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ABSTRACT 
 

 

 
(Keywords: mesoporous silica, rice husk, catalyst, nanomaterial, fine chemicals) 

 
The mesoporous molecular sieves MCM-41 and MCM-48 have been hydrothermally synthesized from rice 
husk ash as an active source of silica in the presence of organic surfactant as structure-directing agent.  The 
surfactant-templated approach has created periodic porosity as well as catalytic functions (acid-base, redox 
and host for catalytically active sites) in the molecular sieve catalysts.  A deliberate design of pores is 
possible in the pore size range of 2 to 10 nm with controlled chemical compositions and structures.  
Mesoporous oxides in which metals (Ti, Zr, V, Nb, Mo, W, Mn, Fe, Co, Sn, Li, Cs, La) partially substitute 
for silicon in the porous network of MCM-41 and MCM-48 were prepared via two routes: (i) the post 
synthesis thermal treatment of silica mesophases by the “molecularly designed dispersion” technique and, 
(ii) the in situ synthesis of framework incorporated metal ions.  The resulting materials were characterized 
with various techniques: XRD, FTIR, DRUV-Vis, ESR, 14Li, 13C, 27Al and 29Si MAS NMR spectroscopy, 
FESEM, TEM, AAS, TG-DTA, TPDRO, surface acidity using probe molecules, BET and N2 adsorption 
isotherms.  Highly-ordered mesoporous materials with all of the appropriate catalytic requirements 
including large surface areas (>1000 m2g-1) and pore volumes (0.9-2.0 cm3g-1) readily accessible to large 
molecules have therefore been produced.  The mesostructured silica materials could form spherical or 
fibrous rodlike morphologies depending on reaction conditions.  The catalysts have been optimized for 
stability, activity, and selectivity in batch processes.  The mesoporous materials possessed high thermal and 
hydrothermal stability similar to that of microporous zeolite-based catalysts and the atomic ordering in the 
pore walls remained intact during various stages of the preparation.  The metal oxide modified mesoporous 
catalysts displayed extraordinarily high activity and selectivity in liquid phase oxidation of aromatic 
alcohol using H2O2 as oxidant under mild conditions with or without the presence of solvent.  Furthermore, 
the metal leaching by solvent was observed to be negligible suggesting that the catalyst could be recycled.  
Mesoporous materials MCM-41 and MCM-48 with aluminium in the framework were selective acid 
catalysts in the Friedel-Crafts acylation of aromatic compounds while metal organic complexes 
encapsulated in the mesopores effectively catalyzed the one step oxidation of benzene to phenol.  Also 
bifunctional catalysts with highly dispersed acidic and redox active sites were achieved when acidic 
mesoporous catalysts were incorporated with metal oxide particles such as NbOx, TiOx and LnOx with 
different loading through ion exchange and impregnation method.  The synergistic effects of the two 
functions have enabled highly selective aldol, nitroaldol and Claisen-Schmidt condensation of aldehyde and 
epoxidation of alkene, that have never been possible using traditional catalysts employing either Lewis or 
Brönsted acidity alone.  On the other hand, silylated mesoporous silica materials were hydrophobic, and 
performed well as matrices for immobilization of conducting polymer and polymer electrolyte.  Polymer 
modifications on MCM-41 and MCM-48 by in situ synthesis, miniemulsion polymerization, melt and 
solution intercalation methods yielded polymeric nanocomposites with enhanced thermal stability as well 
as catalytic, optical, conducting or dielectric properties.  In addition, zeolite/mesoporous molecular sieve 
composites were also synthesized as an alternative approach to increasing the acidity of MCM-41 and 
MCM-48 catalysts for high temperature acid catalysis of reactions such as cracking and hydrocracking. 
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ABSTRAK 

 

 

 
(Kata Kunci: silika mesoliang, sekam padi, mangkin, bahan nano, bahan kimia halus) 

 
Penapis molekul mesoliang MCM-41 dan MCM-48 telah disintesis secara hidroterma daripada abu sekam 
padi sebagai sumber silika yang aktif dengan mengggunakan surfaktan organik sebagai agen pengarah 
struktur.  Kaedah penemplatan surfaktan telah menghasilkan keliangan bertertib dan juga fungsi-fungsi 
pemangkinan (asid-bes, redoks dan perumah bagi tapak aktif pemangkinan) pada mangkin penapis molekul.  
Reka bentuk liang boleh direncanakan sehingga dapat menghasilkan saiz liang dalam julat 2 hingga 10 nm 
dengan komposisi kimia dan struktur yang terkawal.  Oksida mesoliang yang logam di dalamnya (Ti, Zr, V, 
Nb, Mo, W, Mn, Fe, Co, Sn, Li, Cs, La) menjadi pengganti sebahagian silikon dalam rangkaian mesoliang 
MCM-41 dan MCM-48 telah disediakan melalui dua laluan: (i) pengolahan haba pasca-sintesis terhadap 
silika fasa meso melalui teknik “penyebaran molekul terancang” dan, (ii) sintesis in situ dengan 
penggabungan ion logam bingkaian.  Bahan-bahan yang terhasil telah dicirikan melalui pelbagai teknik: 
XRD, FTIR, DRUV-Vis, ESR, spektroskopi 14Li, 13C, 27Al dan 29Si MAS NMR, FESEM, TEM, AAS, TG-
DTA, TPDRO, keasidan permukaan menggunakan molekul prob, BET dan isoterma penjerapan N2.  Bahan 
mesoliang bertertib julat jauh dengan keperluan pemangkinan yang sesuai termasuk luas permukaan 
(>1000 m2g-1) dan isipadu liang (0.9-2.0 cm3g-1) yang tinggi selain mudah didatangi molekul-molekul besar 
telah dihasilkan.  Bahan silika berstruktur meso boleh membentuk morfologi sfera atau rod berserabut 
bergantung pada keadaan tindak balas.  Kestabilan, aktiviti dan sifat memilih mangkin tersebut telah 
dioptimumkan dalam proses berkelompok.  Bahan mesoliang tersebut mempunyai kestabilan terma dan 
hidroterma yang tinggi serupa dengan mangkin mikroliang berasaskan zeolit dan susunan atom pada 
dinding liangnya tidak terjejas semasa menjalani berbagai-bagai langkah penyediaan.  Ubahsuaian mangkin 
mesoliang dengan oksida logam menghasilkan keaktifan dan kepilihan yang luar biasa baik bagi 
pengoksidaan alkohol aromatik dalam fasa cecair dengan adanya H2O2 sebagai pengoksid pada keadaan 
sederhana dengan berpelarut atau tanpa pelarut.  Lagi pula, keterlarutresapan logam dalam pelarut adalah 
sangat kecil mencadangkan mangkin tersebut boleh digunakan semula.  Bahan mesoliang MCM-41 and 
MCM-48 mengandungi aluminium bingkaian merupakan mangkin asid yang selektif terhadap pengasilan 
Friedel-Crafts sebatian aromatik sedangkan kompleks logam-organik dipegun dalam mesoliang 
memangkinkan secara efektif pengoksidaan benzena kepada fenol dalam satu langkah.  Mangkin dwifungsi 
dengan tapak asid dan tapak aktif redoks yang tersebar luas turut dihasilkan apabila mangkin mesoliang 
berasid tersebut ditambahkan dengan zarah logam oksida seperti NbOx, TiOx and LnOx dengan muatan 
berbeza-beza secara kaedah penukaran ion dan pengisitepuan.  Kesan sinergi kedua-dua fungsi tersebut 
menghasilkan mangkin berkepilihan tinggi terhadap tindak balas kondensasi aldol, nitroaldol dan Claisen-
Schmidt serta pengepoksidaan alkena, yang belum pernah tercapai menggunakan mangkin tradisional yang 
semata-mata asid Lewis atau Brönsted sahaja.  Sebaliknya, silika mesoliang tersililkan bersifat hidrofobik 
dan menunjukkan prestasi yang baik sebagai matriks bagi pemegunan polimer pengalir dan polimer 
elektrolit.  Modifikasi MCM-41 and MCM-48 dengan polimer melalui kaedah sintesis in situ, 
pempolimeran miniemulsi, dan interkalasi leburan dan larutan telah menghasilkan nanokomposit polimer 
dengan pertambahan kestabilan terma, ciri-ciri pemangkinan, optik, pengalir atau penebat elektrik.  Sebagai 
tambahan, komposit zeolit/penapis molekul mesoliang juga disintesis sebagai kaedah alternatif bagi 
meningkatkan keasidan mangkin MCM-41 dan MCM-48 dalam tindak balas pemangkinan berasid yang 
lazimnya beroperasi pada suhu tinggi seperti peretakan dan hidro-peretakan. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Research Background and Problem Statement 

 

 Malaysia has been found as one of the major rice production country, whereby 

425,080 hectares (3.21% of the total land in peninsular Malaysia) of the land have been 

used for paddy plantation [1].  Therefore, it generates abundance of waste namely rice 

husk, a thin but abrasive skin in nature covering the edible rice kernel.  It has been 

reported that Malaysia produces a ca. 18 million tons of paddy in which about one fifth 

of it is the husk [2].  This means that the annual production of rice leaves behind about 

3.6 million tons of husk as waste product, usually disposed by combustion (Figure 1.1).  

Unfortunately, the 20% of the rice husk ash (RHA) residues left after the combustion 

constitutes environmental problems due to severe air and water pollution problems.  

However, RHA can be considered as a potential feature of the rice husk, which the RHA 

residues can be employed as raw materials in a variety of applications (Figure 1.2).  

Previous research had shown that the rice husk ash containing 96-99% SiO2 can exist 

either in amorphous phase or in crystalline phases such as, α-cristobalite and tridymite 

[3-4].  In fact, the amorphous silica is the most active silica precursor in the synthesis of 

zeolites.  Hence, the large amount of silica freely obtained from this source provides 

abundant and cheap alternatives of silica for many industrial uses.   

 

 



 2

 
Figure 1.1: Disposal of rice husk, an agriculture waste by uncontrolled burning in 

Malaysia poses a significant environmental problem.   

 

 
Figure 1.2: White rice husk ash obtained from combustion of rice husk can be utilized 

as an active silica source for production of mesoporous catalysts  

 

Problem 

Solution 
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From the previous report, MCM-41 has been successfully synthesized by using 

the silica extracted from RHA [5]. However, no report has been found on the synthesis of 

MCM-48 directly from RHA, since the synthesis of MCM-48 mesoporous materials 

seems to be more challenging than the synthesis of MCM-41.  By using rice husk ash as 

the silica source in the synthesis of MCM-48, the production costs can be reduced 

subsequently besides helping to overcome environmental pollution.  Indeed, it should be 

noticed that RHA is considered slightly impure silica. The content of silica and all 

impurities in RHA vary depending on the variety, climate and geographic location [6].  

Therefore, in order to transform the RHA to valuable mesoporous materials, modification 

and optimization of the synthesis condition were carried out.   

 

 The use of the currently available microporous and mesoporous oxides is limited 

by their attainable pore sizes, pore architectures, the uniformity of the structures and the 

extent to which catalytically active heteroatoms can be introduced [7-9]. In the case of 

zeolites, the small size of the pores is the main limitation to their use in fine chemical or 

pharmaceutical synthetic application as most substrate and product molecules are too 

large to enter or leave the pore system. Mesoporous materials on the other hand, have as a 

main disadvantage their noncrystallinity, resulting in lower thermal and mechanical 

stability and in broader pore size distributions, and, hence, lower substrate/product 

selectivities compared with those found for zeolites. Moreover, the lack of crystallinity 

means a high concentration of structural defects, i.e. the presence of high degree of 

surface silanol groups. For mesoporous aluminosilicates, an incomplete incorporation of 

aluminium into the framework and a less rigid lattice environment means that their 

acidity is considerably lower than for zeolites, which limits their use as acid catalyst in 

reactions with large substrate species. 

  

Nanometer-sized catalytic species may be dispersed into the pores of a 

mesoporous host material in order to maximize the available surface area of that catalytic 

species and to prevent sintering at elevated temperatures. In this respect, zeolite 

crystallites, metal oxide species and even nanometer-sized metal particles may be 

introduced into a mesoporous host. Whilst mesoporous materials in themselves can be 
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catalytically active materials, great potential lies in the possibility of their 

functionalization. One area of advancement for this field is the heterogenization of 

homogeneous catalysts. Mesoporous materials can provide the perfect supports for 

known homogeneous catalysts to facilitate this.  

 

One of the major driving forces behind the development of mesoporous molecular 

sieves as catalysts is the necessity to develop better, cleaner manufacturing processes for 

the multitude of fine chemicals for daily life.  The substitution of homogeneous Lewis 

acids with a solid acid is one of many challenges.  Many of the catalysts traditionally 

used by industry are “dirty” as well as expensive. Aluminium chloride, AlCl3, used in the 

production of aromatic ketones is a good example; the catalyst is not reusable, and 

creates environmentally harmful waste. More than three decades ago, zeolites were 

identified as possible alternatives [10].  Zeolites are solid acids rather than liquid, so they 

are more stable and they do not leach into the environment.  They are also reusable, so 

the reactor needs charging far less often, reducing down-time on the production line. 

 

The aluminium-containing mesoporous materials MCM-41 and MCM-48 have 

bulk compositions similar to those of the zeolites, that is silica framework containing 

aluminium in tetrahedral environments. This led to the hope that these materials would be 

equivalent in acidity to the zeolites, and would represent large pore strongly acidic 

catalysts. Previous attempts in this area were disappointing, as the materials only 

displayed acidity of moderate strength [10, 11]. 

 

Solid base catalysts are now able to replace homogeneous bases in many reactions 

that can be performed at higher temperatures or in the vapour phase. Characterization of 

base strength relies mainly on probe molecules combined with spectroscopies and 

catalytic test reactions. Recently, modification of MCM-41 with covalently bonded 

organic species, especially functional organosilanes, has attracted much attention in order 

to design hybrid materials with engineered properties for applications in catalysis and 

selective adsorption of organics. At the same time, the grafting of alkylsilane on MCM-
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41 surface has provided an opportunity to obtain hydrophobic materials with tailored pore 

size and high surface area. 

 

Among the goals of our research is to develop a general synthetic methodology by 

which well-defined metal oxide catalyst can be incorporated into the surface structures of 

support materials. Traditional approaches to supported metal catalysts to on metal oxide 

supports usually yield a variety of supported species with different activities, but more 

importantly with different selectivities with respect to oxidation chemistry. A general 

synthetic approach to the creation of well-defined supported metal catalysts in which all 

the sites were, by design, the same would represent a significant advance in the science of 

supported catalysts and would represent an important new approach to the efficient use 

and management of many valuable natural resources. 

 

In heterogeneous catalysis the surface structure of the catalyst determines the 

catalytic properties. To satisfy the demands of activity and selectivity, a catalyst system 

needs to be prepared that catalyzes the desired reactions and eliminates all side reactions. 

This “designing” of a catalyst system requires a thorough control of the surface 

morphology. Molecular Designed Dispersion (MDD) of metal complexes on a highly 

porous support is a novel method to obtain high quality heterogeneous catalysts. The 

design of the catalyst system is aimed at decorating the surfaces of mesoporous silica 

support with a monolayer of metal oxides having the desired structures. An important 

feature is that the strategy allows metal nanoparticles to be well dispersed on a variety of 

oxides with few restrictions on their physical and chemical properties. Following this 

synthetic procedure, efficient nanostrucured catalysts for green chemistry processes, such 

as the production of aldehydes and ketones from the selective oxidation of primary, 

aliphatic and aromatic alcohols were developed. 

 

In this research, nanostructured catalysts have been developed via modification of 

silica mesophases prepared from local rice husk ash with metal precursors by the 

molecular designed dispersion (MDD) method. The ability to create a uniform dispersion 

of nanoparticles is one advantage of the MDD method. The homogeneous dispersion of 
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nanoparticles is achieved by first adsorbing or ion exchanging metal oxide precursors 

onto preformed silica mesophases. In a consecutive step, the adsorbed species is then 

locked in place, without aggregation, through careful calcination. at elevated 

temperatures. These nanomaterials showed thermal stability up to 700-800 oC and 

possessed large specific surface areas and controllable, ordered pore structure of 

molecular dimensions (2 to 50 nm).  

 

Applications using ordered mesoporous materials are undergoing intensive 

development and commercialization because of their applicability as catalysts in a broad 

range of industrial processes that are environmentally sensitive. High activity combined 

with shape selectivity under mild reaction conditions make these materials very 

promising in fine chemical processes allowing waste minimization, higher efficiency, and 

cheaper feedstocks. The great variety of frameworks combined with the presence in the 

mesopores of highly dispersed catalytic species, opens new frontiers in the set up of 

innovative applications of ordered mesoporous materials for eco-compatible organic 

syntheses. In particular, an emerging line is the use of mesoporous-microporous 

composite materials for hydrotreating or mild hydrocracking processes. The main 

obstacle towards viable application is the presence on the market of much cheaper 

amorphous alternatives, mainly based on silica gels.  

 

To date there have been numerous approaches to the design of heterogeneous 

asymmetric catalysts, since Schwab and coworkers first demonstrated that Cu and Ni 

could be supported on chiral silica surfaces [12, 13] and that the resulting catalysts could 

give low enantioselection in the dehydration of butan-2-ol.  Figure 1.3 shows three 

models of heterogeneous asymmetric catalysis, i.e. chirally modified solid surfaces, 

attaching chiral auxiliaries to reactant and intrinsically chiral solid or surface.   
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Chirally modified solid surfaces 

Attaching chiral auxiliaries to reactant 

Intrinsically chiral solid or surface 
“bare” 

or as support 
for active centres 

chiral modifier 
 

reactant 
 

 
Figure 1.3: Models of heterogeneous asymmetric catalysis. 

 

 

At present, attaching chiral auxiliaries to reactant is one of the most popular 

approaches to the design of highly efficient heterogeneous asymmetric catalysts. The 

strategy employed tends to depend on the reaction being catalyzed, but overall this 

method has the potential for designing generic heterogeneous asymmetric catalysts 

applicable to many reaction types.  

 The research strategy is based on the ideas that the chiral reactions could be 

induced by chiral amino acids and the use of heterogeneous micellar catalysis for 

synthetic purposes will overcome practical separation problems. In order to realize these 

ideas, chiral amino acid needs to be attached to the hydrophilic part of hydrolyzed 

octadecyltrichlorosilane (OTS). Amino acids such as L-glutamic acid, L-leucine and L-

phenylalanine have been chosen because of their water-soluble properties; hence they can 

be easily removed by treatment with water. It is expected that the attachment of amino 

acid would result in a chiral solid catalyst with bimodal hydrophobic-hydrophilic 
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character (see Figure 1.4).  In addition, due to OTS has three chloro functional groups, 

one expects that the OTS has high tendency to polymerized.   

