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ABSTRACT 

 

 

PRODUCTION OF ORGANIC ACID FROM LOCAL RAW MATERIALS  

 

(Keywords: Organic Acid; lactic acid; Fermentation; Pineapple Wastes) 

 

The liquid pineapple wastes from pineapple cannery industries contain 
mainly sucrose, glucose, fructose and other nutrients. Lactic acid, a normal organic 
acid, has long been of use in the pharmaceutical, chemical, cosmetic and food 
industry. Recently, lactic acid has been considered as an important raw material for 
production of biodegradable lactide polymer. The objective of this project is to study 
the feasibility of lactic acid production from liquid pineapple waste as a substrate 
using Lactobacillus delbrueckii. Batch fermentation of pineapple waste was studied 
in a 3-litre stirred fermenter (Biostat B Model). In order to know the physical and 
chemical properties of liquid pineapple waste, characterisation study was carried out. 
During the fermentation process, 0.5 ml sample was withdrawn from the 
fermentation broth at regular time intervals in order to measure the variation of sugar 
concentration, lactic acid concentration, pH and biomass with fermentation time. The 
microbial cells were separated by centrifugation for dry biomass determination.  The 
supernatant was immediately frozen for further determination of the concentrations 
of lactic acid, glucose, fructose and sucrose. Effects of some parameters such as 
temperature, pH, inoculum size, substrate concentrations and nitrogen source were 
studied. Mathematical modelling and kinetic parameters estimation as a function of 
pH and inoculum size were also studied. By using the concept of material balance, an 
unstructured model based on a Monod type kinetic equation for cell growth, 
substrate utilisation and product formation were developed. During fermentation, the 
concentrations of the substrate, product and cell were measured. The data were used 
for the estimation of kinetic parameters in the differential equation for the balance of 
the substrate, cell and product by computer program. To obtain the best fitting, a 
nonlinear regression analysis combined with a Runge-Kutta method was used. The 
standard deviation and standard error between the measured and calculated 
concentrations of lactic acid are used as statistical criterion for testing the adequacy 
of the model. Optimisation studies were also carried out for selected parameters in 
the Erlenmeyer flask containing 100 ml of production medium. CaCO3 (3% w/v) was 
added to control the pH in the shake flask fermentation. A fractional factorial central 
composite design (FFCCD) was used to determine the optimum values of the process 
variables such as temperature, speed, concentration of yeast extract, concentration of 
substrate and the time by the response surface methodology (RSM) for obtaining the 
maximum yield of lactic acid. The result of the second order response surface model 
fitting was tested for adequacy by the analysis of variance. The optimal values of 
tested variables for maximal lactic acid production were found to be: temperature 
40°C, speed 50 rpm, yeast extract 10 g/l, sugar concentration 52.5 g/l and time 7 
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days. A techno-economic evaluation of the process understudy showed that the 
utilisation of pineapple waste as substrate for lactic acid production using 
lactobacillus delbruekii is feasible process even though its profitability is lower than 
molasses and wheat flour. This is due to the fact that the yield obtained from this 
study was only 79 % compared to industrial yield is about 97 %. Therefore, 
increasing the yield through continuous or fed-batch fermentation couple with 
immobilised cells could enhance the profitability of the process. 
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ABSTRAK 

 

 

PENGHASILAN ASID ORGANIK DARI BAHAN MENTAH TEMPATAN 

 

(Kata Kunci: Asid Organik; Asid Laktik; Fermentasi; Sisa Nanas) 

 

