KLSE.   
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CHAPTER ONE 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Preface 

 

 

The prediction of the future has always fascinated mankind due to the 

possible benefits of this knowledge (Thierry, 1996). This is especially true in the 

financial world. New tools and techniques for prediction are growing away from 

their original environment like the mathematical and computing world and find their 

way into all kinds of professional applications such as finance or engineering (B.K. 

Wong, 1995). 

 

 

Modeling the markets using advanced financial engineering techniques has 

lately attracted a great deal of attention. Active managers have grown in number and 

many of them make the arguably reasonable assumptions that all people do not react 

similarly to publicly available data and that everybody does not react at the same 

speed (Ganesh et al., 1995). These assumptions open up the possibility that one can 

beat the consensus by performing better or more efficient analysis, using advanced 

computer and mathematical tools as well as time-series modeling techniques (Farmer 

and Sidorowich, 1998; Weigend and Gershenfeld, 1994). Human information 

processing has limits; the new machine-aided approaches help expand those limits. 

 

 

Various domain of interest have been explored in time series prediction.  For 

example, the study of bioactivity prediction and compound classification using large 

collection of biological compounds (Rahayu, 2004), the study of electricity load 

forecasting based on electricity load demand data (Chen et al., 2004), the study of 
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stock price forecasting using Haier closing prices data (Bao et al.,2004) and the study 

of rainfall forecasting using meteorological variables like potential temperature, 

vertical component of the wind, specific humidity, air temperature, precipitable 

water, relative vorticity and moisture divergence flux (Valverde et al., 2005).   

 

 

The success of SVM in prediction technique is evidence from several 

researches in electricity load forecasting (Chen et al., 2004), stock price forecasting 

(Bao et al., 2004), traffic speed prediction (Vanajakshi and Rilett, 2004), travel time 

series prediction (Wu et al., 2004) and rainfall runoff modeling (Dibike et al., 2001).  

Although SVM has been widely implemented in time series prediction, there is yet 

another area of interest which has not been explored by SVM which is in the KLSE 

stock price prediction.  

 

 

Currently artificial neural network that utilize a back propagation algorithm 

has proved its superiority in predicting Wall Street Journal’s Dow Jones Industrial 

Index (Darmadi, 1994) and modeling NASDAQ-GEM stock price relationship (NG 

et al., 2000). Thus, the effectiveness of BPNN needs to be investigated in predicting 

KLSE stock prices. 

 

 

Therefore, this project examines the feasibility of Support Vector Machine 

technique with selection of two different kernel functions that are RBF and 

polynomial in predicting future KLSE stock price in Malaysia.  In addition to that, it 

is aimed at comparing and contrasting the performance of SVM with ANN in 

predicting KLSE stock price. 

 

 

 

  

1.2 Problem Background  

 

 

In recent years, many attempts have been made to predict the behavior of 

bonds, currencies, stocks, stock markets or other economic markets (Chakraborty et 

al., 1992). These attempts were encouraged by various evidences that economic 
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markets do not behave randomly, but rather perform in a chaotic manner (Malliaris et 

al., 1994). 

 

 

Is stock price really predicable? In the earlier stage, under the assumption of 

efficient market investors believed that the movement of stock price presents a state 

of random walk. That means it is impossible to predict the change of stock price by 

its historical data. Nevertheless, some researchers who did empirical studies applying 

investment portfolio found historical information is actually useful in prediction 

(Osborne, 1964). 

 

 

As the description above about the uncertainty of price movement, therefore, 

it is understandable that investment risk of stock is not low. In the traditional theory 

of investment portfolio, risk of stock can be divided into systematic risk and 

unsystematic risk (Sheng et al., 1999).  

 

 

 

Table 1.1:  Stock market risk types 

 

Risk Types Descriptions 

Systematic 

risk 

• Causes reward change of the whole market on a single stock. 

• Originated by the changes of politics, society and whole 

economic environment (Sheng et al., 1999). 

 

Example: 

Asia financial crisis from the end of 1997 had caused the stock 

markets in Southeastern Asia and Eastern Asia drastically 

dropped off. 

 

Impact: 

• Usually not easy to avoid through investment portfolio. 

• Called market risk or unavoidable risk. 
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Table 1.1:  Stock market risk types (Cont’.). 