 One considers that a catalyst which possesses both hydrophobic and hydrophilic 

components exhibits amphiphilic character.  The flexibility of the hydrophobic octadecyl 

groups therefore allows the formation of micellar aggregates in the system containing 

immiscible organic and aqueous phases.  Schematic representation of heterogeneous 

micellar catalysis is depicted in Figure 1.5 in which the hydrophilic microdomains in 

micellar aggregates are expected to act as “chiral pool” for acid chiral reaction.   

 Wash with water 
in order to 

remove “free” 
amino acid 

amino Acid 

amino acid-hydrolized OTS 

 

octadecyltrichlorosilane (OTS) 

hydrophobic hydrophilic 

Si 

Cl 

Cl 

Cl 

 
 

Figure 1.4: Attachment of chiral amino acid onto the hydrophilic part of hydrolyzed 

OTS. 
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water 
containing acid

H+
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Figure 1.5: Amphiphilic chiral solid catalyst as heterogeneous micellar catalyst in 

enantioselective hydration of epoxyclohexene. 
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Among the activities of this research is to develop a novel heterogeneous 

asymmetric catalyst by attachment of chiral amino acid onto the hydrophilic part of 

hydrolyzed octadecyltrichlorosilane (OTS).  Namely, this research will lead to the 

synthesis of heterogeneous asymmetric catalyst. The new catalysts are expected to 

possess tunable activity and selectivity for enantioselective hydration of epoxyclohexene. 

Structural and mechanistic aspects as well as key to the catalytic performance were 

determined by physical and chemical characterization methods. 

 

Other potential applications of ordered mesoporous materials are in 

chromatographic applications, separation of biological molecules, and drug delivery 

system, for which their uniform large pores can allow the development of new ways to 

products of high added value [14-17]. The field of sensors is also promising [18]. 

 

 

 

1.2 Research Objectives 

 

According to the original research proposal the work has been organized around 

three tasks. 

 

i. To promote the alternative applications of rice husk silica as value added primary 

products in the fine chemical industries. 

ii. To establish a viable, low-cost route to conversion of rice husk ash into precursors 

for silica-based mesoporous materials. 

iii. To synthesize mesoporous materials with chirality environment and chiral modifiers 

as the catalysts for asymmetric reactions. 
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1.3 Scope of Research 

 

 In this research, studies on the synthesis of all-silica, aluminosilicates, and metal 

containing mesoporous materials were conducted to identify ways of producing high 

surface area, thermally stable materials, with well defined mesopores and suitable 

distribution of catalytically active sites. These materials are mostly zeolites and ordered 

mesoporous materials, but also amorphous materials such as silica and polymer-silica 

nanocomposites are target materials. The driving force for such development is typically 

catalytic processes for which an advantageous use of such high surface area materials is 

envisaged. The research scope is to synthesize and test inorganic mesoporous catalysts to 

address the growing demand for improved catalysts for the processing of large and bulky 

substrates.  

 

The main phases of this research program are as follows: Phase one involves the 

optimization of synthesis of mesoporous silica and zeolites from rice husk ash (RHA) by 

the surfactant templating method. Rice hush ash obtained from an open burning site was 

utilized as a silica source for preparing mesoporous molecular sieves MCM-41 and 

MCM-48 using combination of neutral and cationic surfactants as the structure directing 

agent. The work involves the elucidation of the synthetic principles by which mesoporous 

acid or oxidation catalysts may be constructed in which self-assembly of surfactant 

micelles play a role in structuring the silica matrix. This work has resulted in the 

inclusion of metal ions of various chemical compositions (Al, Ti, Sn, Mn, Co, Mo, V, Li, 

Cs, La, Fe, W, Zr) into the walls of MCM-41 and MCM-48 materials during 

hydrothermal synthesis and via post-synthesis isomorphous substitution of the framework 

silicon in aqueous media. Alternatively, reactive components such as organosilanes can 

be used to incorporate organo-species within the wall structure of MCM-41 and MCM-48 

by wet impregnation, ion exchange, grafting and solid-state mixing.  

 

The catalytic activities of the mesoporous materials were studied within the 

context of solid acid or solid base and oxidation reactions. Additionally, we have been 

working to identify system features that would enable selective catalysis of aromatic 



 12

compounds (e.g. benzene) to more useful reactive intermediates for chemical synthesis 

(e.g. phenol, benzaldehyde). For the examples the Friedel-Crafts alkylation and acylation, 

epoxidation, cracking and hydrocracking reaction of palm oil to gasoline, Knoevenagel 

condensation, aldol condensation and Claisen-Schmidt condensation were readily 

achieved at mild conditions.. 

 

Mesoporous MCM-41 and MCM-48 were synthesized from rice husk ash 

followed by incorporation of polymers to produce nanocomposites. The various 

compositions of mesoporous materials with polymers were achieved by three methods, 

namely intercalation, in situ synthesis methods and melt inclusion method. Lastly, 

mesoporous materials were synthesized from rice husk ash followed by organic 

functionalization as adsorbent for pesticides and dyes.  

 

Phase two involves detailed characterization of the both the porous matrix and 

catalyst active sites. Characterization of the surface nature, adsorption and catalytic 

properties is aimed at understanding the unique properties of mesoporous materials and 

composites in order to discover their applicability in various advanced materials such as 

storage devices, sensors, new catalysts for synthesis of fine chemicals, and adsorbency of 

pollutants. Characterization techniques employed are powder X-ray diffraction, FTIR, 

ESR, Diffuse Reflectance UV spectroscopy, Solid-State MAS NMR and nitrogen 

adsorption. 

 

The final phase of the project involves establishing structure-property relationship 

between a designed catalyst and its properties (activity, selectivity, regenerability, life-

time). Subsequently, catalytic testing was conducted to evaluate the materials in Friedel-

Crafts reactions and in the field of selective oxidation reactions reported in Chapter 4. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 Zeolites and Porous Materials 

 

 Porous materials have been intensively studied with regard to technical 

applications as catalysts and catalyst supports.  According to the IUPAC definition, 

porous materials are divided into three classes; microporous (pore size < 2nm), 

mesoporous (2–50nm), and macroporous (>50nm) materials [1].  Materials from the 

former two classes have found great utility as catalyst and separations media for 

industrial applications.  The openness of their nanostructures allows molecules access to 

the relatively large internal surfaces and cavities enhance their catalytic and adsorptive 

activity.  

 

 Zeolites are well-known members of the microporous class materials since they 

occupy uniqueness of adsorption ability, high ion exchange capacity and shape selectivity 

in catalysis.  Zeolites are materials composed of porous crystalline aluminosilicates in 

which their micropores are ordered and regular arrays of uniformly-sized channels [2].  

Since the dimensions of these pores are such as to accept for adsorption molecules of 

certain dimensions while rejecting those of larger dimensions, these materials are known 

as ‘molecular sieves’ and are utilized in a variety of ways to take advantage of these 

properties.  Syntheses and modifications of zeolites as acids, base and redox catalysts 
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have attracted strong attention in the development of environmentally benign processes 

for instance by substitution of liquid acid, base or redox reagent by solid catalysts.   

 

 However, the applications of zeolites in catalysis are limited due to the mass 

transfer problem when reactants with size above the dimensions of the pores have to be 

processed, especially in the case of synthesis of fine chemicals [3].  This problem was the 

starting point for developing molecular sieves with pore size within the mesoporous 

range.  Despite these efforts, mesoporous molecular sieves with regular, well-defined and 

ordered pore channel systems have remained elusive until the early 1990s.  It was finally 

in 1992, researchers from Mobil (now known as ExxonMobil) gave the first full 

description on synthesis and characterization of molecular sieves with mesoporous 

channels ordered in a particular way and having a unique pore size [4, 5] 

 

 

 

2.2 Mesoporous Molecular Sieves 

 

 M41S, the new family of mesoporous molecular sieves discovered by the Mobil 

researchers consisted of several unique members having different mesophases.  They are 

(i) MCM-41 which has a hexagonal arrangement of unidimensional pore channels; (ii) 

MCM-48 which has a three dimensional cubic pore structure; and (iii) MCM-50 which is 

lamellar structure in the non-calcined form [6].  Figure 2.1 illustrates the M41S member’s 

different mesophases.  These materials were first synthesized hydrothermally in the 

presence of alkyltrimethylammonium surfactant cations having an alkyl side chain 

greater than six carbon atom.   

 

 Among these mesoporous molecular sieves, MCM-41 and MCM-48 are the most 

important for potential application in catalysis since the mesoporous structure of the 

lamellar phase MCM-50 collapses upon calcination.  The most striking fact about the 

MCM-41 and MCM-48 is that, although composed of amorphous silica wall, they 

possess long range ordered framework with uniform mesopores.  These materials also 
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possess large surface area, which can be up to more than 1000 m2g-1.  Moreover, the pore 

diameter of these materials can be well controlled within mesoporous range between 1.5 

to 20 nm by adjusting the synthesis conditions and/or by employing surfactants with 

different chain lengths in their preparation [7-11].   

 

 

 

 

 

 

 

 

 

Figure 2.1 Members of M41S family with different mesophases: (a) MCM-41, 

hexagonal; (b) MCM-48, cubic; and (c) uncalcined MCM-50, lamellar. 

 

 Nowadays, members of the M41S can be synthesized following a wide variety of 

preparation procedures. However, the syntheses of these mesoporous molecular sieves 

always involve the presence of a precursor of silica and a surfactant as a template in a 

(mainly) aqueous medium [12].  Most commonly used surfactant for the syntheses is 

cetyltrimethylammonium halide.  The syntheses are mostly prepared hydrothermally in 

alkaline condition under autogeneous pressure.   

 

 Surfactant or surface active agent consisted of two parts within the same molecule, 

namely hydrophilic head group and long hydrophobic tail group.  The surfactant 

functions as structure directing agent during the polymerization of the silica.  When silica 

precursor is introduced in the reaction medium, mesostructures are formed by a 

cooperative self assembly of surfactant/ silicate ion pairs that arrange themselves in 

various ordered arrays [13].   

 

(a)    (b)    (c) 
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 The surfactant to silica (Sur/Si) molar ratio is the key factor in obtaining the 

different mesophases found in the M41S family [16], although other parameters such as 

pH, synthesis temperature and crystallization time may have an effect as well [8, 14].  As 

the Sur/Si molar ratio was varied, the product formed could be grouped into three main 

categories as shown in Table 2.1. 

 

Table 2.1: Effect of Sur/Si molar ratio on the mesophases obtained. 

 

Category Mesophase Parameter (Sur/Si molar ratio) 

MCM-41 Hexagonal <1 

MCM-48 Cubic 1-1.5 

MCM-50 Lamellar 1.2-2 

 

 The synthesis mechanism was first described by Beck et al. along with their first 

report on the synthesis of M41S family [5].  In the synthesis, they found that the resultant 

mesostructures occur in different morphologies closely analogues to the lyotropic liquid 

crystal phases seen in the pure amphophilic lipid or surfactant/water systems.  Therefore, 

they proposed a liquid crystal templating (LCT) mechanism that suggested two main 

pathways; in which either (i) the liquid crystal phase is intact before the silicate species 

are added, or (ii) the addition of the silicate results in the ordering of the subsequent 

silicate-encased surfactant micelles.   

 

 The LCT mechanism was further generalized by Stucky and co-workers based on 

the specific type of electrostatic interaction between a given inorganic precursor, I and 

surfactant head group, S [15].  Based on the nomenclature of the original LCT 

mechanism, which involved the cationic quaternary ammonium surfactant and the 

anionic silicate species, they could be categorized as the S+I- pathway.  By extension, 

other charge-interaction pathways are S-I+, S+X-I+ (X- is counter anion), and S-M+I- (M+ is 

a metal cation).  
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 Usually, MCM-48 mesoporous materials can be synthesized by using various 

types of commercial available silica sources such as fume silica Cab-O-Sil [54], TEOS 

[16], colloidal silica (Ludox) [17], and many more. In this study, rice husk ash (RHA) 

obtained from open burning site will be employed directly as a cheaper alternative silica 

source for preparing the Si-MCM-48 mesophase since there are no reports on it until this 

moment. Si-MCM-48 will be synthesized using mixed cationic-neutral templating route 

which was proposed by Ryoo R. et al. [17]. Modification of the gel compositions 

proposed by Ryoo et al. should be carried out since the nature of the RHA is totally 

different from the common commercial available silica sources. Moreover, untreated 

RHA consists of a variety of impurities [18], which will greatly affect formation of 

mesophase. Therefore, optimization experiments should be carried out intensively in 

order to obtain pure phase and high quality of MCM-48 materials in optimizes condition. 

The optimization experiments will focus on the pH value, Na2O/SiO2, Sur/SiO 2 and 

H2O/SiO2 of the initial gel compositions. The resulting mesoporous materials will be 

structurally characterized by using powder X-ray diffraction technique. 

 

 

 

2.3 Introduction to Catalyst 

 

 Catalyst is defined as a substance that increases the rate of approach to 

equilibrium of a chemical reaction without being substantially consumed [19].  Normally, 

a catalyst offers an alternative path for a reaction, which is energetically more favourable. 

The activation energy of the catalyst added reaction is significantly smaller than that of 

the similar reaction but without catalyst; hence, the rate of the former is much higher.  

The action of a catalyst in acceleration of such chemical reaction is called catalysis.   

 

 Catalysts accelerate reactions and thus enable industrially important reactions to 

be carried out efficiently under practically attainable conditions.  Much of the food we eat 

and the medicines we take, many of the fabrics and building materials that keep us warm 

and almost all the fuels that transport us by road, sea or air are produced with the aid of 
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catalysts [200].  Nowadays, the chemical industry is largely based upon catalysis.  In 

2001, global top 50 chemical sales exceeded USD 404.4 billion. Roughly 85-90% of 

these chemicals were produced throughout the world in chemical manufacturing 

processes that involved catalysis [21].  In the same year, the world merchant market for 

catalysts (i.e., excluding catalysts manufactured and consumed internally by industrial 

companies) was worth about USD 10 billion [22].   

 

 Catalysts are generally divided into two basic types, heterogeneous and 

homogeneous, depending on their state relative to the reaction medium [23].  

Heterogeneous catalysts are present in different phase to the reaction medium.  In most 

cases the catalyst is a solid with the reactants being either in the gas or liquid phase.  On 

the other hand, homogeneous catalysts are present in the same phase (the gas phase or 

most often the liquid phase) as the reactants.  The most widely used homogeneous 

catalysts are acids (e.g. sulfuric acid), bases (e.g. sodium hydroxide) and (organo)metallic 

complexes.  Overview comparisons between these two types of catalysts are summarized 

in Table 1.1.  

 

Table 2.2: Comparison of heterogeneous and homogeneous catalysts [23].  

 

Heterogeneous Homogeneous 

Usually distinct solid phase Same phase as reaction medium 

Readily separated Often difficult to separate 

Readily regenerated and recycled Expensive/difficult to recycle 

Rates not usually as fast as homogeneous Often very high rates  

May be diffusion limited Not diffusion controlled 

Quite sensitive to poisons Usually robust to poisons 

Long service life Short service life 

Poor mechanistic understanding Often mechanism well understood 
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 Majority of the fine, speciality, and pharmaceutical chemicals manufacturing 

processes rely on homogeneous catalysts, with solid heterogeneous catalysts used in little 

beyond hydrogenation processes [24].  Many of these homogeneous catalysis processes 

generate huge amount of inorganic waste and toxic by-products. Since the early 1990s, 

the issues concerning the environmental impact of the hazardous waste and by-products 

from chemicals manufacturing processes have alarmed the public and environmentalists.  

Public concern is a potent influence; industry sectors are now looking towards innovative 

chemical technologies that reduce or eliminate the use or generation of hazardous 

substances in the design, manufacture and use of chemical products.  In this respect, there 

is no doubt that heterogeneous catalysts with their advantages such as ready separability, 

recyclable, reduction of waste can play a key role in replacing the conventional 

homogeneous catalysis route towards environmentally benign processes.  Consequently, 

developing heterogeneous catalysts for various kinds of chemical reactions that are 

involved in the industrial processes become a new challenge to scientists and researchers. 

 
The replacement of conventional stoichiometric oxidation and 

alkylation/acylation processes by environmental friendly catalytic processes is a widely 

accepted strategy in fine chemicals industry. However, a technological shift in this 

direction is hindered by the limited availability of efficient, heterogeneous catalysts 

which can utilize the clean oxidants molecular oxygen, H2O2 and alkyl peroxides and the 

too narrow application range of available heterogeneous catalysts. The use mesoporous 

molecular sieves as catalysts for the synthesis of intermediates and fine chemicals are a 

growing area of research in heterogeneous catalysis. Mesoporous materials such as 

MCM-41 are similar to zeolites in that they are both made of silica and both become 

catalytically active when metal is incorporated into the silica framework. In MCM-41, the 

dimension of the pores vary from 20 Å to 100 Å in regular fashion, as opposed to the 2-

13 Å pores of zeolites [5].  

 

Mesoporous MCM-41 may become an industrial useful materials in the future 

because they are, when suitably modified with metals such as aluminium, nickel, 

molybdenum, vanadium, titanium, rhenium and zirconium, ideal as shape selective 
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catalysts for reactions requiring electrophilic catalysis (alkylation, acylation, 

isomerization, dehydration), and they also promote oxidation [25]. The materials have not 

been utilized in any commercial processes.  

 

The diversity of MCM-41 properties and wide range of metals which can be 

incorporated into the framework should enable one to to design catalysts with the desired 

pore and acid strength properties. It has been established that MCM-41 zeolites possess 

large number of Lewis acid sites and the acid strength of these materials is weaker than in 

zeolites [26].  It appears that the best possibilities for these materials in catalysis will be 

in processes needing moderate acidity and involving bulky size molecules.  

 

Hence, processes that can take advantage of the properties of the MCM-41 is the 

catalytic transformations of oxygen-containing compounds and hydrocarbons with 

emphasis on dehydration and derivatization reactions of monohydroxy compounds, 

rearrangements of aliphatic and diaryl diols, ring opening and isomerization of epoxides 

and Friedel-Crafts alkylation reactions of hydrocarbons.  These reactions are interesting 

and important from an industrial point of view since many different products (alkenes, 

dienes, ethers and carbonyl compouds) may be formed depending on the reaction 

conditions and the structure of the starting materials.  In some cases the isolated products 

may be useful in pharmaceauticals and as fragrances in perfumes and detergents [27].  

For example, some of the highly desired bulky aromatic compounds in pharmaceuticals 

which may be prepared by acylation of methoxynaphthalene via mesoporous zeolite 

catalysis are listed in Table 1. The intermediates could be used to prepare naproxen, a 

non-steroidal anti inflammation drug [28] 
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Figure 2.2: Potential intermediates for the production of anti-inflammatory agents  
 

 

 

2.4 Polymeric-Silicate Nanocomposite 

 

 Organic-inorganic hybrid composites are one of the most important classes of 

synthetic engineering materials. Organic and inorganic materials are absolutely different 

from each other in their properties. Glass and ceramics which are inorganic materials are 

hard and stony but they usually have low impact resistant, brittle and fragile, whereas 
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organic material such as polymer or oligomer is resilient, flexible and elastic. 