 Bahan buangan cecair daripada industri pengetinan nenas mengandungi 
bahan berguna seperti sukrosa, glukosa, fruktosa dan nutrien lain. Asid laktik telah 
lama digunakan dalam industri farmasi, kimia, kosmetik, plastik dan makanan. Baru-
baru ini, asid laktik telah diambilkira sebagai suatu bahan mentah yang penting untuk 
penghasilan polimer laktida yang terbiodegradasi. Oleh itu objektif projek ini adalah 
untuk mengkaji kemungkinan pengeluaran asid laktik daripada buangan cecair nenas 
sebagai suatu substrak penapaian dengan menggunakan Lactobacillus delbrueckii. 
Penapain kelompok dikaji menggunakan penapai berpengaduk (Biostat B Model) 3-
liter. Demi mengetahui sifat-sifat fizikal dan kimia bagi buangan cecair nenas, kajian 
pencirian telah dilakukan. Semasa proses penapaian, 0.5 ml sampel dikeluarkan 
dalam selang masa tertentu untuk mengukur perbezaan kepekatan gula, kepekatan 
asid laktik, pH dan biojisim dengan masa penapaian. Sel-sel mikrob dipisahkan 
dengan daya emparan untuk menentukan biojisim yang kering. Supernatant itu 
dibekukan dengan segera untuk penentuan kepekatan asid laktik, glukosa, fruktosa 
dan sukrosa selanjutnya. Kesan-kesan sesetengah parameter seperti suhu, pH, saiz 
inokulum, kepekatn substrak dan sumber nitrogen telah dikaji. Pengmodelan 
matematik dan penganggaran parameter kinetik sebagai fungsi terhadap pH dan saiz 
inokulum juga dikaji. Dengan menggunakan konsep imbangan bahan, suatu model 
tak berstruktur berdasarkan persamaan kinetik jenis Monod bagi pertumbuhan sel, 
penggunaan substrak dan pembentukan produk telah dibangunkan. Semasa 
penapaian, kepekatan substrak, produk dan sel diukur. Data-data ini digunakan untuk 
penganggaran parameter kinetik dalam persamaan pembezaan demi keseimbangan 
substrak, sel dan produk dengan menggunakan program komputer. Untuk 
mendapatkan keputusan yang paling sepadan, gabungan analisis regresi tidak linear 
denga kaedah Runge-Kutta telah digunakan. Standard deviation dan standard error 
antara kepekatan asid laktik yang diukur dan yang dikira telah digunakan sebagai 
kriteria statistik untuk menguji ketepatan model ini. Kajian pengoptimuman juga 
dilaksanakan bagi parameter-parameter terpilih dalam kelalang Erlenmeyer yang 
mengandungi 100 ml media pengeluaran. CaCO3 (3%w/v) telah ditambah untuk 
mengawal pH dalam penapaian kelalang bergoncang tadi. Suatu rekabentuk 
komposit pusat faktor pecahan (FFCCD) telah digunakan untuk menentukan nilai 
optimum bagi pembolehubah proses seperti suhu, kelajuan, kepekatan ekstrak yis, 
kepekatan substrak dan masa dengan menggunakan metodologi permukaan balasan 
(RSM) untuk mendapatkan penghasilan asid laktik maksimum. Keputusan model 
permukaan balasan tertib kedua diuji untuk kesepadanannya dengan analysis 
ketaksamaan. Nilai-nilai optimum untuk pembolehubah yang diuji bagi penghasilan 
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asid laktik maksimum ialah: suhu 40°C, kelajuan 50 rpm, ekstrak yis 10g/l, 
kepekatan gula 52.5 g/l dan masa 7 hari. Sau penilaian tekno-ekonomik terhadap 
proses yang dikaji menunjukkkan bahawa penggunaan sisa nanas sebagai substrak 
bagi proses penghasilan asid laktik menggunakan Lactobacillus delbrueckii adalah 
merupakan proses yang berjaya walaupun keberuntunganya adalah lebih rendah 
berbanding dengan molases dan tepung gandung. Ini disebabkan oleh kerana yield 
yang diperolehi hanya 79 % berbanding dengan industrial yield adalah 97%. Oleh itu 
dengan meningkatkan yield melalui proses fementasi continuous atau fed-batch  dan 
dengan menggunakan sel tersekatgerak boleh mempertingkatkan keberuntungan 
proses. 
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CHAPTER I 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

 

The canned pineapple industry in Malaysia is the oldest agro based export 

oriented industry dating back to 1888. Although pineapple can be grown all over the 

country, the planting of pineapple for canning purpose is presently confined to the 

peat soil area located only in Johor which is the major producer of canned pineapple 

in Malaysia. In 1997, the production of canned pineapple was estimated at about 48 

million standard cases as against 41 million standard case tonnes in 1996, an increase 

of almost 16%. Major world producers of canned pineapple are Thailand (39%), 

Philippines (23%), Indonesia (13%) and Kenya (8%) which altogether contribute to 

more than 80% of total world canned pineapple production in 1997. Malaysia’s 

production amounting to 1,563,291 standard cases would be equivalent to 3.3% of 

total world production (MPIM, 1998). 