 

Risk Types Descriptions 

Unsystematic 

risk 

• Determined by the fluctuation of stock reward ratio which is 

influenced by circulation volume of stock, supply and 

demand of stock, and management performance of the 

enterprise. 

• Related to the business risk of the enterprise itself. 

 

Example: 

The unit price of Dynamic Random Access DRAM) lower than 

its cost in 1998, the profits of the related businesses, such as 

manufacturing and packaging of integrated circuits, were 

shrunk. 

 

Impact: 

• Stock prices fell down. 

• Called risk of the particular stock or idiosyncratic risk (Sheng 

et al., 1999). 

 

 

Typically, there are six traditional statistical models (Bao et al., 2002): 

 

 

1. Simple exponential,  

2. Holt-Winters smoothing,  

3. Regression method,  

4. Causal regression,  

5. Time series method, and  

6. Box-Jenkins (Box et al., 1994)  

 

 

In addition to that, some of the models mentioned above are applicable for 

the issue where data distribution characterizes the periodic variation or normal spread 
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(Diebold, 1998), e.g. the seasonal or cyclical time series. An intelligent method, e.g. 

neural network (Castillo et al., 2001), is also introduced to improve modeling 

capacity in recent years. This is because modeling a neural network is nothing to do 

with the problem of linear or nonlinear system, the appropriate order of the function, 

and the fitness test of model. Unfortunately, it faces the issue about generalization 

capability that decides the network performance (Castillo et al., 2001). 

 

 

Table 1.2:  Limitations of traditional statistical models. 

 

Statistical Models Problems 

Holt-Winters 

smoothing, Regression 

method and Box-

Jenkins 

• Require a lot of observed data for fitting their models 

to build better approach (Diebold, 1998). 

• Not suitable for short-term forecast because of only a 

few data available. 

 

 

Modeling a forecasting system is widely discussed and studied for years, 

especially the topic about the trend analysis on time series or index series in which 

both of series definitely can be represented as a single in-order sequence (Bao et al., 

2002). However, the most of traditional statistics model cannot result in the 

satisfactory predicted results in many forecasting applications. This is because the 

traditionally mathematical model has to consider whether the system is the linear or 

nonlinear model, what the appropriate order of function for prediction is, and how to 

test the fitness of forecasting model (Box et al., 1994). Therefore, alternative is to 

seek a kind of intelligent method as the prediction tool, i.e. SVM in which it can 

avoid the crucial problem mentioned in the traditional statistics model. 

 

 

The domain of financial time series prediction is a highly complicated task 

due to following reasons: 

 

1.  Financial time series often behave nearly like a random-walk process, 

rendering the prediction impossible. The predictability of most 

common financial time series (stock prices, levels of indices) is a 
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controversial issue and has been questioned in scope of the efficient 

market hypothesis (EMH). 

2.  Financial time series are subject to regime shifting, i.e. statistical 

properties of the time series are different at different points in time 

(the process is time-varying). 

3. Financial time series are usually very noisy, i.e. there is a large 

amount of random (unpredictable) day-to-day variations. 

4.  In the long run, a new prediction technique becomes a part of the 

process to be predicted, i.e. it influences the process to be predicted 

(Asim et al., 2005).  

 

 

In the past 30 years, financial world has embraced a decidedly quantitative 

orientation from many parts of the decision making processes with the widely 

adopted theories based on linear models (John, 1965). This culture can be attributed 

to a common belief about financial markets that linear models are both efficient and 

simple. But many reasoned researchers in the area have revealed that the dynamical 

systems comprising the financial markets require more complex models than have 

been tried previously (William, 1964). However, many relationships in finance are 

nonlinear and that no simple transformation can be made to make them linear over a 

large enough range to be interesting (Darmadi et al., 1994).  

 

 

Table 1.3:  Previous research on stock fundamental data 

 

Area Researchers Features Findings 

Stock 

selection by 

using 

support 

vector 

machines 

Alan Fan 

and 

Marimuthu 

Palaniswami 

(2001) 

• SVM used for 

classification 

• Fundamental 

information used. 

• Not focus on prediction 

but selection 

• Produce 208% return 

over 5 strict out-of-

sample year. 

• The prediction 

accuracy are relatively 

lower than other 

classification problem. 
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Table 1.3:  Previous research on stock fundamental data (Cont’.). 