Nevertheless, organic polymer normally has low heat resistant and tendency of natural 

degradation upon aging. In general, inorganic materials usually have higher thermal 

stability, better mechanical and optical properties whereas organic materials would give 

flexibility, elasticity and hydrophobicity properties [29, 30]. Organic- inorganic hybrid 

materials could then give desired combinations of the features of both organic and 

inorganic components. The preparation, characterization and application of organic-

inorganic hybrid materials have grown into a rapid expanding area of research in material 

science.  

 

 Recently, there are numerous researches being done to find a simpler synthesis 

routes and the improvement in properties of nanocomposites. Generally, there are three 

methods of synthesis leading to the formation of nanocomposite 2 materials. These are 

solution intercalation method; melt inclusion method and in-situ polymerization [31].  

 

 Solution intercalation method is based on a solvent system in which the polymer 

is soluble and the mesoporous silicate materials are swellable [32]. The mesoporous 

silicate materials are first swollen in a solvent such as chloroform or toluene. When the 

polymer and mesoporous materials solutions are mixed, the polymer chains intercalate 

and displace the solvent within the channels system of mesoporous materials. Upon 

solvent removal, the intercalated structures remain, giving the polymeric nanocomposites. 

While on the contrary, by in situ polymerization method, the mesoporous silicate 

materials are swollen within the liquid monomer or a monomer solution so that the 

polymer formation can occur inside the channel system of mesoporous silicate materials 

[32, 33]. Polymerization can be initiated either by heat, radiation or by the diffusion of a 

suitable initiator. Among the three methods, in situ polymerization could be an effective 

way to solve the problem of non-homogeneity dispersion of inorganic particles. This 

problem is due to the aggregation of inorganic particles which favored on energy 

considerations. 
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 The hydrophilic property possessed by silanol groups of mesoporous materials 

makes it unfavorable to interact with hydrophobic organic polymer. Organic modification 

of silicates allows precise control over the properties and pore sizes of mesoporous 

materials, while at the same time stabilizing the materials towards hydrolysis for a 

particular application. Vansant et al. [34] has studied the silylation effects on the porosity, 

adsorption characteristic and thermodynamic background of micro-, meso- and non-

porous oxides by employing different type of silylation agents. Their works on 

hydrophobic MCM-48/VOx catalysts using alkylchlorosilanes as coupling agents for the 

molecular designed dispersion of VO(acac)2 
showed the products were stable up to 500 

oC and exhibited significant improvement in structural stability. Moreover, the 

crystallinity of silylated materials does not decrease significantly after hydrothermal 

treatment in autoclave at 160 oC.  

 

 Surface modifications on mesoporous materials can be done in which the organic 

groups are “terminally bonded” or grafted to the silica wall, so that the organic groups 

can protrude into the mesopores. There are two ways in which these 9 processes can be 

carried out either by post-synthesized grafting or one-step co-condensation. Post-

synthesis grafting has been widely used to attach alkyl silanes onto mesoporous material 

surface. This process is done after calcination of mesoporous materials. Silanol groups of 

mesoporous material are essential for functionalization of the organic compounds thus it 

is important not to remove all of the silanol groups present in mesoporous materials. 

Silylation and esterification are the most common reaction used in surface modifications. 

Examples of these reactions are shown in Equation 1.1, 1.2 and 1.3, respectively. 

Normally, organochlorosilanes or organoalkoxysilanes can be used as precursors in 

silylation [29, 30, 33]. 
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 The mesoporous material and silylation reagent must be dried to remove moisture 

prior to silylation process to prevent self-condensation or hydrolysis of the precursor. 

Usually the structure of mesoporous is maintained after the silylation process [33]. The 

grafting rates are dependant on the reactivity of precursors, diffusion limitation, and steric 

factors. The pore size of the mesoporous materials can be adjusted by varying the 

quantity or chain length of silylating agents. Normally, 85% of mesoporous materials 

surface can be reacted with silylating agents especially by using trimethychlorosilane as 

precursors [29, 30].  

 

 The one-step co-condensation is based on the co-condensation of precursors of 

siloxane which act as building block to construct the framework. This process can be 

carried out using one or more organosiloxanes which contribute to the formation of 

silicate frameworks and the organic surface functional groups in templating environment. 

The advantages of using this method are high loading of organic functional groups, 

homogeneous surface coverage, shorter preparation time and wider range of reaction 

conditions.  

 

 The silylated product is expected to increase the compatibility of hydrophobic 

polymer and hydrophilic silica wall of mesoporous materials. Besides the effect of 

silylation, reaction condition of polymer incorporation also relies on the reaction 

temperature. Higher reaction temperature will promote the mobility of polymer chain and 

thus higher introduction of polymer chain into the mesopore channel [29]. Loosely 

attached polymer on the exterior surface can be washed away by using solvent. It is 

therefore important to choose an appropriate solvent with certain amount to minimize the 

salvation of intercalated chain from drawn out from the pores [30, 33].  
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2.5 Adsorption Properties of the Mesoporous Zeolites 

 

In heterogeneous catalysis, the reacting species are held on the surface of the 

catalyst by a physical attraction called adsorption while the reaction takes place. 

Adsorption may be relatively weak (physical adsorption) or may have a strength 

comparable to the strengths of chemical bonds (chemisorption). In either case adsorption 

is generally not uniform across a solid surface. Adsorption, and therefore catalysis, 

occurs primarily at certain favorable locations called active sites.  An active site is a part 

of the surface which is particularly good at adsorbing things and helping them to react. 

For the design and preparation of catalysts for specific chemical reactions, it is 

very important to understand the adsorption processes and the interactions between the 

adsorbates and the adsorbents.  Textual and surface properties are the two important 

aspects that determine the adsorption properties of the adsorbents.  Mesoporous zeolites 

with high surface area are beneficial for adsorption because of the large number of 

adsorption sites on the adsorbent surfaces.  Increasing pore size enables the adsorption of 

larger molecules and ions [35, 36, 37]. Narrow pore size distribution can provide good 

selectivity by sieve effects.   

 

 Adsorption effects in heterogeneous liquid phase reactions are seldom considered 

or recognized as important. Liquid phase adsorption is also poorly understood for typical 

reaction mixtures and hardly any models are available for its description.  Catalyst 

deactivation or coking by the reactant (adsorbate) is a major problem in liquid phase 

catalysis reaction.  The deactivation of catalyst maybe attributed to sintering of catalysts 

leading to collapse of the pore structures.  Hence, study on adsorption properties of 

mesoporous zeolites should be carried out to understand further the interaction between 

adsorbate and the catalyst surface (adsorbent). 
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CHAPTER 3 

 

 

 

METHODOLOGY 

 

 

 

3.1 Research Methodology 

 

 In this research, mesoporous zeolites were synthesized from rice husk ash.  The 

rice husk ash was obtained from open burning of rice husk, local agriculture waste 

(Figure 3.1).  The chemical composition of the rice husk ash is shown in Table 3.1. 

 

The mesoporous zeolites were modified and applied into three major studies, 

namely catalysis, nanocomposite and adsorption (Figure 3.2).  First, synthesis of 

mesoporous materials (MCM-41 and MCM-48) from rice husk ash followed by 

modifications for catalysis applications (Figure 3.3).  Second, synthesis of mesoporous 

materials (MCM-41 and MCM-48) from rice husk ash followed by incorporation of 

polymer via intercalation or in situ synthesis methods to produce nanocomposite (Figure 

3.4).  Third, synthesis of mesoporous materials (MCM-41 and MCM-48) from rice husk 

ash followed by modification and tested as adsorbent for pesticides and dyes (Figure 3.5). 
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Figure 3.1: Rice husk ash was obtained from open burning. 

 

 

Table 3.1 Chemical composition of rice husk ash. 

Compound Percentage / % 

SiO2 98.12 

Al2O3 0.19 

Fe2O3 0.07 

CaO 0.32 

MgO 0.51 

Na2O 0.01 

K2O 1.64 

LOI 2.14 

 

*LOI = Loss of Ignition 

 

 

 

 

 

 

 

 

Open burning 

Rice husk Rice husk ash 
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Figure 3.2: Overall research design of synthesis of mesoporous zeolites as catalysts 

for the production of specialty and fine chemicals. 

 

SYNTHESIS OF MESOPOROUS MATERIALS FROM  

RICE HUSK ASH 

 

(MCM-41, MCM-48) 

Hydrothermal synthesis by using teflon-lined autoclave and PTFE bottles

CHARACTERIZATION OF MODIFIED 

MESOPOROUS SILICATES

CATALYSIS 

MODIFICATION OF MESOPOROUS SILICATES 

For application in catalysis, nanocomposite and 

adsorption 

NANOCOMPOSITE

ADSORPTION
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Figure 3.3: Research methodology for mesoporous materials as catalysts. 

SYNTHESIS OF MESOPOROUS MATERIALS AS CATALYSTS 
FROM RICE HUSK ASH 

DIRECT SYNTHESIS 
 

*Introduction of metal species 
(Al, Ti and Mn) during 
synthesis of mesoporous 
materials 

CHARACTERIZATION OF MODIFIED MESOPOROUS 
SILICATES 

 
(XRD, TG/DTA, FTIR, DR-UV-Vis, Nitrogen Physisorption, ESR, NMR, 

FESEM, TPD/R, AAS) 

CATALYTIC TESTING 
 

(batch reactor, continous flow fixed-bed reactor for gases) 
Catalytic conversion of olefins, alkenes, alcohols, amines, polyaromatics (via 

oxidation,  epoxidation, Friedel-Crafts acylation, condensation reactions) 

ANALYSIS OF PRODUCTS  
 

Analyzed by FTIR, GC, GC-MS 

POST SYNTHESIS 
 

*Incorporation of metals (Al, Ti, Sn, Mn, Co, 
Mo, V, Li, Cs, La, Fe, W, Zr) or metallo-
complexes by wet impregnation, ion 
exchange, grafting and solid-state mixing. 

 
*Composition with microporous materials.
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Figure 3.4: Research methodology for mesoporous materials as nanocomposites. 

 

SYNTHESIS OF MESOPOROUS MATERIALS AS 
NANOCOMPOSITE FROM RICE HUSK ASH 

CHARACTERIZATION OF MODIFIED MESOPOROUS 
SILICATES 

 
(XRD, TG/DTA, FTIR, DR-UV-Vis, UV-Vis, Nitrogen 

Physisorption, MAS NMR, FESEM, TEM, Impedance Spectroscopy, 
Potentiostat/Galvanostat, Thermal Conductivity Analysis, AAS) 

STUDIES ON THE PHYSICAL AND CHEMICAL PROPERTIES 
 

Dielectric Properties 
Thermal Conductivity 
Electrical Conductivity 

Optical Properties

INTERCALATION / IN SITU SYNTHESIS / MELT 
INCLUSION / MINIEMULSION METHOD 

ALUMINATION / SILYLATION 
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Figure 3.5: Research methodology for mesoporous materials as adsorbents. 

 

 

 

SYNTHESIS OF MESOPOROUS MATERIALS AS ADSORBENT 
FROM RICE HUSK ASH 

CHARACTERIZATION OF MODIFIED MESOPOROUS 
SILICATES 

 
(XRD, FTIR, DR-UV-Vis, Nitrogen Physisorption) 

ADSORPTION TESTING 
 

(UV-Vis Spectroscopy) 
Adsorption of Pesticides 

Adsorption of Dye 

INCORPORATION OF METALS 



 

 

 

CHAPTER 4 

 

 

 

PROJECT AND SCIENTIFIC RESULTS 

 

 

 

 Overview of the different studies under this project was summarized in Table 4.1.  

Details descriptions of the studies are given in the following sections (Section 4.1 to Section 

4.44). 

 

Table 4.1:    Title of research abstracts. 

Section Title Researchers 

4.1 Optimized Synthesis of Si-MCM-48 and its 

modification to Al-MCM-48 by Secondary 

Synthesis 

Lau Chin Guan, Salasiah 

Endud 

4.2 Mesoporous MCM-48 Synthesized From Rice Husk 

Ash Silica: Physicochemical Properties and Its 

Catalytic Activity in Acylation Reaction 

Lau Chin Guan, Salasiah 

Endud 

4.3 Direct Synthesis of Mesoporous Zeolite from Rice 

Husk Ash 

Kung Chui Ling, Salasiah 

Endud 

4.4 Modification of Al-MCM-41 by Surface Silylation 

as Hydrophilic Catalyst in the Oxidation of 

Cyclohexanone 

Lee Tzyh Sheng, Salasiah 

Endud 
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4.5 Synthesis and Characterization of Modified 

Mesoporous Al-MCM-41 for the Dibenzoylation of 

Biphenyl  

Rino Rakhmata Mukti, 

Halimaton Hamdan, 

Mohd Nazlan Mohd 

Muhid, Salasiah Endud 

4.6 Friedel-Crafts Acylation Over Aluminosilicate 

MCM-41 Catalyst 

Yusri Bin Md Yunus, 

Salasiah Endud 

4.7 Synthesis and Characterization of Mesoporous 

Material Based in Niobium Oxide Supported MCM-

41 

Mohd Rozaimi Zahari, 

Salasiah Endud 

4.8 Friedel-Crafts Acylation of of 2-methoxynaphtalene 

with Acetyl Chloride using Zeolite H-Beta 
Jayakumar a/l Kuppuchamy, 

Salasiah Endud 

4.9 Catalytic Activity of Zeolite Beta/MCM-48 

Composite in Acylation of 2-methoxynaphtalene 

with Acetyl Chloride 

Abdullah Mukmin Mohd 

Radzi, Salasiah Endud 

4.10 Synthesis and Characterization of 

Zeolite/Mesoporous Molecular Sieve Composite 

Materials 

Syamsul Qamar Rosli, 

Salasiah Endud 

4.11 Zeolite/Mesoporous Silica MCM-41 Composite: 

Morphology and Acidity Property 
Mohd Zariff bin Zahari, 

Salasiah Endud 

4.12 Effect of Hydrogen on Palm Oil Cracking Over 

MCM-41/ZSM-5 Composite Catalysts 

Siti Kartina A. Karim, Nor 

Aishah Saidina Amin, 

Salasiah Endud 

4.13 Bifunctional Oxidative and Acidic Titanium 

Silicalite (TS-1) Catalysts for One Pot Synthesis of 

1,2-Octanediol from 1-Octene 

Didik Prasetyako, Zainab 

Ramli, Hadi Nur, Salasiah 

Endud 

4.14 Synthesis of Titanium Catalyst Supported on MCM-

41 

Heng Chui Ping, Salasiah 

Endud 

4.15 Mesoporous Material Ti-MCM-48 as Catalyst in 

Oxidation of Aromatic Compounds 

Kamariah Abdullah Khairi, 

Salasiah Endud 



 42

4.16 Catalytic Epoxidation of Cyclohexene Over 

Titanosilicate MCM-48 
Khairul Nizam Bin Nawi, 

Salasiah Endud 

4.17 Synthesis and Characterization of Tin-modified 

Mesoporous Silica MCM-48 for Selective Oxidation 

of Alcohol to Aldehyde 

Wong Ka Lun, Salasiah 

Endud 

4.18 Lewis Acids Catalyzed Oxidation of Secondary 

Alcohol using Mesoporous Materials Tin-

Containing MCM-48 

Siti Fairus Binti Mohd 

Yusoff, Salasiah Endud 

4.19 Impregnation of Manganese Oxide in MCM-41 by 

Direct Synthesis 

Lee Huey Shiuan, Salasiah 

Endud 

4.20 Synthesis and Catalytic Activity of Mn (II) 

Supported in Si-MCM-41 

 

Mohd Taib bin Haji 

Ibrahim, Salasiah Endud 

4.21 Secondary Synthesis of Cobalt-supported Si-MCM-

41 in Aqueous Solution and Methanol: 

Characterization of Structure and Catalytic Activity 

Norhafizah Hj. Jaafar, 

Salasiah Endud 

4.22 Catalytic Activity of Mesoporous Zeolite 

Molybdenum Oxide Supported MCM-41 in 

Oxidation of Carbon Monoxide 

Idzan Shafina Mohd Idris, 

Salasiah Endud 

4.23 Application of Mesoporous Catalyst Based on 

MCM-41 Silica in Epoxidation of Monoterpene and 

Acetylation of Aldehyde 

Rosita Yohana Md. Idrus, 

Salasiah Endud 

4.24 Surface Acidity Study of Mesoporous Zeolite 

V/AlMCM-41 and V/Al-MCM-48 using FTIR 

Spectroscopy 

Lim Kheng Wei, Salasiah 

Endud 

4.25 Amine Functionalized MCM-41 As Bronsted Base 

Catalyst In Knoevenagel Condensation 

Noor Ashikin Mohd Yusoff, 

Salasiah Endud 

4.26 Amine Functionalized MCM-41 As Brönsted Base 

Catalyst in Aldol Condensation of Aldehyde and 

Ketone 

Mohd Faisal Bin Ab. Latib, 

Salasiah Endud 
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4.27 Synthesis and Characterization of Mesoporous Base 

Catalyst Cs-MCM-41 

Siti Marlia Abd Rahim, 

Salasiah Endud 

4.28 Mesoporous Silica MCM-48 Containing Lanthanum 

as Active Catalyst for Claisen-Schmidt 

Condensation of Aromatic Compounds 

Leong Siew Ming, Salasiah 

Endud 

4.29 Fe (III) Supported Si-MCM-41 as Lewis Acid 

Catalyst in Friedel-Crafts Acylation 

Noor Aisyah Ahmad Shah, 

Salasiah Endud 

4.30 Iron (III)-Porphyrin Immobilized On Mesoporous 

Al-MCM-41 And Polymethacrylic Acid As 

Catalysts For The Single-Step Synthesis Of Phenol 

From Benzene 

Helda Hamid, Zainab 

Ramli, Hadi Nur, Salasiah 

Endud 

4.31 Synthesis, Characterization And Catalytic Activity 

of µ-Oxo Bridged Dinuclear Iron 1,10-

Phenanthroline Incorporated In MCM-48 

Lau Su Chien, Salasiah 

Endud 

4.32 Design and Application of Chiral Solid Catalysts 

Synthesized by Molecular Imprinting Method with 

Polyaminoacid as Chiral Promoter for Producing 

Pharmaceutical Products 

Lim Kheng Wei, Hadi Nur, 

Salasiah Endud 

4.33 Synthesis of Ordered Structure Polystyrene with 

Encapsulated Cadmium Sulfide Nanoparticles 

Eriawan Rismana, Hadi 

Nur, Salasiah Endud 

4.34 Synthesis of Poly(methylmethacrylate) -MCM-41 

Nanocomposite via Mini-Emulsion Polymerization. 