 

The growing, harvesting and canning of pineapple are a marvel of a modern 

science and technology. Specialised plant breeding, planting, fertilising and 

cultivating techniques are employed in raising the crop to the uniform quality and 

maturity. The fruit is harvested fully ripe and is canned within a few hours. Upon 

receipt at the cannery the fruit is graded according to size and fed into the inventor 

machine in which the cell and ends are removed. The fruit is cut into cylinder to fit 

the selected can size and the appropriate diameter core is removed. The cylinders are 

then cut into slices of uniform thickness. Broken slices may be cut into titbits or 
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other small pieces. Trimmings from the various operations are used to make crushed 

pineapple or juice. Refined juice may be used as the liquid packing medium for 

slices or other pieces. In general, the stages of pineapple canning include grading and 

sorting, peeling and coring, slicing and canning (Jackson and Shinnery, 1979). These 

processes especially peeling and coring of the fruits will produce unwanted materials 

which are discarded while primary fruits are used for further processing.  

 

Food processing operation consumes enormous quantities of water which are 

consequently discharged as polluted effluent. These wastes contain high 

concentration of biodegradable organic materials and suspended solids. As a result it 

has a high BOD and extremes of pH conditions (Buckle, 1989). The solid waste from 

pineapple canning process was estimated about 40 - 50 % from fresh fruit as 

pineapple peals and cores (Bardiya et al., 1996; Moon and Woodroof, 1986; 

Viswanath, 1992). Bisaria (1991), Kosaric and Velayudhan  (1991) have reported 

that the wastes from agricultural industries contain cellulose and sugar which can be 

potentially processed to food, fuel, feed and variety of chemicals.   

 

The wastes generated by pineapple canning industries that are located in 

tropical region such as Malaysia, Thailand and Indonesia produce large quantity of 

solid and liquid waste. In the world, it was estimated that more than 1,651,672 tonnes 

of pineapple waste are generated by canning industries, which are respectively 50% 

liquid waste and 50% solid waste each year (Sasaki et al., 1991). If these wastes 

discharge to the environment untreated, they could cause serious environmental 

problems. Beside their pollution and hazard aspects in many cases, food processing 

waste such as pineapple waste might have a potential for recycling to get valuable 

raw material or for conversion into useful and of higher value added products, or 

even as raw material for other industries, or for use as food or feed after biological 

treatment (Kroyer, 1991).  

 

This waste contains valuable components which are mainly sucrose, glucose, 

fructose and other nutrients (Sasaki et al., 1991). An attempt has been made by many 

researchers to utilise the waste for producing high value added chemicals such as 

single cell protein (SCP), ethanol, acetic acid, oxalic acid and methane (Sasaki et al., 
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1991; Vimal and Adsole, 1976; Bardiya et al., 1996). So far, there are no studies 

reported on the application of pineapple waste for lactic acid production.  

Lactic acid is the one of the most widely used organic acids in the food 

industry and is a very common substrate for chemical synthesis. Recently, there has 

been increased interest in lactate because it can be used as raw material for 

production of biodegradable polymers with application in food industries for 

packaging as well as in medical and pharmaceutical fields (Wang et al., 1995; Payot 

et al., 1999).  

 

The world production of lactic acid is approximately 50,000 tonnes per year 

and the commercial price of lactic acid (1999) ranges from US$1.40/kg for 50% to 

US$1.90/kg for 88% food grade lactic acid. The fermentative production of lactic 

acid is interesting due to the prospect of using cheap polysaccharide raw materials 

such as starch or cellulose. However, the production of lactic acid, using this process, 

suffers from a number of drawbacks. The raw material must be exposed to some 

form of pre-treatment before fermentation to produce a suitable fermentation 

medium (Akerberg and Zacchi, 2000). 