 

 

Area Researchers Features Findings 

Efficient 

stock market 

forecasting 

using neural 

network 

Amir Atiya, 

Noha Talaat 

and Samir 

Shaheen 

(1997) 

• Used fundamental 

indicators determination. 

• NN used to selected 

Buy, Sell, Hold or 

Objective Strategy 

• Performance determined 

by annual profit. 

• Good selection ability 

for neural network 

using the chosen 

indicators. 

• Stop and Objective 

Strategy give overall 

40.4% annual profit. 

Construct 

Decision 

Support 

System 

(DSS) to 

deal stock by 

using neural 

network 

Norio baba 

and Hisashi 

Handa 

(1996) 

• Design DSS to deal 

stock. 

• Input network based on 

fundamental and stock 

price. 

• Performances 

determined by buy and 

sell (decision maker). 

• DSS behave wisely in 

decreasing trend in 

Tokyo stock market. 

• Average total gains 

achieve more than 10 

million yen annually. 

 

 

Stock market prediction has been a research topic for many years (Peters et 

al, 1991). Due to the fact that stock markets are affected by many highly interrelated 

economic, political and even psychological factors, it is very difficult to forecast the 

movement of stock market (Jing et al, 1997). Kuala Lumpur Stock Exchange 

(KLSE) has been chosen because KLSE is one of the largest markets in the emerging 

economies in terms of capitalization. So, the use of SVM as a time-series analysis in 

the KLSE stock market prediction is still a miss compare with the conventional 

neural network. Therefore, a detail comparison between neural network and SVM is 

a need especially in stock market prediction. 

 

 

Fundamental data was not used in the recent research because the researchers 

are interesting in determining the ability of using SVM in predicting the future stock 



 8 

prices based on past prices alone. The problem of finding fundamental data that 

matched the price data in the correct time sequence was another reason for not 

considering it. Reliable stable fundamental data are also difficult to obtain as 

government bodies that issue the statistical economic figures frequently revised them 

thus making the data practically unreliable in forecasting future stock prices that may 

rely on the data (Clarence, 1993). 

 

 

This study is also motivated by a growing popularity of support vector 

machines (SVM) for regression problems (Kwok, 2001). SVM generalization 

performance does not depend on the dimensionality of the input space, but many 

SVM regression application studies are performed by ‘expert’ users having good 

understanding of SVM methodology.  

 

 

Each of these SVM regression problems have being solved for their specific 

domain. Hence, the regression problem in KLSE stock prediction has not been done 

by other researchers. Due to the nature of SVM is based on statistical learning theory 

(Theodore et al., 2000), SVM can be used to predict the KLSE market as well. 

 

 

Recently, a support vector method for density support estimation was 

introduced by (Scholkopf et al, 2001), and has been successfully applied to a number 

of problems, including stock market predictions and selections. This method permits 

the control of the number of outliers in the training set and the solution of the 

optimization problem leads to a decision function which classifies new points as 

inliers and outliers. From the researches that have been done by other researchers on 

stock market predictions, most of them did not focus on the outliers. So, the effects 

of the outliers in determining the accurateness of KLSE stock prediction will be 

considered and some comparisons will be done for these. 

 

 

While applying SVM to stock data prediction, the first thing that needs to be 

considered is what kernel function is to be used. As the dynamics of financial time 

series are strongly nonlinear (Maddala, 1999), it is intuitively believed that using 

nonlinear kernel functions could achieve better performance than the linear kernel 
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(Cao and Francis, 2003). In this investigation, the Gaussian Radial Basis function 

and the Polynomial function are used as the kernel function of SVM, because these 

kernels tend to give good performance under general smoothness assumptions. 

Consequently, they are especially useful if no additional knowledge of the data is 

available (Hall, 1998).  

 

 

Support Vector Regression (SVR) is a recently introduced approach to 

regression problem (Smola et al., 1998). It is a variation of Support Vector Machine 

(SVM), which was developed by Vapnik and his co-workers (Vapnik, 1998). 

Nowadays, SVR has been successfully applied to time series prediction (Mukherjee 

et al., 1997) and financial forecasting (Tay and Cao, 2001). 

 

 

In general, SVR uses the ε-sensitive loss function to measure the empirical 

risk and minimizes the regression error based on the Structural Risk Minimization 

(SRM) principle (Vapnik, 1995). Therefore, SVR need to be tested its efficiency in 

predicting the KLSE stock price due to financial data embedded noise. 