Siti Aisyah A. Bakar, Md. 

Nasir Katun, Salasiah 

Endud 

4.35 Polyethylene Oxide-MCM-41 and Polyaniline-

MCM-41 Nanocomposites Physicochemical and 

Conducting Properties 

Norizah Bt. Abdul Rahman, 

Hadi Nur, Salasiah Endud 

4.36 Synthesis and Characterization of Conducting 

Polymeric Nanocomposite Poly(Methyl 

Methacrylate)/Lithium-Exchanged Al-MCM-48 

Soh Wei Kian, Md. Nasir 

Katun, Salasiah Endud 
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4.37 Synthesis and Characterization of Polymeric 

Nanocomposite Poly (methyl methacrylate)/Al-

MCM-48 Prepared via Solution Intercalation 

Method 

Koh Chee Heng, Md. Nasir 

Katun, Salasiah Endud 

4.38 Synthesis of Poly(Vinyl Acetate)-Silylated 

Mesoporous Si-MCM-41 Nanocomposite and Its 

Characterization 

Nurul Izza Taib, Md. Nasir 

Katun, Salasiah Endud 

4.39 Polyurethane Modified With Mesoporous Silic

Polymeric Nanocomposites With 

Improved Physicochemical Properties 

Yah Weng On, Md. Nasir 

Katun, Salasiah Endud 

4.40 Synthesis and Characterization Of Polymer

Nanocomposites Polystyrene/Silylated Mesoporo

Material MCM-41 

Ruzanna Bt. Abdul Manap, 

Md. Nasir Katun, Salasiah 

Endud 

4.41 Adsorption of Pesticide using Synthetic Zeolite(Al-

MCM-41-30 and Natural Zeolite (Clinoptilolite) 

Yap Siew Yung, Asiah 

Hussain, Salasiah Endud 

4.42 Adsorption of Paraquate using Synthetic Zeolite 

MCM-48 

Goh Mey San, Asiah 

Hussain, Salasiah Endud 

4.43 Modified Zeolite(Zirconium- Al-MCM-41-30 as 

Adsorbent for Synthetic Dye 

Masida bt Rasyed, Asiah 

Hussain, Salasiah Endud 

4.44 Synthesis Characterization of Dye-loaded 

Mesoporous Material  

Rabiatul Adawiyah Awang, 

Salasiah Endud 
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4.1 Optimized Synthesis of Si-MCM-48 and its modification to Al-MCM-48 by 

Secondary Synthesis 

 

Lau Chin Guan 

 

 Mesoporous molecular sieve Si-MCM-48 materials with cubic pore structure have 

been synthesized via two routes using cationic cetyltrimethyl ammonium bromide surfactant 

(CTABr) or a mixture of cationic CTABr and neutral Triton X-100 (TX-100) surfactants as 

templates, respectively.  Both methods use colloidal silica, Ludox (SiO2, 30 wt. %) as a silica 

source.  Phase purity and the degree of crystallinity of each sample were characterized by 

various techniques which include XRD, FTIR, nitrogen adsorption measurements and 29Si 

MAS NMR spectroscopy.  Using the mixed cationic-neutral templating route, highly 

crystalline Si-MCM-48 material was obtained in high yields in which 3.5 mole of silica was 

produced per mole of the template surfactant used.  Si-MCM-48 was used as the parent 

zeolite in the secondary synthesis of Al-MCM-48 using sodium aluminate as the aluminating 

reagent in an aqueous environment.  In this work, Si-MCM-48 was treated with sodium 

aluminate solutions (0.1 M, 0.25 M, 0.5 M and 1.0 M) at 60 oC for 3 h or upon heating at 100 
oC for 12 h.  A range of mesoporous molecular sieves Al-MCM-48 with the framework Si/Al 

ratio as low as 3.0 have been synthesized and characterized using XRD, FTIR and 29Si MAS 

NMR spectroscopy.  The XRD patterns and the FTIR spectra of the Al-MCM-48 samples 

indicate that the degree of crystallinity decreases with increased concentration of the NaAlO2 

solutions at a constant temperature but increased concentration (1M) upon heating at 100 oC 

resulted in the samples becoming completely amorphous.  The nature and concentration of 

the acid sites have been monitored by temperature-programmed desorption of ammonia 

(NH3-TPD).  The Al-MCM-48 samples were found to exhibit two types of acid sites 

comprising of weak and moderate strength, respectively, with the maximum desorption 

temperature (Tmax) ranging between 563 and 758 K.  In contrast, the Si-MCM-48 samples 

have shown only one type of acid sites of weaker strength at a lower Tmax than that found for 

Al-MCM-48.  In general, the concentration of acid sites decreased with increased 

concentration of sodium aluminate used. 
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4.2 Mesoporous MCM-48 Synthesized From Rice Husk Ash Silica: Physicochemical 

Properties and Its Catalytic Activity in Acylation Reaction 

 

Lau Chin Guan 

 

The cubic structural mesoporous molecular sieves Si-MCM-48 has been successfully 

controlled by optimizing the gel compositions via a mixed surfactant templating route using 

cationic cetyltrimethylammonium bromide (CTABr) and neutral Triton X-100 (TX-100) 

surfactants. Rice husk ash, an agricultural waste obtained from an open burning site with 

high silica content (93 % SiO2) has been utilized as active silica reagent in the synthesis 

process. The Si-MCM-48 mesoporous materials were structurally characterized by X-Ray 

Powder Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR). The results 

show that the crystallinity and phases of the products depend on the compositions of Na2O, 

surfactants, H2O and pH values. Moreover, 13C CP/MAS NMR technique had been 

developed to quantify a mixture of cubic MCM-48 and hexagonal MCM-41 mesophases by 

means of interpretation of their surfactant organization, which cannot be determined by XRD 

technique. In order to generate active sites for catalytic applications, aluminomesoporous 

materials Al-MCM-48 were prepared by post-synthesis alumination of mesoporous Si-

MCM-48 and post-synthesis alumination of Si-MCM-48 mesophase using sodium aluminate 

as the aluminium reagent. The aluminated MCM-48 materials were characterized using XRD, 
27Al MAS NMR, FTIR and nitrogen adsorption-desorption measurements. The results reveal 

that unimodal Al-MCM-48, which possesses narrow pore size distribution around 26 Å, had 

been synthesized from post-synthesis alumination of mesoporous Si-MCM-48. Whereas, 

bimodal Al- MCM-48, which possesses dual narrow pore size distributions around 26 Å and 

38 Å had been generated by post-synthesis alumination of uncalcined Si-MCM-48 

mesophase.  27Al MAS NMR results depict that aluminium had been tetrahedrally 

incorporated into the framework structure of MCM-48. The nature and the concentration of 

acid sites of Al-MCM-48 materials have been monitored by IR spectroscopy using pyridine 

as the probe molecule and temperature-programmed desorption of ammonia (TPDA). Acidity 

studies on the samples demonstrated that the acidity strength of samples prepared via post-

synthesis alumination of mesoporous Si-MCM-48 is greater than samples prepared via post-
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synthesis alumination of Si-MCM-48 mesophase. Aluminated MCM-48 materials have been 

employed in the acylation of bulky aromatic compound, 2-methoxynaphthalene with acetic 

chloride to produce 2-acetyl-6-methoxynaphthalene, which is intermediate for preparing 

naproxen, a non-steroidal anti inflammation drug. Catalytic activities have been investigated 

in solvents with different polarity and the results illustrate that the conversion and 

selectivities of products rely on the polarity of solvent. The conversion of the 2-

methoxynaphthalene can be as high as 42 % with 86 % selectivities towards the desired 2-

acetyl-6-methoxynaphthalene in polar solvent, nitrobenzene. Whereas, the conversion of the 

2-methoxynaphthalene is 30 % with 56 % selectivity of 2-acetyl-6-methoxynaphthalene in 

non-polar solvent, cyclohexane. 

 

 
 

Figure 4.1: Proposed mechanism of post-synthesis alumination of Si-MCM-48 mesophase. 
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Figure 4.2: N2 adsorption-desorption isotherms and their corresponding poresize 

distributions curve (inset) of aluminosilicate Al- MCM-48 samples prepared by post-

synthesis alumination with various Si/Al ratios; (a) 20, (b) 30, (c) 50, and (d) 100.  The pore 

size distribution curves confirmed that bimodal Al- MCM-48, which possesses dual narrow 

pore size distributions around 26 Å and 38 Å had been generated by post-synthesis 

alumination of uncalcined Si-MCM-48 mesophase. 



 49

4.3 Direct Synthesis of Mesoporous Zeolite from Rice Husk Ash 

 

Kung Chui Ling 

 

Mesoporous zeolite MCM-41 was directly synthesized with an initial molar 

composition of 6 SiO2 : 1 CTABr : 1.5Na2O : 0.15(NH4)2O : 250H2O : xAl2O3. The Si/Al 

ratio (x) was varied between 0.1 and 0.3. The samples were characterized by means of 

powder x-ray diffraction (XRD), infrared spectroscopy (FTIR) and nitrogen adsorption 

measurements. The results have shown that highly crystalline Al-MCM-41-20 (Si/Al = 20) 

with specific surface area of 800 m2/g was obtained from rice husk ash as the silica source 

and sodium aluminate as the aluminium source via direct synthesis. Synthesis optimization of 

Al-MCM-41-20 was carried out by varying the molar ratios of surfactant/SiO2, H2O/SiO2, 

and NaOH/SiO2 and the duration of aging at room temperature. Results of the analyses 

showed that the optimum Al-MCM-41-20 crystallization conditions were found to occur for 

the following molar composition: 6SiO2 : 1 CTABr : 1.5Na2O : 350H2O : 0.15(NH4)2O and 

without any aging at room temperature. Acidity studies were carried out for both Si-MCM-41 

and Al-MCM-41 samples by adsorption and desorption of pyridine followed by FTIR 

spectroscopy. The result indicated that the optimized sample Al-MCM-41-20 exhibited 

higher concentration of Brönsted acid sites compared to that of the original sample which 

was prepared without optimization. The catalytic activity of this sample was tested in the 

acylation of anisole with acetic anhydride to give p-methoxyacetophenone. In this study, 

results of the chromatographic analysis showed the % conversion of anisole and % selectivity 

of p- methoxyacetophenone are 24.7% and 96.9% respectively.  
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4.4 Modification of Al-MCM-41 by Surface Silylation as Hydrophilic Catalyst in the 

Oxidation of Cyclohexanone 

 

Lee Tzyh Sheng 

 

Mesoporous molecular sieves Al-MCM-41 was directly synthesized from rice husk 

ash with an initial molar composition of 6 SiO2 : 1 CTABr : 1.5 Na2O : 0.15 (NH4)2O : 250 

H2O : 0.3 NaAlO2.  The Al-MCM-41 samples were modified by silylation using 

trimethylchlorosilane (TMCS), hexamethyldisilazane (HMDS) and octadecyltrichlorosilane 

(OTS) to produce hydrophobic zeolites. The samples were characterized by means of X0ray 

diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), 13C CP MAS Nuclear 

Magnetic Resonance (NMR) spectroscopy, specific surface area (SBET) and water adsorption 

study. The XRD analysis showed that the framework structure of silylated Al-MCM-41 was 

still intact but the degree of crystallinity of the sample decreased after silylation. The 13C CP 

MAS spectra confirmed that alkylsilane groups were present on the surface of silylated Al-

MCM-41. The results of water adsorption experiments showed that the surface silylated Al-

MCM-41 materials were more hydrophobic than before silylation. In this study, OTS 

modified Al-MCM-41 shows the least affinity for water molecules, suggesting that the 

silylation with OTS significantly increase the hydrophibicity of the Al-MCM-41 surface due 

to the higher numbers of carbons than TMCS or HMDS. Also, the results of the oxidation of 

cyclohexane using hydrogen peroxide as oxidant demonstrated that the OTS modified Al-

MCM-41 was active and selective catalyst towards the formation cyclohexanone and 

cyclohexanol. The gas chromatographic (GC) analysis showed the % conversion of 

cyclohexane and % selectivity of cyclohexanone are 35.4% and 18.4%, respectively.  
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4.5 Synthesis and Characterization of Modified Mesoporous Al-MCM-41 for the 

Dibenzoylation of Biphenyl 

 

Rino Rakhmata Mukti 

 

Modified mesoporous Al-MCM-41 (H-Al-MCM-41) was used in the dibenzoylation 

of biphenyl reaction using benzoyl chloride as benzoylating agent. H-Al-MCM-41 was 

synthesized in direct alumination and followed by ammonium nitrate ion exchange 

modification in order to create Brönsted and Lewis acidity strength. H-Al-MCM-41 was 

chosen owing to enhanced properties such as large surface areas, pore size diameter, uniform 

pore volume in the range of 943-1186 m2 g-1, 2.74-3.06 nm and 0.84-0.9 cm3 g-1, respectively, 

therefore the goal of this research carrying out the distribution reaction producing 4,4’-

dibenzoylbiphenyl can be achieved. Basically, 4,4’-dibenzoylbiphenyl is a very important 

material due to its utilization as a monomer to form poly(4,4’-diphenylene diphenyl ninylene) 

or PDPV. Analysis by gas chromatography-mass spectrometry (GC-MS) indicates that 4,4’-

dibenzoylbiphenyl was the only product formed in the dibenzoylation of biphenyl over H-Al-

MCM-41 with various Si/Al ratios (HCM-1, HCM-2, HCM-3 and HCM-4); implying the 

presence of Brönsted and Lewis acid sites corresponding to the tetrahedral Al and octahedral 

Al, respectively. 27Al MAS NMR shows that both acid sites are present in H-Al-MCM-41 as 

peak due to the tetrahedral Al at 53.0 ppm and octahedral Al at 0 ppm. The effect of 

extraframework Al (EFAL) and framework Al on the product formation has been studied by 

correlating the octahedral Al to tetrahedral Al ratios (Aloct/Altet ratio) with the initial rate of 

product yield. The results show that the dibenzoylation of biphenyl with benzoyl chloride 

over H-Al-MCM-41 catalyst can produce disubstituted 4,4’-dibenzoylbiphenyl whereby the 

highest yield of 0.45 μmol was obtained using the sample HCM-4 in a 3 h reaction time 

while the effective initial rate of 4,4’-dibenzoylbiphenyl formation correspondingly increased 

within the Aloct/Altet ratio of 0.6.  
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4.6 Friedel-Crafts Acylation over Aluminosilicate MCM-41 Catalyst 

 

Yusri Bin Md Yunus 

 

Mesoporous molecular sieve is widely used as heterogeneous catalyst in the Friedel-

Crafts reaction. Aluminosilicate MCM-41 has many advantages as catalyst such as pores of 

uniform size in the meso range and possessing Brönsted and Lewis acid as the active site. Al-

MCM-41 has been prepared by secondary synthesis via reaction of Si-MCM-41 with sodium 

aluminate at 60 oC for 3 hours. The resulting Al-MCM-41 materials have been characterized 

by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), nitrogen 

adsorption and desorption and pyridine adsorption analysis. The results of FTIR spectra and 

pyridine adsorption show that the Al-MCM-41 catalyst possesses Brönsted and Lewis acidity 

of moderate strength. The catalytic activity of Al-MCM-41 has been tested in the Friedel 

Crafts acylation of toluene with acetic acid at 120oC. The products were analyzed using Gas 

Chromatography and Mass Spectrometry-Gas Chromatography (GC-MS). Based on the 

catalytic study, it was shown that the percentage conversion of toluene was 83.56% while the 

percentage selectivity towards methylacetophenone was 86.72%. 
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4.7 Synthesis and Characterization of Mesoporous Material Based in Niobium 

Oxide Supported MCM-41 

 

Mohd Rozaimi Zahari 

 

Purely silicious and aluminosilicate MCM-41 molecular sieves have been reported to 

possess excellent properties as catalyst support such as high mechanical and thermal 

stabilities, uniform hexagonal mesopores which can be tailored in the size range between 1.6 

- 10 nm as well as high surface area.  In this research, Si-MCM-41 and Al-MCM-41 

(SiO2/Al2O3 = 10) have been prepared at 97 °C using sodium silicate as the silica source and 

sodium aluminate as the aluminium source.  The Nb2O5/Si-MCM-41 and Nb2O5/Al-MCM-41 

catalyst systems containing 1, 3 and 5 wt% loadings of niobium were prepared by using 

impregnation technique with niobium ethoxide as niobium source.  Characterization 

techniques employed were X-ray diffraction (XRD), Fourier transformation infrared 

spectroscopy (FTIR) and diffuse reflectance ultraviolet-visible spectroscopy (DRUV-Vis).  

The DRUV-Vis spectra, it showed that the niobium species were in tetrahedral and 

octahedral environments, respectively that act as the active sites in Nb-Si-MCM-41 and Nb-

Al-MCM-41.  The prepared catalyst Nb2O5/Al-MCM-41 was tested for its reactivity in the 

epoxidation of cyclohexene. 
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4.8 Friedel-Crafts Acylation of of 2-methoxynaphtalene with Acetyl Chloride using 

Zeolite H-Beta 

 

Jayakumar a/l Kuppuchamy 

 

Zeolite beta generally possesses high acidity and potentially active as heterogeneous 

catalysts in the Friedel-Crafts acylation of aromatic compounds.  In this study, samples of 

zeolite beta with SiO2/Al2O3 = 30 (H-Si-30) and SiO2/Al2O3 = 60 (H-Si-60) have been 

synthesized using rice husk ash via hydrothermal method.  The zeolite beta was then 

modified into the hydrogen form as zeolite H - beta, by ion-exchange with ammonium nitrate 

solution followed by calcination at 500 oC.  Characterization of structure and pore properties 

of the zeolites were carried out by weans of X-Ray Powder Diffraction (XRD) and Fourier 

Transform Infrared Spectroscopy (FTIR) and nitrogen gas adsorption-desorption methods.  

The XRD and FTIR results indicated the presence of zeolite beta and nitrogen gas 

adsorption-desorption showed isotherm of Type І which can be defined as microporous 

material with pore size around 2.38 nm.  Besides, IR-pyridine adsorption indicated that the 

both Brönsted and Lewis acid sites were present in zeolite beta.  The activity of zeolite H-

beta as catalyst were investigated in Friedel-Crafts acylation of 2-methoxynaphtalene with 

acetyl chloride in nitrobenzene solvent.  This Friedel-Crafts acylation produced 2-acytyl-6-

methoxynaphtalene, which is intermediate for preparing naproxen, a non-steroidal anti 

inflammation drug.  Results of the catalytic studies showed that the yield of 2-acytyl-6-

methoxynaphtalene was increase significantly when the temperature increases from 30 oC to 

120 oC and also increase significantly with the reaction time.  In the optimum parameters, 

that is at 120 oC for 24 hours sample H-Si-60 gave the highest conversion of 2-

methoxynaphtalene (52%) compared to the sample H-Si-30 (44%) even though both H-Si-60 

and H-Si-30 with selectivity at 100%. 
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4.9 Catalytic Activity of Zeolite Beta/MCM-48 Composite in Acylation of 2-

methoxynaphtalene with Acetyl Chloride 

 

Abdullah Mukmin Mohd Radzi 

 

Zeolite beta/MCM-48 composite was synthesized by addition of zeolite beta to 

mesophase of MCM-48 subsequently re-crystallization at 97oC.  The sample was 

characterized by means of FTIR spectroscopy, x-ray diffraction (XRD), nitrogen gas 

adsorption and Field Emission Scanning Electron Microscopy (FESEM). The XRD pattern of 

the calcined zeolite beta/MCM-48 composite sample showed peaks which correspond to 

those of the parent zeolite beta and MCM-48. Acidities study by pyridine adsorption –FTIR 

spectroscopy showed that no Brönsted acidity and Lewis acidity were observed in MCM-48. 