 

Lactic acid is generally produced from glucose, maltose, sucrose or lactose. 

Starches especially those from corn and potatoes are hydrolysed by enzymes or acid 

to maltose and glucose before they are used for lactic acid fermentation (Atkinson 

and Mavituna, 1991; Blanch and Clark, 1997). Lactic acid can be produced by 

microbial fermentation or by chemical synthesis but in recent years fermentation 

process has become more industrially successful because of the increasing demand 

for naturally produced lactic acid. So far, the lactic acid is produced by fermentation 

process using whey permeate by Lactobacillus helviticus (Kulozik and Wilde, 1999; 

Fu and Mathews, 1999) and molasses by Lactobacillus delbrueckii (Payot et al., 

1999; Monteagudo et al., 1994) as a carbon source.  

 

 

 

1.2 Objectives And Scopes  
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The physical and chemical characteristics of pineapple waste produced from 

canning process will vary according to the process as well as the areas and seasons 

for pineapple plantation. Therefore, the characterisation of the waste is important to 

be carried out in order to determine the physical and chemical composition such as 

sugar content which influences the fermentation process. Hence, the first objective of 

this study is the determination of sugar content such as glucose, fructose and sucrose 

along with soluble protein and total nitrogen. Acidity of the organic acids such as 

citric acid and malic acid, macro elements such as phosphorus, sulphates, magnesium 

and potassium, and micro elements such as sodium, calcium, chlorides, ferro, 

mangan and zinc as well as pH will also be investigated in this study. 

 

The successful implementation of fermentation processes depends on the 

effect of environmental parameters on cell growth and product formation. Since the 

lactic acid fermentation depends on various parameters such as temperature, pH, 

concentration of nutrient, nitrogen source and inoculum size, the second objective is 

to study the effect of controlled and uncontrolled pH, temperature, initial sugar 

concentration, inoculum size and types of nitrogen source on microbial growth, sugar 

utilisation and lactic acid production. 

 

The third objective of this study is the mathematical modelling and the 

estimation of kinetic parameters for microbial growth, sugar utilisation and lactic 

acid production. This is important since knowledge of the kinetics of fermentation 

process is necessary in order to size the fermentor and its associated equipment, and 

this information is normally obtained from laboratory experimentation with one- to 

three- litres fermentors. In batch fermentation, the kinetic model provides 

information to predict the rate of cell mass or product formation. A process might be 

developed on a trial and error basis but that is an extremely costly approach both in 

terms of time and equipment. A more profitable approach is to use mathematical 

modelling for the process. Then one can examine the consequences of changing 

parameters without the expense of running costly experiment. 

 

The fermentation process normally takes several weeks and therefore it is 

required to solve some related problems such as time-consuming process and high 
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cost of production. Many variables may potentially affect the productivity of lactic 

acid, so the sample size has to be minimised in order to save time and money. This 

problem can be solved by reducing variables through the identification of several 

important factors, the optimisation process and the confirmation of the result. There 

are no theoretical models which can be used to explain process performance. 

Consequently, successful research is characterised by effective empirical problem 

solving. Statistical problem solving provides a set of powerful tools which can be 

used to maximise the efficiency and productivity. Development of mathematical 

models can be used to predict the lactic acid yields as a function of factors. This 

mathematical model provides a prediction of the best setting of factors which should 

produce the optimum value of lactic acid. Therefore the fourth objective of this study 

is the optimisation of some parameters by using fractional factorial central composite 

design with response surface methodology. 

 

The lactic acid fermentation was carried out at shake flask and small 

fermentor with working volume of 100 ml and 1000 ml respectively. The process is 

to be conducted on large scale to produce commercial quantities of lactic acid. 

Therefore the fifth objective of this study is fermentation scale-up from 100 ml to 5 

litres at optimised fermentation conditions such as initial sugar concentration, 

concentration of yeast extract, time of fermentation, temperature and stirring speed. 

Last but not least, the sixth objective of this study is a techno-economic evaluation of 

lactic acid production from liquid pineapple waste. 