 

 

Support Vector Machine as an emerging type of machine learning based on 

statistical learning theory, has proved its success in regression and time series 

forecast.  This is clearly shown in a research done by Lu that using air pollutant data 

for prediction and as a result, Support Vector Machine has performed better as 

compared to RBF network (Lu et al., 2002).  

 

 

In their research, the result showed that SVM with Radial Basis Function 

kernel function produces smaller MAE values either for 24 hour or for one-week 

prediction in advance than that of RBF network. As we know, the weaknesses of 

RBF network are derived from its belongings to the family of neural network, which 

possessed typical problems of over fitting training and local minima and high 

influences of parameter selection on the model.  

 

 

Another issue of SVM modeling is the parameter complexity. The problem 

with large models, for example, means more parameters, which means either that we 
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need more data to estimate the parameters, or we are less certain in our estimates 

(and thus in the overall usefulness of the model). Therefore, SVM is needed to test 

the relationships between model complexity and reliability by comparing different 

parameters.  

 

 

Initially, SVM is a novel type of learning machine, based on statistical 

learning theory, which contains polynomial classifiers, neural networks and radial 

basis function (RBF) networks as special cases (Scholkopf, 1997). Thus, parameter 

selections become a challenging task especially in stock market forecasting in order 

to produce better prediction results. 

 

 

Meanwhile, Vanajakshi and Rilett (2004) have compared two machine 

learning techniques performance that are ANN and SVM. They used these two 

machine learning techniques to predict traffic speed for intelligent transportation 

system (ITS).  Based on the result, it is clearly shown that the proposed Support 

Vector Machine model using Support Vector Regression (SVR) with selection of 

RBF kernel is a viable alternative to ANN in short term prediction.  It is because 

ANN performance depends largely on the amount of data available for training the 

network.   

 

 

Therefore, if there is a situation where the available data are less and training 

data is not a good representation of the whole data, Vanajakshi and Rilett (2004) 

suggested SVR as another option for prediction problem. This is essentially same 

situation as the stock market where short term and long term prediction is important 

for those investors to gain more profit. 

 

 

Chen et al. (2004) have also conducted an investigation on load forecasting 

by comparing three different techniques that are SVM with RBF kernel function, 

local models and neural network.  The result of their experiments showed that SVM 

outperformed other techniques by producing an overall lower mean absolute 

percentage error (MAPE).  While local model produced the largest MAPE due to its 

unsuitability to nonlinear type of data and neural network are known for its 
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difficulties in parameters selection that resulted in inconsistent MAPE. So, the 

efficiency of Support Vector Machine in stock market forecasting needed to be 

examined comparing with other machine learning techniques. 

 

 

Table 1.4 : Kernels used by previous researchers 

 

 

Previous studies 
Sigmoid 

kernel 

RBF 

kernel 

Polynomial 

kernel 

Best 

Performance  

Chen et al.(2004) in load 

forecasting 

No yes No RBF 

Lu et al. (2002) in air 

pollutant parameter 

forecasting 

No yes No RBF 

Lucy Long Cheu (2003) in 

freeway incident detection 

yes yes yes Polynomial 

R. Begg et al. (2003) for 

recognizing Young-Old Gait 

patterns 

No yes yes Polynomial 

Frontzek et al.(2001) in 

predicting the nonlinear 

dynamics of biological 

neuron 

No yes Yes RBF 

 

 

 

As mentioned earlier, kernel functions are main issue in SVM. Thus, a 

variety of kernel functions have been tested with SVM and amongst them, radial 

basis function (RBF) have shown remarkable results (Lu et al., 2002; Chen et al., 

2004; Zhu et al., 2002).   

 

 

In prediction, SVM with choices of RBF outperformed other techniques such 

as Multi Layer Perceptron (MLP) and classical radial basis function network (RBFN) 

(Lu et al., 2002; Zhu et al., 2002).  However, the rational of selecting kernel 

functions to be used and the criterions that would affect the performance of SVM in 
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prediction are not highlighted and justified in above literatures. Moreover, the 

performance of kernel functions is varying between different problems, parameters 

and scaling methods.   

 

 

In the research done by Lin and Lin (2003), they used different data sets 

(heart, diabetes and others), and the sigmoid kernel function have produced an at par 

performance with RBF kernel with a proper selection of parameters.  While, 

Frontzek et al. (2001) concluded that RBF and polynomial were able to learn the 

nonlinear dynamics of biological data but sigmoid failed in learning the problem. 