On the other hand, zeolite beta/MCM-48 composite has both Brönsted and Lewis acid sites. 

The activity of composite beta/MCM-48 as catalyst was investigated in Friedel-Crafts 

acylation of 2-methoxynaphtalene with acetyl chloride in nitrobenze at 120oC.  The product 

of the reaction was 2-acetyl-methoxynaphtalene with selectivity at 78.2% compared with 

0.42 mmol produced with selectivity at 38.8% for the reaction catalyzed by commercial 

zeolite beta.  
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Figure 4.3: Proposed mechanism of the acylation of 2-methoxynaphthalene with acetyl 

chloride over Brönsted acid sites in protonated H-Zeolite/MCM-48 nanocomposites. 
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Figure 4.4: Proposed mechanism of the acylation of 2-methoxynaphthalene with acetyl 

chloride over Lewis acid sites in protonated H-Zeolite/MCM-48 nanocomposites. 
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4.10 Synthesis and Characterization of Zeolite/Mesoporous Molecular Sieve 

Composite Materials 

 

Syamsul Qamar Rosli 

 

It has been recognized that the amorphous nature of the walls of pure silica MCM-48 

mesoporous molecular sieve (MMS) resulted in low acid strength and low hydrothermal 

stability compared to zeolites. This was thus a strong incentive to try to prepare new 

materials that would combine both the ordered mesopore structure of MCM-48 and the 

crystalline structure of microporous zeolites. In this work, purely siliceous mesoporous silica 

MCM-48 (Si-MCM48) with the composition of 5 SiO2 : 1.25 Na2O : 0.85 CTABr : 0.15 

Triton X-100 : 400 H2O has been synthesized using sodium silicate as  the silica source and 

CTABr as the template surfactant. Meanwhile the zeolite/mesoporous molecular sieves were 

prepared as follows: the mesoporous MCM-48 mesophase was first prepared, followed by 

addition of zeolite ZSM-5 or zeolite beta crystals and subsequently re-crystallization of the 

mesoporous material MCM-48 at an appropriate temperature. Both zeolites and the 

composite samples were characterized by X-Ray Diffraction (XRD), nitrogen (N2) 

adsorption measurements and Field Emission Scanning Electron Microscopy (FESEM). The 

XRD patterns of the calcined zeolite/MMS composite samples showed peaks which match 

those of the zeolite and MCM-48. The data indicate that the initially amorphous walls of the 

mesoporous material MCM-48 has transformed into crystalline nanoparticles. The BET 

isotherms for both ZSM-5/MCM-48 and Beta/MCM-48 showed that the pore shapes were 

different from the parent zeolites with narrow-mouthed non uniform shape of pores for ZSM-

5/MCM-48 and non-uniform slit shape pores for Beta/MCM-48. Acidity studies by pyridine 

adsorption–FTIR spectroscopy showed that MCM-48 did not possess acidity while the 

composites, ZSM-5/MCM-48 and Beta/MCM-48 were shown to have both Brönsted and 

Lewis acidity. 
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Figure 4.5: The 27Al MAS NMR spectrum for (a) MCM-48, (b) ZSM-5, (c) ZSM-

5/MCM-48, (d) Beta/MCM-48 and (e) Zeolite-Beta 
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4.11 Zeolite/Mesoporous Silica MCM-41 Composite: Morphology and Acidity 

 Property 

 

Mohd Zariff bin Zahari 

 

The amorphous property of silica mesoporous MCM-41 is known to be responsible 

for the low Brönsted dan Lewis acidity and the low thermal stability of the material.  Hence 

the latest innovation is to produce a nano-structured catalysts which possess high acidity and 

surface area through the combination of high surface area mesoporous silica MCM-41 and 

microporous zeolite which possesses both the Brönsted dan Lewis acid site.  In this research, 

zeolite X, zeolite Y and zeolite ZSM-5 each was combined with MCM-41 to produce the 

composite of zeolite X/MCM-41, zeolite Y/MCM-41 and zeolite ZSM-5/MCM-41, 

respectively.  The products were synthesized through direct synthesis alumination of silica 

MCM-41 followed by addition of zeolite X, zeolite Y and zeolite ZSM-5 at temperature 80 
oC.  All the samples were characterized using FTIR spectroscopy, X-Ray Diffraction (XRD) 

and Thermogravimetry Analysis (TG/DTA).  The XRD results show that zeolite/MCM-41 

composites possess the hexagonal structure of MCM-41 and microporous property of zeolite.  

The composite morphology studied by Field Emission Scanning Electron Microscopy 

(FESEM) showed the particles of MCM-41 and zeolites are in the nano meter range.  The 

FTIR and pyridine adsorption study proved the presence of Brönsted dan Lewis acid sites in 

the composites.  The acidity of the composites is higher than pure MCM-41 but lower than 

the corresponding parent zeolite.  The acidity increased by the following sequence Al-MCM-

41< zeolite X/Al-MCM-41< zeolite Y/Al-MCM-41< zeolite ZSM-5/Al-MCM-41.  The 

composites produced through direct synthesis possess lower Brönsted dan Lewis acidity 

compared to the mechanical mixture of MCM-41 and zeolite.  The above results suggest that 

rearrangement of MCM-41 atoms has occurred after addition of the zeolite and confirm that 

chemical interaction takes place during the synthesis process. 
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Figure 4.6: XRD pattern and FESEM image of zeolite/MCM-41 composites. 
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4.12 Effect of Hydrogen on Palm Oil Cracking Over MCM-41/ZSM-5 Composite 

Catalysts 

 

 Siti Kartina A. Karim 

 

The diminishing source of non-renewable energy has spurred the interests of 

researchers to explore the possibility to use alternative sources.  Catalytic cracking of 

vegetable oil to liquid fuels was studied by a number of individuals and the results were 

encouraging to continue with this study.  Composite catalyst, MCM-41/ZSM-5 was used to 

catalytically convert palm oil to gasoline.  The effects of temperature and hydrogen on palm 

oil cracking were investigated.  Experiments were conducted in a fixed bed reactor at 

atmospheric pressure.  Comparative performance of MCM-41/ZSM-5 catalysts synthesized 

using different methods was evaluated before further testing.  The variables tested were 

temperature (525 to 575°C) for cracking and hydrocracking reaction, palm oil to hydrogen 

ratio of 1:2 to 1:3.5, hydrotreatment flow rate (0.5 to 1.5 L/h) and hydrotreatment duration (1 

to 3h).  Catalysts used were characterized using X-ray Diffraction (XRD), Nitrogen 

Adsorption (NA) and Pyridine Infrared Spectrophotometry (Py-IR) methods.  The liquid and 

gaseous products were analyzed using Gas Chromatography.  Conversion increased with 

temperature, whether in cracking or hydrocracking.  Increase in hydrogen to palm oil molar 

ratio and longer catalyst hydrotreatment duration decreased palm oil conversion and gasoline 

selectivity.  On the other hand, increasing the flow rate of catalyst hydrotreatment increased 

conversion, organic liquid products’ yield and gasoline selectivity.  Aromatics were absent or 

nearly absent with hydrocracking and longer hydrotreatment duration.  Gaseous products 

consisted of mainly C3 and C4 compounds. 
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Figure 4.7: Effect of temperature on gas yield for palm oil hydrocracking and cracking 

over MCM-41/ZSM-5 composite catalyst synthesized in situ 
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Figure 4.8: Effect of temperature on gasoline selectivity for palm oil hydrocracking and 

cracking over MCM-41/ZSM-5 composite catalyst synthesized in situ. 
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4.13 Bifunctional Oxidative and Acidic Titanium Silicalite (TS-1) Catalysts for One 

Pot Synthesis of 1,2-Octanediol from 1-Octene 

 

Didik Prasetyako 

 

New bifunctional catalysts containing both oxidative and Brönsted acidic sites have 

been prepared and used for the consecutive transformation of alkenes to the corresponding 

diols via the formation of epoxides with aqueous hydrogen peroxide as oxidant. The catalytic 

system was designed in order such that two kinds of active sites would allow for the 

epoxidation of alkenes to take place within the pore channels of titanium-containing 

molecular sieve while acid catalysis of the epoxides to diols occurs on the external surface of 

the catalyst. Based on this design, titanium silicalite (TS-1), an excellent and commercial 

oxidation catalyst known so far, has been chosen. The TS-1 was then modified with different 

acidic oxide precursors. Synthesis of the series of bifunctional catalysts was achieved by 

deposition of various loadings of acidic oxide precursors up to 25 wt% onto TS-1 powder. 

The Ti4+ and acidic oxides in the TS-1 molecular sieve served as oxidative and acidic sites, 

respectively. The thus obtained bifunctional catalysts were sulfated TS-1 (SO4
2-/TS-1), 

sulfated titanium oxide supported on TS-1 (SO4
2-Ti/TS-1), tungsten oxide supported on TS-1 

(WO3/TS-1), sulfated zirconia supported on TS-1 (SZ/TS-1), and niobium oxide supported 

on TS-1 (Nb/TS-1). The X-ray diffraction analysis revealed that TS-1 still retained the MFI 

structure after incorporation of the acidic oxides even when the crystallinity is lower. The 

infrared (IR) and ultra-violet diffuse reflectance (UV-Vis DR) spectra showed that the 

titanium in TS-1 was mainly in tetrahedral coordination after incorporation of acidic oxides. 

Results of pyridine adsorption followed by IR spectroscopy showed the presence of Brönsted 

acid sites in WO3/TS-1, Nb/TS-1 and highly loaded SZ/TS-1 but not sulfated samples of TS-

1 (SO4
2-/TS-1 and SO4

2-Ti/TS-1). In the consecutive transformation of 1-octene to 1,2-

octanediol through the formation of 1,2-epoxyoctane, all the catalysts showed a significant 

increase in the rate of formation of 1,2-epoxyoctane with respect to TS-1. The presence of 

acidic oxides in TS-1 was proposed to explain the increased hydrophilic character of the 

catalysts, which is responsible for the higher rate of formation of reactive oxo-titanium 

species. Moreover, the acid sites were shown to effectively catalyze the formation of 1,2-
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octanediol with the 10 wt% niobium oxide supported on TS-1 giving the highest yield. 

Comparison of the catalytic performance of the prepared bifunctional catalysts with that of 

the mechanical mixture comprising of TS-1 and H-ZSM-5 (Brönsted acid), showed that the 

bifunctional catalysts were more active; suggesting that specific location of the two active 

sites plays an important role in the consecutive transformation of alkenes to epoxides and 

then diols. The higher activity of the bifunctional catalysts was supposedly due to the 

location of the acidic sites in the immediate vicinity of the oxidative sites which enabled the 

epoxidation products to undergo hydrolysis rapidly at the Brönsted acid sites that were 

located on the external surface of TS-1. 

 

 
Figure 4.9:  Oxidative and acidic catalyst for consecutive oxidation and acid catalytic 

reactions. 
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4.14 Synthesis of Titanium Catalyst Supported on MCM-41 

 

Heng Chui Ping 

 

Mesoporous molecular sieves Si-MCM-41 was directly synthesized from rice husk 

ash with an initial molar composition of 6 SiO2 : 1 CTABr : 1.5 Na2O : 0.15 (NH4)2O : 250 

H2O. Mesoporous catalyst Ti-MCM-41 wa prepared by grafting titanocene dichloride onto 

Si-MCM-41 in chloroform and triethylamine. A series of sample containing different loading 

of Ti in Si-MCM-41 were prepared such as 1%, 3%, 5% and 10wt% Ti. The samples were 

characterized by means of powder X-ray diffraction (XRD), infrared spectroscopy (FTIR), 

scanning electron microscopy (SEM), BET specific surface area measurement and diffuse 

reflectance ultraviolet-visible spectroscopy (DRUV-Vis). The XRD results show only a 

slight change in the unit cell parameters ((d100 and ao) after titanium was grafted but the long 

range order and the hexagonal symmetry of Si-MCM-41 were still intact. The specific 

surface areas (BET) of Ti-MCM-41 are in the range of 800-950 m2/g, even for the less 

crystalline Ti-MCM-41 samples indicating that titanium species were homogeneously 

dispersed on the support. Ti-MCM-41 samples exhibit absorptions at 220 nm to 280 nm in 

the DRUV-Vis spectrum. At higher Ti content, the DRUV-Vis absorption band becomes 

broader and the shoulder at > 240 nm are probably due to Ti(IV) sites undergoing a 

coordination change to octahedral. The catalytic activity of Ti-MCM-41 was tested in the 

epoxidation of 1-octene with hydrogen peroxide to give 2-methyl-3-hepthyloxirane. Results 

of the catalytic study showed that the supported catalyst was active in the epoxidation 

reaction but the conversion of 1-octene and the selectivity towards 2-methyl-3-

hepthyloxirane were very poor.  
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Figure 4.10: SEM image of Si-MCM-41 samples.  Two kind of particle morphologies were 

obtained, i.e. ‘worm’ type with diameter ~5 μm and length 10 to 30 μm (Figure 4. (a), (b), 

(c)), hexagonal type (Figure 4. (d)). 
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4.15 Mesoporous Material Ti-MCM-48 as Catalyst in Oxidation of Aromatic 

Compounds 

 

Kamariah Abdullah Khairi 

 

A series of titano-silicate mesoporous molecular sieves MCM-48 with 3%, 5% and 

10% wt% loading of Ti have been produced by post-synthesis modification method using 

titanocene dichloride (TiCp2Cl2) to functionalise Si-MCM-48 in the presence of chloroform 

and triethylamine. The mesoporous material were characterized suing X-ray diffraction 

(XRD), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV-Vis 

spectroscopy, and single point BET measurement. The XRD result show slight changes in 

the unit cell parameters (d211 and ao) after incorporation of titanium but long range order of 

the cubic structure of Si-MCM-48 was still retained. All the Ti-MCM-48 materials exhibit 

adsorption at ~220 nm in the DRUV-Vis spectra which indicates the presence of tetrahedral 

Ti(IV) species as active sites. The catalytic activity of Ti-MCM-48 was investigated in the 

oxidation of 1-napthol with hydrogen peroxide to produce 1,4-napthoquinone. The product 

was characterized using gas chromatography (GC) and gas-chromatography-mass 

spectrometry (GC-MS) techniques. Among the Ti-MCM-48 catalysts used in the oxidation 

reaction, the sample containing 10 wt% Ti loading gave the highest conversion of 1-napthol 

and showed 100% selectivity towards 1,4-napthoquinone after 22 hours of reaction both at 

60oC and 90oC. 
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4.16 Catalytic Epoxidation of Cyclohexene over Titanosilicate MCM-48 
 

Khairul Nizam Bin Nawi 

 

Titanosilicate MCM-48 (Ti-MCM-48) with 1%, 3% and 5% weight percentages of 

titanium were synthesized by the grafting of titanocene dichloride (TiCp2Cl2) on the surface 

of Si-MCM-48 in the presence of chloroform and triethylamine. The titanosilicate MCM-48 

was characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-Ray Diffraction 

(XRD) and Diffuse Reflectance Ultraviolet-visible (DRUV-Vis) spectroscopy. The XRD 

results show contraction of the parameter unit cell (d211 and ao) after incorporation of 

titanium in Si-MCM-48 but the cubic structure of MCM-48 was still intact. All the Ti-MCM-

48 samples exhibit an absorption band at around 220 nm in the DRUV-Vis spectra, 

indicating the presence of Ti(IV) species in tetrahedral coordination which function as active 

site. The catalyst was found to be active and selective in the epoxidation of cyclohexene 

using hydrogen peroxide oxidant and acetonitrile as the solvent. The reaction products were 

characterized using Gas Chromatography (GC) and Gas Chromatography-Mass Spectrometry 

(GC-MS). The results showed that the main product of the oxidation reaction was 1,2-

epoxycyclohexane and the by-product was 1,2-cyclohexanediol. 
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4.17 Synthesis and Characterization of Tin-modified Mesoporous Silica MCM-48 for 

Selective Oxidation of Alcohol to Aldehyde 

 

Wong Ka Lun 

 

 Tin-modified mesoporous silica MCM-48 with various Si/Sn ratios has been prepared 

by post synthesis modification in alkaline medium.  Local rice husk ash (RHA) has been used 

as Si precursor in the synthesis of Si-MCM-48 samples while SnCl2 was used as the tin 

source in the modification.  The tin-modified MCM-48 samples were characterized by using 

powder X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, 

ultraviolet-visible diffuse reflectance (UV-Vis DR) spectroscopy, nitrogen physisorption 

measurement, field emission scanning electron microscopy (FESEM) and temperature-

programmed reduction (TPR) analysis.  Surface acidity of the prepared samples was 

determined by using pyridine adsorption-desorption measurement followed by FTIR 

spectroscopy.  In addition, thermal and hydrothermal stability testing for the tin-modified 

samples were carried out.  The FTIR, UV-Vis DR and XRD results show that tetrahedral tin 

species can be introduced into the mesoporous material without destroying the framework 

structure of the molecular sieves.  Surface acidity studies confirm that Lewis acid sites had 

been generated on the mesoporous silica MCM-48 by post-synthesis modification.  The 

generation of Lewis acid sites could be due to the introduction of tin species and/or because 

of defect sites that had been created during post-synthesis modification.  Tin-modified 

sample SnM60 (Si/Sn = 60) possessed highest amount of Lewis acidity.  In oxidation of 

benzyl alcohol, all the tin-modified samples gave 100% selectivity to benzaldehyde in 

reaction time under 22 hours.  The catalytic activity can be correlated with the Lewis acid 

sites generated by post-synthesis modification.  Purely siliceous MCM-48 and physically 

mixed tin-containing MCM-48 samples that possesses no Lewis acidity gave poor 

performance in the catalytic reaction.  With the increase in the amount of oxidant in the 

reaction mixtures, the conversion of benzyl alcohol increased significantly but the selectivity 

for benzaldehyde was reduced.  For reusability test, the catalytic performance of the re-used 

samples was maintained within 5-10% after two cycles of reuse without significant loss of 

activity.  Comparison of the catalytic performance of SnM60 in the oxidation of unsaturated 
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primary alcohols and saturated aliphatic primary alcohol towards the corresponding 

aldehydes showed higher % conversion of the unsaturated primary alcohols than that of the 

saturated aliphatic primary alcohol. 