 

 

 

1.3 Report Outline 

 

Respective chapters of this report can be broadly identified with one of the 

objectives outline in Section 1.2. The report contains eight chapters in which each 

chapter is an entity containing its own introduction and descriptions to achieve the 

respective objective of each chapter and the report as a whole.  
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Chapter I describes the research background, objectives and scopes of the 

work, and the report outline. This will be followed by Chapter II which describes the 

historical aspects, world pineapple production, nutritive aspect of pineapple, 

characteristics and utilisation of solid and liquid pineapple waste, lactic acid 

industry, physical and chemical properties, lactic acid application, biochemistry of 

sugar metabolism, selection of micro-organism, conditions and modes of lactic acid 

fermentation. This chapter also describes a theoretical background of modelling and 

optimisation of lactic acid fermentation.  

 

In order to achieve the objectives discussed in Section 1.2, the materials and 

the experimental as well as analytical methods are presented in Chapter III. This 

chapter includes some materials that are used for lactic acid production, experimental 

methods such as pineapple waste treatment, extraction of sugar from solid waste, 

bath and fed-batch fermentation. The analytical methods are also presented in this 

chapter which contains the determination of physical and chemical properties of 

pineapple waste such as the measurement of pH, sugar, protein, organic acid, cations, 

anions and product analysis such as biomass, sugar, lactic acid and other organic 

acids.  

 

The findings of the parameteric study are presented in Chapter IV. This 

chapter comprises several characteristics of pineapple waste, and also effects of 

parameters understudied such as inoculum size, temperature, controlled and 

uncontrolled pH, concentration of initial sugar and type of nitrogen source in 

fermentation system followed by fermentation optimisation using response surface 

methodology. This chapter presents also results of comparative study between the 

pineapple waste as substate with pure sugar and mixed sugar, as well as batch 

fermentation with fed-batch fermentation. 

 

In order to simulate the results presented in Chapter IV, the mathematical 

model, parameters kinetic estimation and sensitivity analysis are described in 

Chapter V followed by fermentation optimisation using response surface 

methodology and fermentation scale-up which will be presented in Chapter VI. A 

detailed techno-economic evaluation of the pineapple waste utilization for lactic acid 
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production will be presented in Chapter VII. Last but not least, Chapter VIII gives a 

summary of this study and recommendations for future research. 
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CHAPTER II 

 

 

 

LITERATURE REVIEW  

 

 

 

2.1 Pineapple Industry 

 
2.1.1  Historical Aspects 

 

The pineapple (Ananas comusus) is a native of South America from which is 

now also cultivated in other areas and becomes an important fruit of the tropic 

regions. It is a multiple fruit collection of small flowers and fused ovaries with 

clusters of flowers on a single stalk coming out from the base of the flower stalk. It is 

available fresh, canned and dried, and is also used to produce juice. It may also be an 

ingredient of fruit salads in cans (Arthey, 1995).  

 

Wild species of pineapple still grow in the dry uplands of Brazil and 

Paraguay and it is there that the cultivated pineapple probably arose, although it 

cannot be found in its present form wild today. Following the discovery of America, 

the Spanish and Portuguese very quickly took the pineapples they found growing 

there and introduced them to other parts of the tropics such as Southeast Asia and 

Africa (Shewfelt, 1986).  

 

Towards the ends of the eighteenth and early nineteenth, pineapples in great 

variety were grown in English greenhouse. During the latter century large-scale field 

production started and rapidly increased in Hawaii, Queensland, South Africa, The 

Azores, Malaysia and Florida. The development of canning process from the middle 

of the century onwards greatly stimulated production of pineapple and its related 

product. Pineapples are now also grown on a large scale in Ceylon, Madagascar, 
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Philippines, tropical Central America and both the East and West Indies (Swabey, 

1975).  

 

 

 

2.1.2 World Pineapple Production  

 

World canned pineapple and pineapple juice production in 1998 was 

estimated at 62.5 million standard cases equivalent to 1.25 million tonnes, a decrease 

of 5.3% compared to 1997 (66 million standard cases). Major world producers of 

canned pineapple in 1998 are Thailand (39%), Philippines (23%), Indonesia (14%) 

and Kenya (8%) which all together contribute to more than 80% of total world 

canned pineapple production. Malaysia’s production was estimated in 1998 about 

1,563,291 standard cases which would be equivalent to 2.2% of total world 

production (MPIM, 1999).  