Therefore, the accuracy of SVM with RBF and polynomial kernel functions need to 

be tested in order to produce promising results in KLSE stock prediction. 

 

 

Meanwhile, Ali and Smith (2003) and Parrado-Hernandez et al. (2003) also 

claimed that no specific kernel functions has the best generalization performance for 

all kind of problem domains and a priori information on which kernel function is the 

most appropriate to be used is ambiguous such that combining different type of 

kernels are suggested to solve a given problem in SVM.  Moreover, there is no 

literature that compared the performance of different kernels functions in predicting 

KLSE stock price. Thus, the comparison on the performance of RBF and polynomial 

kernel functions as well as neural network in KLSE stock prediction need to be 

justified. 

 

 

Besides, Rahayu (2004) in her research also have compared three different 

kernel functions, which are RBF, linear and polynomial in bioactivity prediction and 

compound classification.  Based on result obtained, RBF kernel outperform other 

kernels due to its ability to handle non-linear relation between class labels and 

attributes and has hyper parameters that influence the complexity of model (Hsu et 

al., 2003).  Although RBF kernel function is popular among researchers, another 

high dimensional kernel function like polynomial has the potential of producing 

promising results (Frontzek et al., 2001).   

 

As a conclusion, this project is aimed at investigating the potential of 

applying two different kernel functions namely RBF and polynomial in Support 
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Vector Machine, of which only one can result in better stock price prediction in 

Kuala Lumpur Stock Exchange domain.  Besides that, ANN is used to compare and 

evaluate the prediction performance of SVM and a detail comparison between ANN 

and SVM will be discussed on their strengths and weaknesses.  Last but not least, 

this study is also concerned in evaluating the effectiveness of various data segments 

in stock data prediction against SVM and ANN models.  

 

 

 

 

1.3 Problem Statement 

 

 

In order to cater the problems stated in section 1.2, this project is carried out 

in order to answer the following questions: 

 

 

1. How is the stock prices prediction performance while applying Support 

Vector Regression in stock market forecasting? 

 

2. Which kernel functions (Polynomial or Radial Basis Function) give better 

results on stock data prediction?  

 

3. Is SVM specifically tailored for one single stock or is that model general 

enough to predict more than one stock or even for KLSE index? 

 

4. How accurate is the SVM prediction if comparing with ANN? 

 

5. Does data segmentation and data transformation help to improve prediction 

performance of SVM and ANN?  
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1.4 Project Objectives         

 

 

Various prediction techniques were studied in stock market prediction field 

and still nowadays researchers are focusing on implementing the latest technique in 

order to improve the stock market prediction model. Therefore, this project is carried 

out in order to fulfill the following objectives: 

 

  

1. To predict the future stock prices value that can help trigger warning on 

potential buy or sell. 

2. To determine which kernel functions namely Radial Basis Function (RBF) 

and Polynomial give better performance in predicting future Kuala Lumpur 

Stock Exchange stock prices value. 

3. To make comparisons between two techniques which are Support Vector 

Machine and Neural Network that can improve the accuracy of KLSE stock 

market prediction. 

4. To find out whether data segmentation and data transformation can improve 

stock prices prediction performance. 

 

 

Realization of the fact that "Time is Money" in business activities, decision 

making plays an important role especially in stock exchange market. Therefore, it is 

a must for this study to investigate the accuracy of different learning techniques 

(SVM and NN) in predicting stock price. Then, the managers can make their 

valuable decision where time and money are directly related. 

 

 

 Since the main objective of this study is predicting future KLSE stock prices, 

the performance of SVM with different kernels (radial basis function and polynomial 

kernel) need to be determined. Beside that, different data segments will be used in 

this study to find out the superior learning techniques that produce better results in 

stock price prediction. 
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1.5 Project Scopes 

 

 

The objectives of this study have been stated at the previous page. In order to 

achieve these objectives, it is important to identify the research areas, which cover 

the following aspects: 

 

 

1. This project is focused on KLSE stock market domain by using End Of Day 

(EOD) data obtained from Kuala Lumpur Stock Exchange (KLSE) from year 

1992 until 2006. 