 

 

 

Figure 4.11: FESEM images of calcined (a) purely siliceous Si-MCM-48 and (b) SnM100. 
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Figure 4.12: Molecularly designed dispersion (MDD) of tin species on mesoporous molecular sieves. 
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4.18 Lewis Acids Catalyzed Oxidation of Secondary Alcohol using Mesoporous 

Materials Tin-Containing MCM-48 

 

Siti Fairus Binti Mohd Yusoff 

 

Tin containing MCM-48 molecular sieves have been prepared via post synthesis 

modification at 80 ºC with SnCl2 as a tin source and rice husk silica (93 % SiO2) as the 

silica source. The tin containing MCM-48 materials were characterized using X-ray 

diffraction, UV-Vis DR, single-point BET analysis and FTIR. The nature and strength of 

acid sites of tin containing MCM-48 have been monitored by IR spectroscopy using 

pyridine as the probe molecule. The result shows that only weak Lewis acid sites are 

present in the tin containing MCM-48. The UV-Vis DR spectra show that tetrahedral tin 

species can be introduced into mesoporous material MCM-48 without destroying the 

framework structure. The surface area analysis shows that increasing the amount of tin 

resulted in the decrease of surface areas of tin containing MCM-48. The results suggest 

that the tin species are mainly located in the mesopores. The mesoporous tin catalyst has 

been tested in the conversion aromatic compound namely the oxidation of secondary of 

alcohol, Meerweein-Ponndorf-Verley reduction and Oppenauer’s (MPVO) oxidation and 

Baeyer-Villiger (BV) oxidation at 80 ºC. However, the tin containing MCM-48 catalyst 

was active only in the oxidation of secondary alcohols giving the corresponding 

aldehydes. In the oxidation of benzyl alcohol in acetonitrile for 20 hours, benzaldehyde 

was formed with 100% selectivity. Results of the catalytic study confirm that tetrahedral 

tin species in MCM-48 are predominantly weak Lewis acids, and thus are inactive in 

promoting MPVO and BV reactions. This suggests that oxidation and reduction of 

carbonyl group of aromatic compounds in those reactions require active sites of higher 

acid strength. 
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Figure 4.13: The proposed mechanism for oxidation of benzyl alcohol over tin-

modified MCM-48 samples prepared by post synthesis modification.  
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4.19 Impregnation of Manganese Oxide in MCM-41 by Direct Synthesis 

 

Lee Huey Shiuan 

 

Manganese oxide supported MCM-41 mesoporous molecular sieves with Si/Mn 

composition between 5 and 50 were synthesized by direct synthesis using manganese 

chloride dihydrate as a source of manganese. The samples were characterized by means 

of X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), nitrogen 

adsorption measurement and diffuse reflectance ultraviolet-visible spectroscopy (UV-

VIS-DRS). The XRD analysis showed that the framework structure of MCM-41 

containing manganese oxide was still intact but the degree of crystallinity of the sample 

decreased with the decrease of Si/Mn ratio due to insertion of Mn into the framework of 

MCM-41. The UV-VIS-DRS spectra for the manganese oxide supported MCM-41 

showed two broad peaks around 300 nm and 320 nm. The peak around 320 nm exhibited 

the charge transfer transition of O2- to Mn3+ in Mn3O4 in which Mn was octahedrally 

coordinated with oxygen. The peak around 300 nm was due to Mn3O4 species in 

tetrahedral coordination. The activity of manganese oxide supported MCM-41 as redox 

catalyst was tested in the oxidation of cyclohexane with aqueous hydrogen peroxide 

solution as oxidant in a batch reactor. Gas chromatography (GC) was used to identify the 

two main products cyclohexanone and cyclohexanol. The presence of manganese oxide 

in MCM-41 resulted in the increase of the rate of decomposition of hydrogen peroxide to 

water and oxygen. Subsequently, the conversion of cyclohexane to cyclohexanone and 

cyclohexanol decreased when the concentration of manganese oxide in the sample 

increased.  
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4.20 Synthesis and Catalytic Activity of Mn (II) Supported in Si-MCM-41 

 

Mohd Taib bin Haji Ibrahim 

 

Mesoporous molecular sieves Si-MCM-41 containing manganese ions (Mn-

MCM-41) were prepared by wet impregnation technique using manganese(II) 

acetylacetonate and manganeses(II) sulphate. The mesoporous materials Mn-MCM-41 

have been characterized using ESR, FTIR, DRUV-Vis spectroscopy technique and XRD. 

X-ray diffraction (XRD) analysis show that hexagonal pore structure of Si-MCM-41 

remain unchanged after impregnation with 3wt% and 5wt% Mn. Increase of the 

parameter value unit cell (ao) values for Mn-MCM-41 indicated the incorporation of Mn 

into the framework of the Si-MCM-41 host. The present of Mn(II) species as active sites 

in Mn-MCM-41 was confirmed by electron spin resonance. (ESR) and diffuse reflectance 

ultraviolet-visible (DRUV-Vis) spectroscopy. It shown that Mn-MCM-41 was active 

heterogeneous catalyst in the oxidation reaction of phenol with hydrogen peroxide (H2O2) 

as a oxidizing agent at room temperature, giving the highest selectivity (100%) towards 

p-benzoquinone. Phenol conversion was found to increase with increasing of weight 

percent of Mn in the Mn-MCM-41 sample. 
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Figure 4.14: ESR spectra of Mn-MCM-41 samples prepared by wet impregnation 

technique using manganese(II) acetylacetonate (denoted as MnA-MCM-41) and 

manganeses(II) sulphate (denoted as MnS-MCM-41) with different loading of Mn 

species. 
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4.21 Secondary Synthesis of Cobalt-supported Si-MCM-41 in Aqueous Solution and 

Methanol: Characterization of Structure and Catalytic Activity 

 

Norhafizah Hj. Jaafar 
 

Mesoporous materials cobalt-supported Si-MCM-41 (Co/Si-MCM-41) with 1wt% 

and 3wt% loadings of cobalt were prepared via secondary synthesis by treatment of 

cobalt(II) acetate with Si-MCM-41 at 80oC in aqueous solution and in methanol. The 

products were characterized by means FTIR, XRD, DRUV-Vis and nitrogen adsorption 

measurement. The XRD results show that the structure of MCM-41 in methanol is still 

maintained after the impregnation of cobalt into Si-MCM-41 whereas it becomes 

partially amorphous after treatment in aqueous solution due to collapse of the silica 

framework. The result suggests that the collapse of the MCM-41 structure in aqueous 

solution could be attributed to the presence silanol groups in Si-MCM-41. Interaction of 

the hydroxyl groups with water molecules was found to facilitate the rate of hydrolysis of 

the MCM-41 silica framework at the reaction temperature used in this study. Nitrogen 

adsorption analysis on samples of Co/Si-MCM-41 containing 1wt% and 3wt% cobalt 

show the presence of mesopores with the average diameter of  2.8 nm and 3.5 nm 

respectively, and surface areas of higher than 600 m2/g. Generally, the surface area of Si-

MCM-41 (1061 m2/g) was significantly reduced after modification with cobalt which 

indicates the filling of pores of the support by cobalt. Dispersion of the cobalt species on 

the surface Co/Si-MCM-41 was evidenced by DRUV-Vis spectra which show an 

absorption band at around 250-270 nm assigned for ionic species of Co(II) and Co(III) in 

tetrahedral coordination and a wide band at around 350-560 nm for the formation cobalt 

complexes in octahedral symmetry. However, the study on the catalytic activity of 

catalyst which was prepared in methanol shows that it was not active as catalyst in the 

oxidation of phenol to hydroquinone at 60 oC and 90 oC using hydrogen peroxide as 

oxidant. 
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4.22 Catalytic Activity of Mesoporous Zeolite Molybdenum Oxide Supported 

MCM-41 in Oxidation of Carbon Monoxide 

 

Idzan Shafina Mohd Idris 

 

 Mesoporous zeolites MoO3/Si-MCM-41, MoO3/Al-MCM-41 and MoO3/H-Al-

MCM-41 containing 1%, 3%, 5% and 10% w/w Mo were synthesized as catalysts for the 

oxidation of carbon monoxide.  Surface modification of the zeolites were achieved by 

wet impregnation of ammonium heptamolybdate onto MCM-41 as catalyst support, 

followed by calcination of the samples at 500 oC.  Structural characterization of MCM-41 

was carried out by means of FTIR spectroscopy and X-ray diffraction (XRD) analysis.  

The surface properties and the BET surface area of MCM-41 were determined by 

nitrogen adsorption technique.  Catalytic properties of MoO3/Si-MCM-41, MoO3/Al-

MCM-41 and MoO3/H-Al-MCM-41 in the oxidation of CO to CO2 were studied using a 

microreactor and FTIR spectroscopy.  The results showed that MoO3 supported MCM-41 

catalysts were active in the oxidation of CO with the percentage of conversion higher 

than 96% at temperature between 400 oC and 450 oC.  XRD analysis showed that the 

degree of crystallinity of the MCM-41 decreased with increased loadings of MoO3.  The 

MCM-41 phase has become amorphous due to the presence of Mo in the sample.  

However, the percentage of conversion of CO to CO2 was found to increase when the Mo 

loadings increased up to 10% w/w. 
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4.23 Application of Mesoporous Catalyst Based on MCM-41 Silica in Epoxidation 

of Monoterpene and Acetylation of Aldehyde 

 

Rosita Yohana Md. Idrus 

 

 Mesoporous molecular sieves Si-MCM-41 and Al-MCM-41 of the molar gel 

composition 6SiO2 : xAl2O3 (x=0 and 0.6) : 1.5 Na2O : 1 CTABr : 0.15(NH4)2O: 250 

H2O have been synthesized and used for preparing the MCM-41 supported MoO3 

catalysts MoO3/Si-MCM-41 and MoO3/Al-MCM-41 with Mo loading of 1%, 5% and 

10% respectively, via wet impregnation with sodium molybdate.  All the MCM-41 

catalysts were characterized by using FTIR spectroscopy, XRD, nitrogen adsorption 

measurements and 29Si MAS NMR spectroscopy.  The catalytic activities of H-Si-MCM-

41 and H-Al-MCM-41 were tested in acetalization of benzaldehyde with methanol to 

benzaldehyde dimethylacetal while the MoO3/Si-MCM-41 and MoO3/Al-MCM-41 

catalysts were used in the epoxidation of R-(+)-limonene to limonene oxide (a mixture of 

cis and trans) in the presence of 70% tert-butyl hydroperoxide.  The products of these 

reactions have been characterized by gas chromatography-mass spectroscopy (GC-MS).  

The results of the catalytic testing showed that H-Si-MCM-41 and H-Al-MCM-41 were 

active and selective in the conversion of benzaldehyde with the selectivity towards 

benzaldehyde dimethylacetal was greater than 90%.  However, MoO3/Si-MCM-41 and 

MoO3/Al-MCM-41 showed high R-(+)-limonene conversion of 70% but lead to low 

limonene oxide selectivity (about 2.5%) due to formation of by-products. 
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4.24 Surface Acidity Study of Mesoporous Zeolite V/AlMCM-41 and V/Al-MCM-

48 using FTIR Spectroscopy 

 

Lim Kheng Wei 

 

 Mesoporous zeolite Al-MCM-41 (hexagonal) and Al-MCM-48 (cubic) with molar 

composition 6SiO2 : 0.6Al2O3 : 1.5Na2O : 0.55 CTABr : 112 H2O, were synthesized 

using sodium silicate as the silica source, sodium aluminate as the aluminium source and 

cetyltrimethyl ammonium bromide (CTABr) as the surfactant template.  Modification of 

MCM-41 and MCM-48 were carried out by secondary synthesis with ammonium 

metavanadate to give samples containing 0.1 M, 0.25 M and 0.5 M vanadium.  All 

MCM-41 and MCM-48 samples were characterized by means of FTIR spectroscopy, 

XRD and nitrogen adsorption measurements.  The type of hydroxyl groups and surface 

acidity (Brönsted and Lewis) of all vanadium containing MCM-41 and MCM-48 were 

determined by IR spectroscopy using pyridine as the probe molecule.  The infrared 

spectra of both series sample showed the presence of both Lewis and Brönsted acidity.  In 

general, the number of Lewis acid sites was higher than Brönsted acid sites in both series 

of samples.  Both acid sites in V/Al-MCM-48 were stronger than the acid sites in V/Al-

MCM-41. 
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4.25 Amine Functionalized MCM-41 as Bronsted Base Catalyst in Knoevenagel 

Condensation 

 

Noor Ashikin Mohd Yusoff 

 

The recent discovery of the M41S family of molecular sieves opened up new 

possibilities for preparing catalysts with uniform pores in the mesoporous region. Despite 

extensive research, few solid Brönsted base catalysts with an analogous mesophase 

structure have been successfully obtained. In this research synthesis of Brönsted base 

catalysts had been successfully obtained by functionalization siliceous MCM-41 with 

primery amine and quaternary ammonium. This project describes the preparation, 

characterization and catalytic activities of Si-MCM-41 modified with primery amine 

(OFMS) and quaternary ammonium (SOCM). OFMS catalyst was prepared by grafting 3-

aminopropyltrimethoxy silane on the surface of pure silica MCM-41 while SOCM 

catalyst was obtained through direct synthesis Si-MCM-41 using cetyltrimetylammonium 

bromide surfactant as template. Characterization of OFMS and SOCM was done using 

XRD, FTIR spectroscopy, nitrogen adsorption, TG/DTA and 13C CP/MAS NMR 

techniques. The possibility of OFMS and SOCM as Brönsted base was studied in the 

oxidation of benzene to phenol at 70 oC. The catalysts were also found to be active for the 

Knoevenagel condensation between benzaldehyde and malonic acid to give cinnamic 

acid. The products of benzene oxidation and Knoevenagel condensation were 

characterized by GC and GC-MS techniques. The analysis of Knoevenagel condensation 

showed that, the percent conversion of benzaldehyde for both SOCM and OFMS 

catalysts were between 30% and 40% at 120oC. The results also gave high selectivity of 

cinnamic acid for SOCM and OFMS with 79.28% and 100% respectively after 3 hours of 

reactions.  
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4.26 Amine Functionalized MCM-41 as Brönsted Base Catalyst in Aldol 

Condensation of Aldehyde and Ketone 

 

Mohd Faisal Bin Ab. Latib 

 

The preparation, characterization and catalytic activities of Si-MCM-41 modified 

with primary amine (OFMS) and quaternary ammonium (SOCM) were investigated. 

Mesoporous material Si-MCM-41 and SOCM of molar ratios 6SiO2: 1CTABr: 1.5Na2O: 

0.15(NH4
+): 0.25 H2O have been prepared. The properties of Si-MCM-41 were modified 

by functionalization of Si-MCM-41 with primary amine and quaternary ammonium 

surfactant to create Brönsted base catalysts. The organic functionalized molecular sieves 

MCM-41 (OFMS) were prepared by grafting of 3-aminopropyltrimethoxysilane on the 

surface of Si-MCM-41. The amine functionalized MCM-41 catalysts were characterized 

by FTIR spectroscopy, XRD, nitrogen adsorption, TGA/DTA and 13C CP/MAS NMR 

spectroscopy and their catalytic were compared to those of Cs-MCM-41 and Al-MCM-

41-amine. The activities of SOCM and OFMS as base catalysts were tested in aldol 

condensation of benzaldehyde with acetophenone to give chalcone, a biological 

compound for antibacterial, antifungal, antitumoral and anti-inflammatory properties. 

However, the catalytic study showed that chalcone was not produced in the reaction due 

to poisoning of the strong basic sites by benzoic acid, a side-product formed by the 

oxidation of benzaldehyde. In another test reaction, the base-catalyzed nitroaldol 

condensation of 2-chlorobenzaldehyde with nitroethane gave the aimed product, 1-(2-

chlorophenyl)-2-nitropropene, confirming that OFMS is basic in character.  
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4.27 Synthesis and Characterization of Mesoporous Base Catalyst Cs-MCM-41 
 

Siti Marlia Abd Rahim 

 

Pure siliceous MCM-41 have been reported to possess properties of excellent 

properties of catalyst support as they have high surface area (more than 1000 m2g-1), 

uniform hexagonal mesopores that can be tailored in the range between 1.6 and 10 nm 

and high thermal and hydrothermal stability. In the present study, mesoporous material 

Si-MCM-41 is synthesized in molar ratio of 6 SiO2 : 1 CTABr : 1.5 Na2O : 0.15 (NH4)2O : 

250 H2O at 97 ˚C as catalyst support for Cs-MCM-41. Wet impregnation method I used 

to prepare base catalyst by grafting cesium acetate onto the surface of Si-MCM-41 with 

percentage loading of 6, 9 and 12wt (w/w) followed by calcination at 550˚C. The samples 

were characterized by means of Fourier transform infrared spectroscopy (FTIR), X-ray 

diffraction (XRD), diffuse reflectance UV-Vis (DRUV-Vis), and gas chromatography 

(GC). In the ion exchange method, an aqueous solution of cesium acetate (0.25 M) was 

mixed with Si-MCM-41, and the product was calcined at 550 ˚C. The activity of the 

catalyst is tested in aldol condensation of benzaldehyde and acetophenone to give 

chalcone at 75 ˚C.  
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4.28 Mesoporous Silica MCM-48 Containing Lanthanum as Active Catalyst for 

Claisen-Schmidt Condensation of Aromatic Compounds 

 

Leong Siew Ming 

 

In this study, mesoporous materials La-MCM-48 with cubic pore structure 

have been prepared via ion-exchange or wet impregnation methods. In the ion-

exchange method, purely siliceous Si-MCM-48 was treated with various 

concentration of La(NO3)3.6H2O solutions (0.1 M, 0.25 M, 0.5 M and 1.0 M) at 60 ºC 

for 3 h. Wet impregnation of mesoporous Si-MCM-48 was carried out by loading 3, 5 

and 10 wt% of lanthanum, respectively, in mesoporous Si-MCM-48 at room 

temperature for 16 h. Each sample was characterized by XRD, FTIR, nitrogen 

adsorption measurement; FESEM and UV-Vis diffuse reflectance spectroscopy. The 

results show that the ion-exchanged lanthanum samples have higher crystallinity and 

higher surface area (> 800 m2/g) than those lanthanum containing samples prepared 

by wet impregnation technique. The samples also retained their structural integrity 

after the post-synthesis modification with lanthanum. The ion-exchanged lanthanum 

samples were tested as catalysts in Claisen-Schmidt condensation of acetophenone 

with benzaldehyde at 150 ºC for 3 h to produce chalcone, a biological compound with 

potential antibacterial, antifungal, anti-malarial and anti-inflammatory properties. The 

results of the catalytic study show that chalcone was formed due to the presence of 

both Lewis acid and basic sites in the catalyst. Among the samples, the ion-

exchanged sample prepared using 0.25 M lanthanum nitrate solution was the most 

active catalyst towards Claisen-Schmidt condensation, giving around 33.3% 

conversion of acetophenone and 77.8% selectivity to chalcone. 
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Figure 4.15: Mechanism proposed for Claisen–Schmidt condensation showing the role 

of La-MCM-48 as Lewis base catalyst. 