 

In 1998, world export of canned pineapple stood at 49.7 million standard 

cases as shown in Figure 2.1. Thailand, the world’s exporter, exported about 19 

million standard cases or 38.2% of the total world export, followed by the 

Philippines (11.3 million standard cases), Indonesia (7 million standard cases), 

Kenya (4.1million standard cases) and South Africa (1.7million standard cases). 

While these countries registered an increase in their exports over the previous year, 

Malaysia which exported 1.2 million standard cases in 1998, recorded a decrease of 

26.6% compared to 1997.  The world’s major canned pineapple exporter in 1998 is 

given in Figure 2.2. 
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*One standard case contains 24 cans (weighing 20 ounces each). 

 

Figure 2.1: World canned pineapple and juice export by major countries (MPIM, 

1999). 

     

 

 

 

Figure 2.2: Major world producers of canned pineapple in 1998 (MPIM, 1999). 
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2.1.3 Pineapple Industries In Malaysia 

 

In view of the good market opportunities for canned pineapple in the world, 

there is prospect for Malaysia to step up its pineapple production. The abolition of 

the Japanese global quota with effect from April, 1990 will give added impetus. 

Likewise, the industry will have to take the necessary steps to increase production 

and export of canned pineapple to compete in the growing world market. The 

structure of the pineapple planting will be further improved whereby estate planting 

will be extended and encouraged to achieve higher production yield as well as 

greater competitiveness. In the small grower sector, FELCRA will organise farmers 

to get smallholder production on a more organised basis. With the production of 

better quality fruits, recovery in processing will improve which will contribute 

towards improving Malaysia’s competitiveness in the world market (KPUM, 1990).  

 

In 1989, Malaysia’s production of fresh fruit for canning amounted to 

179,600 tonnes, a decrease of 6% from 168,300 tonnes produced in 1990. The 

production had been on the declining trend since 1992. The total production declined 

by 23.2% from 119,825 tonnes in 1997 to 92,035 tonnes in 1998. The production for 

the period 1989-1998 is shown in Figure 2.3. A drastic reduction of 18.7% was 

recorded in smallholder’s production from 9,216 tonnes in 1997 to 7,495 tonnes in 

1998. This was due to the shortage of planting materials, higher labour cost, poor 

farm practices and conversion to other crops (MPIM, 1999). The production trend of 

the canned pineapple and juice production for 1989-1998 is also given in Figure 2.3. 

The canning sector is very much dependent upon the availability of fresh fruits. 

Hence, in line with the decline in fruit production, the production of canned and 

pineapple juice had dropped by 9.7% from 42,871 tonnes in 1995 to 38.702 tonnes in 

1996. It further declines by 10.4% to 34,660 tonnes in 1997 compared with the 

previous year. The production of canned pineapple decreased by 29.1% from 34,660 

tonnes in 1997 to 27,629 tonnes in 1998. On the other hand, the production of 

pineapple juice increased by 62.1% from 3351 tonnes in 1997 to 5431 tonnes in 1998 

(MPIM, 1999).  
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Figure 2.3: Malaysian production of fresh fruit and export canned pineapple and 

juice from 1989-1998 (MPIM, 1999). 
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2.1.4 Nutritive Aspects Of Pineapple 

 

The edible portion of most type of fruit contains 75-95% water. Fruits are low 

in protein but in general, contain substantial carbohydrates. The latter may include 

various proportions of glucose, fructose, sucrose and starch according to the type of 

fruit and its maturity. The main acids, in fruits are citric, tartaric and malic acids. The 

total acidity often decreases during repining and storage. The pH of fruits is usually 

from to 2.5-to 4.5. Other constituents of fruits include cellulose and woody fibres, 

mineral salts, pectin, gums, tannins, pigments and volatile constituents. From the 

nutritional point of view, fruits also have the valuable sources of vitamins A and C 

(Young and How, 1986). Moon and Woodroof (1986) reported that the pH of food 

products categorised as, high acid foods (< 3.7), acid foods (3.7-4.6), medium acid 

foods (4.6-5.3) and low or non acid foods (> 5.3). The pH of food products can 

change during ripening, processing and storage.  