2. Support Vector Machine technique was implemented in predicting the stock 

prices. Radial basis function and polynomial kernel functions were applied 

and result from both were compared to find the suitable kernel function to be 

used in SVM for KLSE stock data prediction. 

3. Only two machine learning techniques which are Support Vector Machine 

and Back Propagation Neural Network will be taken into consideration for 

stock prices prediction. 

4. The predicted output obtained using Support Vector Machine was compared 

with the actual output and the performance was compared using Mean Square 

Error (MSE) 

5. Performance benchmark on prediction was compared with Back Propagation 

Neural Network.   

 

 

KLSE stock data are collected from year 1992 until 2006 because it is 

important to triggered the moving of the prices before and after the economy crisis at 

1997. Besides that, the terrorists attacked that happened on 11
th

 of September will 

also take into considerations to examine the events that will affect the performance of 

Support Vector Machine in stock market prediction. 
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1.6. Importance of The Study 

 

 

This study is carried out with the main objective of evaluating the 

performance of Support Vector Machine in predicting KLSE stock prices by using 

different kernels. Therefore, some importance of this study is stated and based on the 

results obtained, it is hoped that this study is able to: 

 

 

1. To encourage more works in exploring the advantages of Support vector 

Machine in term of different kernel selections for financial data prediction 

(not only stock market but also included currency rates, bonds, credits and 

others) in different domain, different segment of data and different time 

periods. 

2. To give exposure on another promising technique of stock market prediction 

(Support Vector Machine) that could offer superior or at least same 

performance as the existing techniques (ANN or statistical approaches). 

3. To provide basis for researchers who are interested in applying Support 

Vector Machine algorithm in fundamental data such as accounting 

information and company development or historical data (closing price, open 

prices, high prices, low prices and volume). 

4. To encourage more studies on Support Vector Machine in term of different 

kernel selections (sigmoid kernel, linear kernel, RBF kernel or polynomial 

kernel) for stock prediction or stock selection. 

5. To give an introduction on Kuala Lumpur Stock Exchange stock data 

characteristics and encourage more researches on Malaysia stock market. 
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1.7 Theoretical Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1   Theoretical framework 

 

 

 

 From the theoretical framework, it is clear that the input data consisted of a 

series of past End Of Day stock market data obtained from Kuala Lumpur Stock 

Exchange. These data will go through some pre-processing process such as data 

transformation and smoothing before evaluated by the chosen techniques. Then, 

SVM and Back-propagation network will be used to predict the future stock price by 

using different data segments and different time frame. Finally, the predicted output 

will compare with the actual stock prices for performance evaluation. In additions, 

some techniques comparison will be stated and the performance between SVM 

(Radial Basis Function and Polynomial kernel) and BP network will be discussed. 

 

 

 

 

• Future Stock 

Price Prediction 

• Techniques 

Comparison 

• Performance 

Comparison 

 

-KLSE EOD Data 

Previous 

Stock Data 

Data Cleaning 

Data Transformation 

Data Smoothing 

Data Segmentation 

 

SVM 

• RBF kernel 

• Polynomial kernel 

 

Neural Network 

• Back-propagation 

Support 

Vector 

Regression 
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1.8 Report Organization 

 

 

The organization of report comprised of five chapters. Chapter One explains 

an overall introduction on project’s problem background, problem statement, 

objectives, scopes, importance of study, theoretical framework and definition of 

terms. In Chapter Two, a detailed review of past researchers studies will be 

discussed.  It involves description on techniques in stock market prediction, KLSE 

Stock data, time series modeling and stock prediction, data mining operations and 

techniques and lastly support vector machine and artificial neural networks. After the 

analysis of past research, it is followed by Chapter Three, which presents the project 

framework and methodology. The project framework starts with the data collection, 

analysis on KLSE stock market domain, design of support vector machine structure 

that includes data prepossessing and parameter selection, experiments on the 

prepared data, analysis and comparison on experimental results.  

 

 

Chapter Four explains the implementation parts of Support Vector Machine 

in the project, which consist of data preprocessing, selection of parameters, 

procedure in building an SVM model and experiments on prepared datasets. It is then 

followed by Chapter Five, which presents the analysis of the prediction results by 

comparing the performance of SVM and BP models on various data segments and 

data samples. Finally, Chapter Six concludes the overall findings, advantages, 

contribution and recommendations for future works based on the results obtained.   
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