 

 



 87

Si
O

Si
MCM-48 surface

C

O

CH2

H

acetophenone

La3+
Si

O
Si

La3+

C

O

C

H

H
H

HC

O

MCM-48 surface

benzaldehyde

MCM-48 surface
Si

O
Si

La3+

C

O

C

H

H

C

HO

step I

H

step II

C

O

CH CH

Chalcone

+ +H2O
Si

O
Si

La3+ MCM-48 surface

Si
O

Si

La3+

=

=

Lewis basic site

Lewis acid site

 

 

Figure 4.16:   Mechanism proposed for Claisen–Schmidt condensation showing the 

role of La-MCM-48 as Lewis acid catalyst. 
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4.29 Fe (III) Supported Si-MCM-41 as Lewis Acid Catalyst in Friedel-Crafts 

Acylation 

 

Noor Aisyah Ahmad Shah 

 

A series of supported Lewis acid catalyst was prepared by incorporating 

anhydrous FeCl3, FeCl3.6H2O and Fe(NO3)3.9H2O into mesoporous molecular sieves Si-

MCM-41 as support. Pyridine adsorption and FTIR spectroscopy were used to determine 

the nature, amount and strength of the acid sites in the Fe(III)/ Si-MCM-41 materials. 

Infrared spectra after pyridine adsorption of the samples showed that only Lewis asic 

sites were present. The catalyst synthesized from anhydrous FeCl3 exhibited higher and 

stronger Lewis acid site compared to others. The catalytic activity of this catalyst as 

heterogeneous Lewis acid was evaluated in Friedel-Crafts acylation of 2-

methoxynapthalene in nitrobenzene. Acylation of 2-methoxynapthalene was found to 

occur at C-1, C-6 and C-8 positions. Acylation of 2-methoxynapthalene at C-6 position is 

of particular interest because this derivative is useful in production of anti-flammatory 

agent, Naproxen. The use of Fe(III) supported on Si-MCM-41 catalyst for acylation of 2-

methoxynapthalene gave high conversion and high selectivity towards 6-acetyl-2-

methoxynapthalene at 100 oC by using acetyl chloride as acylation agent. The migration 

of the acyl group from the C-1 to the C-6 position and protiodecylation of acyl group at 

C-1 position could easily occur due to the present of stable Fe(III) species on Si-MCM-41 

support. The use of mesoporous molecular sieves Si-MCM-41 has also increased the 

selectivity of the product towards 6-acetyl-2-methoxynapthalene. 
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4.30 Iron (III)-Porphyrin Immobilized On Mesoporous Al-MCM-41 and 

Polymethacrylic Acid as Catalysts For The Single-Step Synthesis Of Phenol 

From Benzene 
 

Helda Hamid 

 

Mesoporous molecular sieve Al-MCM-41 with Si/Al=20 and polymethacrylic 

acid (PMAA) were used as supports for the immobilization of bulky iron(III)-5,10,15,20-

tetra-(4-pyridyl) porphyrin (Fe-TPyP). Metalloporphyrin of Fe(III) was encapsulated 

inside the mesopores of the ordered structure of Al-MCM-41 by sequential synthesis of 

Fe-TPyP via treatment of FeCl3 with 5,10,15,20-tetra-(4-pyridyl) porphyrin (TPyP), 

followed by encapsulation of Fe-TPyP. Fe-TPyP complexes were also successfully 

encapsulated into PMAA by polymerizing methacrylic acid (MAA) with a cross-linker 

around the Fe-TPyP complexes. The materials obtained were characterized by X-ray 

Diffraction (XRD), Fourier Transform Infrared (FTIR), Ultraviolet Visible Diffuse 

Reflectance (UV-Vis DR), Electron Spin Resonance (ESR), Luminescence and 13C 

CP/MAS NMR spectroscopies, Thermogravimetric Analysis (TGA) and elemental 

analysis. The powder XRD data confirmed that the ordered structure of mesoporous Al-

MCM-41 remained intact after encapsulation process. Characterization of Fe-TPyP 

composite with Al-MCM-41 and PMAA using FTIR, UV-Vis DR and ESR confirmed 

that the structure of Fe-TPyP in inorganic and polymer supports is similar with bare Fe-

TPyP. The specific interaction of Fe-TPyP in Al-MCM-41 and/or PMAA was studied by 

ESR, 13C CP/MAS NMR and Luminescence spectroscopies. The ESR spectra of Fe-

TPyP/Al-MCM-41 and Fe-TPyP/PMAA composites showed that there is a shift towards 

a higher g-value confirming the interaction between Fe-TPyP and supports is occurred. 

By quenching of the luminescence spectra of Fe-TPyP/PMAA with various concentration 

of Fe-TPyP, it is evidenced that there is the interaction between Fe-TPyP and PMAA. 

Further evidence of interaction was corroborated by 13C CP/MAS NMR spectra with 

show that the peak of carboxyl of PMAA is shifted to higher magnetic field. Single-point 

BET surface area analysis was used to determine specific surface area of the composites. 
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It is revealed that the surface area of Fe-TPyP/Al-MCM-41 composites is decreased with 

an increase in Fe-TPyP, suggesting the encapsulation of the complex in the pores of Al-

MCM-41 has been achieved. With mesoporous molecular sieve (Al-MCM-41) and the 

polymer (PMAA) as supports, the immobilized iron-porphyrin system has demonstrated 

excellent activity for the single-step synthesis of phenol from benzene under mild 

reaction conditions. The effect of reaction time, solvent, amount of Fe-TPyP loading, 

temperature and the performance of the recovered catalysts have been studied. The 

immobilized iron-porphyrin in PMAA (Fe-TPyP/PMAA) gives a higher activity 

compared to Fe-TPyP supported on Al-MCM-41 (Fe-TPyP/Al-MCM-41). However, the 

product selectivity of Fe-TPyP/PMAA is not as good as that of Fe-TPyP/Al-MCM-41. 

Thus, it is reasonable to assume that the hydrophobic nature of Fe-TPyP/PMAA would 

for the high activity, while the rigid, ordered structure of   Fe-TPyP/Al-MCM-41 would 

contribute towards the high selectivity in the single-step synthesis of phenol from 

benzene in the present study. 

 
Figure 4.17: Schematic representation of the procedure of synthesis of composite Fe-

porphyrin-polymethacrylic acid.  
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4.31 Synthesis, Characterization and Catalytic Activity of µ-Oxo Bridged 

Dinuclear Iron 1, 10-Phenanthroline Incorporated In MCM-48 

 

Lau Su Chien 

 

 A series of μ-oxo bridged dinuclear iron 1,10-phenanthroline complex (Fe-phen) 

supported MCM-48 mesoporous molecular sieves with 0.1 mmol, 0.3 mmol, 0.5 mmol 

and 0.7 mmol loadings of the complex have been synthesized by post-synthesis 

modification method. The samples were characterized by X-ray diffraction (XRD), 

Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption measurement, 

diffuse reflectance ultraviolet-visible spectroscopy (UV-VIS DRS), thermogravimetric 

analysis (TGA), atomic absorption spectroscopy (AAS) and electron spin resonance 

(ESR). The XRD results showed that the long range order of MCM-48 structure is 

maintained even after the incorporation of Fe-phen. The increase of unit cell parameter 

showed that encapsulation of Fe-phen in MCM-48 has caused the expansion of the unit 

cell.  The UV-VIS-DRS spectra for Fe-phen-MCM-48 showed three peaks at 230 nm, 

265 nm and 370 nm which correspond to the π → π* transitions of phenanthroline 

ligands,  charge transfer from µ-oxo to Fe orbital and d-d transitions of Fe, respectively. 

The catalytic activity of Fe-phen-MCM-48 was tested in the oxidation of 1-naphthol with 

aqueous hydrogen peroxide as oxidant. Gas chromatography (GC) and gas 

chromatography-mass spectrometry (GC-MS) analyses showed that the only reaction 

product was 1,4-naphthoquinone after 20 hours of reaction at 80 oC. The conversion of 1-

naphthol for the first use of catalyst was in the range of 65 – 75%. Fe-phen-MCM-48 

showed its reusability with 44 – 51% conversion of 1-naphthol. This may be due to the 

leaching of Fe-phen into the solution during reaction. 
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Figure 4.18: Immobilization of μ-oxo bridged dinuclear iron 1,10-phenanthroline complex (Fe-phen) in MCM-48 mesoporous 

molecular sieves by post-synthesis modification method. 
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4.32 Design and Application of Chiral Solid Catalysts Synthesized by Molecular 

Imprinting Method with Polyaminoacid as Chiral Promoter for Producing 

Pharmaceutical Products 

 

Lim Kheng Wei 

 

Heterogeneous asymmetric catalysis remains an exciting research field in chiral 

catalysis since the heterogeneous catalyst can be separated easily from the reaction 

mixture compared to conventional homogeneous catalyst.  The aim of this research is to 

develop a novel heterogeneous asymmetric catalyst using amino acid as chiral promoter.  

The catalysts were synthesized by attachment of amino acids such as L-glutamic acid, L-

leucine and L-phenylalanine onto the hydrophilic part of hydrolyzed 

octadecyltrichlorosilane (OTS).  The short-range order structure of silicon and organic 

groups in the catalysts has been characterized by solid-state 29Si and 13C cross-

polarization magic-angle-spinning (MAS) NMR spectroscopies, respectively.  The solid 

state MAS NMR results showed that the amino acids interacted with hydrolyzed OTS.  

This phenomenon was supported by 13C NMR spectra which showed the peaks of L-

glutamic acid, L-leucine and L-phenylalanine were shifted towards a higher magnetic 

field. It was confirmed by  29Si NMR spectra which showed the peaks of cross-linked –

(OH)Si(R)-O-(OH)Si(R)- (R=octadecyl group) in amino acid-hydrolyzed OTS whereas 

those of R–Si≡(OSiR)3 were not present.  This result suggested that the amino acid was 

attached via cross-linked –(OH)Si(R)-O-(OH)Si(R)- of the hydrolyzed OTS.  The amino 

acid-hydrolyzed OTS materials were used as catalysts for the asymmetric hydration of 

epoxycyclohexene to yield two diastereoisomers, namely (1R,2R)-trans-1,2-

cyclohexenediol and (1S,2S)-trans-1,2-cyclohexenediol as well as cis-1,2- 

cyclohexenediol. 
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Figure 4.19: Dispersibility of hydrolyzed OTS-Glu in a mixture of toluene and water 

under stirring and static conditions.  
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Figure 4.20: (a) Possible products of hydration of epoxycyclohexene and (b) example 

of GC chromatogram of products identified by using Chiraldex G-TA column. 
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4.33 Synthesis of Ordered Structure Polystyrene with Encapsulated Cadmium 

Sulfide Nanoparticles 

 

Eriawan Rismana 

 

 Template synthesis is commonly used tool in preparation of ordered structure 

material.  The aim of this research was to design and prepare a polymeric material 

containing semiconductor nanoparticles with novel ordered structure.  Ordered structure 

polystyrene (PS) has been prepared by miniemulsion polymerization using cross-linker 

polyethyleneglycol dimethacrylate acid (PEDMA) with encapsulated semiconductor 

cadmium sulfide (CdS) nanoparticles as template and active site for photocatalysis and 

other applications.  In this research, the semiconductor CdS nanoparticles were 

synthesized by reverse micelles in quaternary miniemulsion.  The polymer resin has been 

characterized using FTIR spectroscopy in which the spectra of CdS-PS-PEDMA showed 

an excellent agreement with that of additional peaks due to PS and PEDMA.  The onset 

of Absorption wavelength from the diffuse reflectance UV-Visible (DR UV) spectra of 

CdS nanoparticles encapsulated inside polystyrene was blue-shifted compared to those of 

CdS nanoparticles in miniemulsion and bulk CdS.  Based on the onset wavelength, the 

particles size of CdS estimated using the Brus equation was approximately 4 nm. The 

amount of CdS inside polystyrene without acid-etching from the analysis of cadmium 

using Inductively Couple Plasma (ICP) is 1328.24 mg/kg. The X-ray diffraction analysis 

of CdS encapsulated polystyrene showed a strong peak at 2.3 degree 2-theta suggesting 

that the presence of CdS nanoparticles within the polystyrene matrix has resulted in 

ordered structure polymer. This phenomenon was supported from the data of CdS 

analysis after acid-etching process. The amount of CdS in polystyrene after acid-etching 

was found to be smaller than before acid-etching. The disappearance of peaks in the XRD 

pattern indicated that the acid-etching process has removed CdS nanoparticles from the 

polymer leading to collapse of the ordered structure of polystyrene. 
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Figure 4.21:  General route in preparation of ordered structure polymer with 

encapsulated CdS nanoparticles by minielmusion method.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22:   Photographs of materials containing different-sized CdS nanoparticles 

inside polymers and mesoporous Al-MCM-41 matrices. 
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Figure 4.23:   Transmission Electron Micrograph of ordered structure polystyrene 

encapsulated CdS nanoparticles.  
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4.34 Synthesis of Poly(methylmethacrylate)-MCM-41 Nanocomposite via Mini-

Emulsion Polymerization 

 

Siti Aisyah A. Bakar 

 

Synthesis of polymer nanocomposites has been attracting a lot of attention 

because of its potential to improve physical features of materials such as stiffness, 

strength and heat resistance. Recently, the miniemulsion polymerization has been 

reported as the best method to obtain nanocomposite particles. The MCM-

41/poly(methylmethacrylate) polymer nanocomposite particles were synthesized through 

miniemulsion polymerization by using sodium dedocyl sulphate surfactant (SDS), 2-

propanol co-stabilizer, water and azobisisobutyronitrile (AIBN) as initiator. X-Ray 

Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), 

Thermogravimetry Analysis (TGA), Fourier Transform Infrared (FTIR), Dielectric 

Constant (ξr) and Nitrogen Adsorption were used to characterize each sample of the 

polymer nanocomposites. In this study, the effect of co-stabilizer on the size of polymer 

nanocomposite shows that the size of polymer nanocomposite was influenced by the 

quantity of 2-propanol used in miniemulsion mixture. The result shows that the particle 

size of polymer nanocomposite increased with the increasing of 2-propanol. The increase 

in polymerization temperature from 65 °C to 80 °C was successful in increasing the yield 

of the polymer nanocomposite. The effect of particle size to the dielectric constant (ξr) 

shows that the bigger the size of nanoparticle size, the dielectric constant becomes 

smaller.  
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Figure 4.24:   FESEM images of Polymer/MCM-41 nanocomposites.  (a) PMMA-

MCM-41 (0 wt% 2-propanol), (b) PMMA-MCM-41 (1.8 wt% 2-propanol), (c) PMMA-

MCM-41 (3.6 wt% 2-propanol) and (d) PMMA-MCM-41 (5.4 wt% 2-propanol) 

 

 

 

 

 

95 nm 

125 nm

203 nm 

211 nm 

(a) (b) 

(c) (d) 



 101

4.35 Polyethylene Oxide-MCM-41 and Polyaniline-MCM-41 Nanocomposites 

Physicochemical and Conducting Properties 

 

Norizah Bt. Abdul Rahman 

 

Polymer nanocomposites (PNC) is one of the exciting developments in material 

science today possess enhanced and novel properties not exhibited by the individual 

organic and inorganic materials. The physicochemical and conducting properties of two 

types of polymer nanocomposites, i.e., PEO/Li-MCM-41 and PANI/MCM-41 have been 

investigated in this thesis. The aim was to obtain a more detailed understanding of 

how the combination of polymers with the mesoporous MCM-41 is related to the 

conducting properties. Melt and solution intercalation methods have been used to 

synthesize PEO/Li-MCM-41. Before PEO is combined with MCM-41, several 

modifications of MCM-41 have been done such as ion exchange of MCM-41 with LiCl 

and silylation of MCM-41 with trimethylchlorosilane (TMCS) and functionalization of 

MCM-41 with sulfonic acid. The PNC obtained were characterized by X-ray diffraction 

(XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM), thermal 

analysis and chemical analysis followed by 27Al, 7Li and 13C/CP MAS NMR 

spectroscopy. It is confirmed that the structure of MCM-41 remains intact after 

composite with polymers. The results from the study have proven that the PNC possesses 

conducting properties. It is revealed that the conductivity of PANi/MCM-41 is very much 

higher than those of PEO/Li+-MCM-41 since PEO is a polymer electrolyte and PANI is a 

conducting polymer. I t  is expected that the combination of PEO-MCM-41 cause an 

increased conductivity by intercalation of PEO inside the pore of MCM-41. 

However, it is demonstrated that unmodified Li-MCM-41 exhibit conductivity similar to 

the PNC.  The NMR results suggested that occurring the interfacial interactions 

between the PEO and Li-Al-MCM-41 is insufficient to improve conductivity of the 

PEO/Li-MCM-41. In other hand, PANi/MCM-41 nanocomposite which was obtained by 

in situ polymerization method showed an interesting thermal stability of conductivity 

properties. It is revealed that although conductivity of PANI reduces after addition of 

MCM-41, its thermal stability of conductivity was improved. 
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Figure 4.25:   Proposed intermolecular interactions of polyethylene oxide (PEO) segments with Li-Al-MCM-41 surface groups. The 

dashed lines indicate possible hydrogen-bond donating (MCM-41)/hydrogen-bond accepting and Al-Li-O interaction sites. The degree 

of the electrostatic interaction of (c) and (b) is larger than (a).  This was proved by the 7Li MAS NMR spectra of Li-Al-MCM-41 

(SiO2/Al2O3 = 10) and PEO/Li-Al-MCM-41 with various SiO2/Al2O3 ratios.  
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Figure 4.26:   The proposed structure of Si-MCM-41 functionalized sulfonic acid, Si-

MCM-41SO3H  

 

 

 

 

 

 

 

 

 

 

Figure 4.27:   The propose interaction between polyaniline and Si-MCM-41SO3H in 

PANI/Si-MCM-41SO3H nanocomposite. 
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4.36 Synthesis and Characterization of Conducting Polymeric Nanocomposite 

Poly(Methyl Methacrylate)/Lithium-Exchanged Al-MCM-48 

 

Soh Wei Kian 

 

Polymeric nanocomposite is of great interest in research due to its potential in 

providing enhanced properties when compared to the pure polymer or silicate species 

itself. In the synthesis of this nanoscale material via the solution intercalation method, 

MCM-48, a member of the M41S family of mesoporous materials, with large and twisted 

channel, has been chosen as the inorganic host for polymer incorporation. Organic 

modification has been performed to increase the surface hydrophobicity of MCM-48 in 

order to allow the diffusion of polymer chains into the cavities to form the polymeric 

nanocomposite. A series of polymer nanocomposites with different PMMA content based 

on weight ratio were synthesized. The nanocomposites were characterized using XRD, 

FTIR spectroscopy, 13C CP/MAS solid states NMR ad impedance spectroscopy. The 

electrical properties of poly(methyl methacrylate)/Li-exchanged Al-MCM-48 at ambient 

temperature has been studied as an indirect means to reveals the interactions between 

silica walls, lithium ion and PMMA chains. Incorporation of PMMA up to five weight 

percent into MCM-48 enhanced the ionic conductivity of the nanocomposites. It was 

proposed that Li+---O=C interactions were present in the nanostructures with the lithium 

ion acting as intermediary in the interaction between silica wall and PMMA chains.  
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Figure 4.28:   Proposed interactions and conduction mechanism 

 

 

 



 106

4.37 Synthesis and Characterization of Polymeric Nanocomposite Poly (methyl 

methacrylate)/Al-MCM-48 Prepared via Solution Intercalation Method 

 
Koh Chee Heng 

 
 

 Polymeric nanocomposite constitutes a new class of material in which a silica 

matrix is incorporated with polymer in the nanometer scale. It has been reported that the 

polymeric nanocomposite often exhibits improved physicochemical properties when 

compared to the individual polymer and silica respectively. In this study, mesoporous 

material Al-MCM-48 was incorporated with 10, 20 and 30 w/w% poly (methyl 

methacrylate) (PMMA) by solution intercalation method. The silica matrix was also 

modified with silylating agents in order to increase the compatibility between 

hydrophobic PMMA and hydrophilic Al-MCM-48. Polymeric nanocomposites with 

different PMMA contents in silylated Al-MCM-48 were also synthesized. All samples 

were characterized by means of FTIR, X-Ray Diffraction (XRD), TG/DTA, nitrogen 

adsorption-desorption measurements, Field Emission Scanning Electron Microscopy 

(FESEM) and chemical stability test in organic solvent. The results of FESEM analysis 

indicate that the morphology of the nanocomposites of PMMA/Al-MCM-48 and 

PMMA/silylated Al-MCM-48 are similar, showing homogeneous spherical nanoparticles 

and that PMMA was successfully incorporated in the mesoporous silica matrix. The 

interaction between PMMA and Al-MCM-48 or silylated Al-MCM-48 has resulted in 

polymeric nanocomposites with improved thermal and chemical stability compared to 

pure PMMA. 
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4.38 Synthesis of Poly(Vinyl Acetate)-Silylated Mesoporous Si-MCM-41 

Nanocomposite and Its Characterization 

 

Nurul Izza Taib 

 

 Incorporation of polymers into mesoporous molecular sieves has been the subject 

of much recent research because the resulting new materials usually have significantly 

improved properties than those of the polymer or the pure mesoporous molecular sieve 

itself.  In this research, formation of a nanocomposites structure based on silylated MCM-

41 and Poly(vinyl acetate) (PVAc) was prepared via solution intercalation.  Poly(vinyl 

acetate) is chosen as guest molecules that would be incorporated into uni-dimensional 

mesopores of MCM-41 which act as the silicate host.  The hydrophilic surface of MCM-

41 was modified to increase the hydrophobicity via silane treatment using 

trimethylchlorosilane (TMCS).  A series of polymer nanocomposites with different PVAc 

content was synthesized.  Characterizations were done using XRD, SEM, FTIR 

spectroscopy, TGA, single point BET surface area analysis.  Besides, 13C CP/MAS NMR 

was used to determine the compatibility between PVAc and the silicate host.  XRD study 

reveals that the framework of silylated Si-MCM-41 was not altered upon incorporation of 

PVAc.  However, the long range order of Si-MCM-41 decreases with the increase in 

PVAc incorporated.  FTIR study showed that characteristic peak assigned to carbonyl 

group in PVAc was observed around 1741.6 cm-1 for all the nanocomposites indicating 

the presence of PVAc in the silylated Si-MCM-41.  13C CP/MAS NMR showed the 

increase of line width of the peak assigned to C=O carbonyl group indicating the increase 

in randomness of polymer chains in confined space.  The shifting of the C=O carbonyl 

group is a sign of the change in chemical environment of the carbonyl owing to the 

interaction of PVAc with the silica matrix of silylated Si-MCM-41.  Meanwhile, BET 

surface area for all the nanocomposites decrease with the increase of PVAc content.  

Thermogravimetric analysis (TGA) proved that the nanocomposites are stable towards 

heat up to 500 oC.  More importantly, thermal stability of PVAc was significantly 

enhanced after composite with silylated Si-MCM-41. 
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Figure 4.29:   13C CP/MAS NMR spectra (a) pure PVAc, (b) PVAc-50, (c) PVAc-40, (d) PVAc-30,  (e) PVAc-20, (f) PVAc-10, (g) 

PVAc-8, (h) PVAc-5 and (i) PVAc-2 
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4.39 Polyurethane Modified With Mesoporous Silica: Polymeric Nanocomposites 

with Improved Physicochemical Properties 

 

Yah Weng On 

 

 Polymer-mesoporous silica nanocomposites are one of the most important classes 

of synthetic engineering materials due to their enhanced properties when compared to the 

intrinsic properties of polymer and silica. These nanostructured composite materials have 

been prepared successfully via in situ polymerization method. MCM-48 has been selected 

as the inorganic host for the polymer incorporation. In order to increase the compatibility 

between the hydrophobic polymer and hydrophilic inorganic host, surface modification 

of MCM-48 has been carried out by silylation. The nanocomposites of PU/MCM-48, 

PU/silylated MCM-48 and PU/silica gel as well as pure PU are compared in terms of 

their morphology, thermal stability and solvent resistance. A series of polymeric 

nanocomposites with different PU content in MCM-48, silylated MCM-48 and silica gel 

were characterized by several techniques including X-ray Diffraction (XRD), Field 

Emission Scanning Electron Microscopy (FESEM), FTIR spectroscopy, TG/DTA, 

Nitrogen Adsorption-Desorption measurement and 13C CP/MAS NMR spectroscopy. The 

FESEM of the MCM-48 based nanocomposite showed that nearly spherical particles of 

MCM-48 with size around 100 nm are dispersed well in PU matrix. The intercalation of 

PU in the channel system of MCM-48 results in higher thermal stability than in 

nanocomposites of PU/silylated MCM-48, PU/silica gel and pure PU. Furthermore, the 

remarkable improvement in solvent resistance of PU/MCM-48 nanocomposite relative to 

that of pure PU is ascribed to the excellent barrier properties of MCM-48 silicate 

frameworks. 
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4.40 Synthesis and Characterization of Polymeric Nanocomposites 

Polystyrene/Silylated Mesoporous Material MCM-41 

 

Ruzanna Bt. Abdul Manap 

 

Incorporation of polymers into mesoporous molecular sieves MCM-41 has 

attracted great interest in research due to its potential in providing enhanced properties 

when compared to the pure polymer or inorganic component. Polymeric nanocomposites 

based on purely siliceous MCM-41 and an aluminosilicate MCM-41 molecular sieve with 

polystyrene was prepared via solution intercalation method. Organic modification via 

silane treatment using trimethylchlorosilane (TMCS) has been performed to increase the 

surface hydrophobicity of MCM-41 in order to allow the diffusion of polymer chains into 

the MCM-41 channels to form the polymeric nanocomposites. A series of polymeric 

nanocomposites containing various weight percentage of polystyrene were prepared and 

characterized for purity and crystallinity using XRD, FTIR, 13C CP/MAS  NMR, 

FESEM, TGA and Nitrogen adsorption-desorption. Incorporation of polystyrene up to 30 

wt% into silylated mesoporous material MCM-41 were found to enhance the thermal 

stability of the nanocomposites. Thermogravimetric Analysis (TGA) proved that 

nanocomposites stable towards heat up to 500 °C. The XRD analysis revealed that the 

framework structure of MCM-41 was still intact but the surface areas of the samples 

decreased when the content of polystyrene was increased above 30 wt% due to filling of 

the pore channels of MCM-41. More importantly, the interaction between the 

hydrophobic surface of silylated MCM-41 and polystyrene was significantly strong as 

evidenced by the results of TGA after extraction with hot toluene for three days. 
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Figure 4.30:   FESEM image of aluminosilicate Al-MCM-41 particles showing 

fiberlike morphology of nano-meter scale  
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4.41 Adsorption of Pesticide using Synthetic Zeolite(Al-MCM-41-30) and Natural 

Zeolite (Clinoptilolite) 

 

Yap Siew Yung 

 

 The wide use of pesticides in agriculture nowadays has led to numerous negative 

effects on human beings and the environment.  Mesoporous molecular sieve MCM-41 

with a uniform hexagonal mesopores is a potential adsorbent for pesticide in wastewater 

treatment processes.  In this study, Al-MCM-41-30 with Si/Al composition of 30 was 

synthesized and used to analyze the adsorption properties on pesticides.  The synthesized 

Al-MCM-41-30 was characterized by Fourier transformed infrared spectroscopy (FTIR), 

X-ray diffraction (XRD), thermogravimetry analysis (TGA) and nitrogen adsorption 

techniques.  Nitrogen adsorption results indicate the presence of mesopores in Al-MCM-

41-30 with an average pore diameter of 35 Å and surface area of 1113.78 m2/g.  In order 

to determine the adsorption capacity of Al-MCM-41-30, three types of pesticides of 

different molecular weights namely paraquat (186.14 g/mol), quinalphos (298.30 g/mol) 

and chlorpyrifos (348.93 g/mol) were used as the adsorbates.  The adsorption capacity of 

Al-MCM-41-30 was compared with that of natural zeolite, clinoptilolite.  The 

equilibrium isotherms for the adsorptions of the three pesticides on Al-MCM-41-30 and 

clinoptilolite were studied using the Freundlich adsorption equations.  The results showed 

that Al-MCM-41-30 had the highest adsorption capacity towards paraquat.  Studies of the 

effects of pH and temperature on the adsorption capacity were also carried out.  It was 

found that the adsorption capacity increased with the increase of pH and temperature. 
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4.42 Adsorption of Paraquate using Synthetic Zeolite MCM-48 

 

Goh Mey San 

 

The rapid growing of contamination of pesticides has threatened the ecosystem of 

agriculture area. The treatment of these contamination usually consist of the usage of 

molecular sieve as adsorbent, example zeolite, activated carbon, soil, etc.In this study, 

zeolite mesoporous Si-MCM-48 and al-MCM-48 with Si/Al composition of 30 has been 

synthesized and used to analyze the adsorption properties on paraquat. The synthesized 

Al-MCM-48-30 and Si-MCM-48 was characterized by Fourier transformed infrared 

spectroscopy (FTIR), X-ray diffraction (XRD) and nitrogen adsorption techniques. 

Nitrogen adsorption results indicate that the presence of mesopores in Al-MCM-48-30 

and Si-MCM-48 with an average pore diameter of 43.37 Å, 37.76 Å and surface area of 

1011.95 m2/g. 949.70 m2/g. In order to determine the adsorption capacity of Al-MCM-

48-30 and Si-MCM-48 were compared with Al-MCm-41-30 and clinoptilolite. The 

equilibrium isotherms for paraquat on Al-MCM-48-30, Si-MCM-48, Al-MCM-41-30 and 

clinoptilolite were studied using Freundlich and Langmuir adsorption equations. The 

results showed that Al-MCM-48-30 had the highest adsorption capacity was also carried 

out. It was found that the adsorption capacity decrease with the increase of temperature. 
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4.43 Modified Zeolite(Zirconium-Al-MCM-41-30) as Adsorbent for Synthetic Dye 

 

Masida bt Rasyed 

 

 Zeolite has a good potential as an adsorbent in textile wastewater treatment 

processes. In this research, zeolite mesoporous Al-MCM-41-30 containing zirconium has 

been used as the adsorbent for synthetic basic dyes. Mesoporous material Zr-Al-MCM-

41-30 was characterized by Fourier-transform infrared spectroscopy (FTIR), nitrogen 

adsorption measurement and X-ray diffraction technique (XRD). Based on the nitrogen 

adsorption results, it was shown that Zr-Al-MCM-41-30 sample has the type IV isotherm 

which indicates the presence of mesoporous. Four synthetic basic dyes with different 

molecular weights and sizes were used, namely Basic Blue-66, Brilliant Yellow-11, Basic 

Green-1 and Orange Acid-15. The different molecular weights and sizes of the dyes 

employed resulted in different adsorption capacities for the Zr-Al-MCM-41-30 samples. 

Other factors, which have influenced the adsorption capacity, were the pH and adsorption 

time. Generally, the results showed that Al-MCM-41-30 has a higher adsorption capacity 

than Zr-Al-MCM-41-30. 
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4.44 Synthesis Characterization of Dye-loaded Mesoporous Material  

 

Rabiatul Adawiyah Awang 

 

Recently, dye-loaded molecular sieves have attracted interest for different 

applications such as optoelectronic or photocatalytic materials and chemical sensors. 

However, such applications for zeolite molecular sieves are limited by their relatively 

small pore openings (< 2 nm). The guest–host materials based on dye loaded mesoporous 

materials exhibit particular advantages because the larger pore diameter of the porous 

host would allow incorporation of almost any dye molecule. In this research, dye-loaded 

mesoporous molecular sieves MCM-41 have been synthesized by post- modification 

method. The siliceous mesoporous molecular sieves were first synthesized by cationic 

surfactant templating method. This was followed by impregnation of Basic Blue 66 dye 

of various concentrations on surfactant-containing and surfactant-free MCM-41 samples. 

All of the materials were characterized by XRD, FTIR, UV-Vis and DR-UV-Vis 

spectroscopy. 

 

 
Figure 4.31: Dye adsorption percentage for MCM-41 (a) with surfactant and (b) 

without surfactant in different concentration. 
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CHAPTER 5 

 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

5.1 Conclusions 

 

The key to the present research project is to develop a low coast synthesis method 

for the mass production of structurally stable and highly ordered mesoporous silica 

materials from rice husk ash, to address the growing demand for improved catalysts for 

the processing of large and bulky substrates. Studies on the synthesis of all-silica and 

metal containing mesoporous materials have been conducted to identify ways of 

producing high surface area, thermally stable materials, with well defined mesopores and 

suitable distribution of catalytically active sites.  

 

The project results broadly followed the original objectives, achieving successes 

in addressing all of these objectives. Important advances have been made in both the 

fundamental understanding and practical implementation of surfactant templating routes 

to mesoporous silica molecular sieves. Moreover, significant insights have been gained in 

the molecularly designed synthesis of nanostructured catalysts based on MCM-type 

materials. In addition, results acquired during these studies have helped to stimulate and 

greatly progress research in areas (e.g. polymer-silica nanocomposites and heterogeneous 

chiral catalysts) that were only tentatively envisaged in the original proposal. The project 

has already led to more than 30 publications and two recognitions at national and 

international levels. Research on the project was led by the various researchers and 
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postgraduate students funded by the project, with further support from departmental 

undergraduate students. 

 

The research has been concentrated on the hydrothermal synthesis of mesoporous 

materials from rice husk ash using cationic and neutral surfactants as a supramolecular 

templating agent. The silica materials have been obtained in the various structures 

including the one dimensional channels of MCM-41, the 3-dimensional structure of 

MCM-48 (cubic Ia3d structure), polymer-silica and microporous-mesoporous hybrid 

materials. The resulting materials were identified by powder X-ray diffraction, surface 

area and porosity measurements, and various spectroscopic techniques. In the case of 

MCM-41 and MCM-48, highly porous solids with pore diameters 1.5 - 10 nm and surface 

areas reaching > 1000 m2 g-1 have been prepared by varying synthesis conditions (e.g. 

silica source, pH, temperature, silica/surfactant ratio, synthesis time).  

 

Different modification strategies were required to activate the mesoporous 

materials towards specific catalytic purposes. The activation has been done by 

incorporation of heteroelements or transition metals in the framework structure or by a 

hydrophilic/hydrophobic modification of the surface. The acid/base character of the 

mesoporous materials have been modified independently by varying the aluminium 

content of the framework or by incorporation of metal complex species in the porous 

silica walls. The most stable materials have been used as a basis for introducing inorganic 

species (metal oxide structures of Mn, V, Nb, Mo, Ti, Zr, Co, Fe, Sn, La ) in the structure 

to create the desired active sites for redox catalysis. Optimization of the general approach 

for creating atomically dispersed metal and acid sites within a mesoporous silicate 

building block network has been achieved by a molecularly designed dispersion 

technique. Subsequently, several acid-base and oxidations reactions in the gas and liquid 

phase have been used to compare the catalytic activity/selectivity of the novel materials 

with that of “standard” zeolites and conventional catalysts.  

 

Further improvement in catalytic activity has been achieved through the post-

synthesis modification by organic-functionalization with secondary amines (APTS, 
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CTABr), silylation (TMCS, OTS and HMDS) and encapsulation of guest molecules 

(porphyrin, phenanthroline). Also, bifunctional acid oxidation catalysts have also been 

prepared in order to perform two different reaction steps over the same material. In 

addition, the preparation of microporous-mesoporous composite materials, has allowed 

the synthesis of thermally stable mesoporous catalysts preserving the highly acidic 

character of microporous zeolites. High activity combined with shape selectivity under 

mild reaction conditions make these composites very promising in fine chemical 

processes allowing waste minimization, higher efficiency, cheaper feedstocks. The great 

variety of frameworks combined with the presence in the mesopores of highly dispersed 

zeolite crystallines, opens new frontiers in the set up of innovative applications of 

mesoporous materials for eco-friendly organic syntheses. These findings were 

corroborated with the results of the catalytic studies involving the Friedel-Crafts 

acylation of aromatic compounds and cracking of palm oil over MCM-41/zeolite 

composite catalysts. 

 

Synthesis of new silica materials has also been attempted in order to develop new 

polymer-silica nanocomposites as conducting, optical and dielectric materials. We have 

prepared successfully different types of polymers in the host channels of MCM-41 with 

conducting properties. Interestingly, the MCM-41/PMMA composite prepared by 

miniemulsion polymerization technique has been shown to possess dielectric property 

which is highly promising for a range of potential applications in separations, chemical 

sensing, heterogenous catalysis, microelectronics and photonics. 

 

 

5.2 Recommendations 

 

 For future work, production of polymeric nanocomposite materials based on 

mesoporous silica for application in nanotechnology should be explored. Magnetic 

properties of the nanoparticles can also be exploited, for example the tendency of small 

magnetic nanoparticles to be super paramagnetic. One of the applications of this 

phenomenon is in magnetic resonance imaging (MRI). 
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