 

As in other fruits of this group, sucrose is the major sugar present in 

pineapples. Citric acid is the predominant acid with malic and oxalic acids are also 

present. A volatile flavour component unique to pineapple is 2,5 dimethyl-4-

hydroxy-2,3-dihydro-3-furanon, ethyl-3-methylthiopropionate, ethyl butirate and 

ethyl hexanoate. Acetic acid, furfural, formaldehyde, acetal dehyde, acetone and the 

ethyl, isobutyl, methyl, and propyl esters of acetic acid and formic acid are the major 

volatile constituents containing in canned pineapple juice (Shewfelt, 1986).  

 

Krueger et al. (1992) reported that major constituents of fresh pineapple juice 

are glucose, fructose, sucrose, citric acid, malic acid and mineral potassium. The 

dominant sugar is sucrose, the glucose and fructose levels are similar to each other 

with fructose is slightly higher than glucose. The composition of sugar depends of 

geographical origins and varying degrees of ripeness. The composition of fresh 

pineapple and juice are given in Tables 2.1 and 2.2. 
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Table 2.1: The composition and nutritive value of pineapple (Young and How, 

1986). 

 

Pineapple (100 g) 
Composition 

Raw Juice (canned) 

Water (g) 86.5 85.5 

Food energy (kcal) 49.0 56.0 

Protein (g) 0.39 0.32 

Total lipid (g) 0.43 0.08 

Total carbohydrate (g) 12.4 13.8 

Fibre (g) 0.54 0.10 

Ash (g) 0.29 0.30 

Calcium (mg  7.00 17.00 

Iron (mg) 0.37 0.26 

Magnesium (mg) 14.0 13.0 

Phosphorus (mg) 7.00 8.00 

Potassium (mg) 113 134 

Sodium (mg) 1.00 1.00 

Zinc (mg) 0.08 0.11 

Copper (mg) 0.11 0.09 

Manganese (mg) 1.65 0.99 

Ascorbic acid (mg) 15.4 10.7 

Thiamine (mg) 0.09 0.06 

Riboflavin (mg) 0.04 0.02 

Niacin (mg) 0.42 0.26 

Panthothenic acid (mg)  0.16 0.10 

Vitamin B6 (mg) 0.09 0.10 

Folacin (μg) 10.6 23.1 

Vitamin A (IU) 23.0 5.00 
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Table 2.2: The composition of pineapple juice (Krueger et al., 1992). 

 

Composition Quantity (g/l) 

Soluble solid 112-162 

Acidity (as citric acid) 4.60-12.10 

Fructose 17.20-47.50 

Glucose 12.10-45.20 

Sucrose 24.70-97.30 

Citric acid 4.39-11.51 

Malic acid 0.73-3.91 

Isocitric acid 0.80-2.65 

Potassium 8.30-14.10 

 

 

 

2.2 Pineapple Waste 

 

2.2.1  Pineapple Canning Industry 

 

When the fresh pineapple fruits arrive in the canning factory, the fruits will 

be graded into several sizes according to the fruit diameter. Then they will be peeled, 

core removed, sliced, sorted and canned. All the peeled skin, unwanted fruits and the 

core will be sent to the crush machine for crushing. After crushing, the solid waste 

will be sent to cattle feeding while the liquid waste is send to the storage for 

fermentation process (Koshy, 1990). Figure 2.4 shows the pineapple canning 

process. 
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Figure 2.4: The pineapple canning process (Jackson and Shinnery, 1979). 
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2.2.2 Pineapple Waste Characteristics 

 

The wastes generated by fruits processing are primarily solid in the forms of 

peels, stems, pits, culls and organic matter in suspension. The first stage in the 

optimisation of waste reduction is to identify and characterise the wastes (solid and 

liquid) produced. Each particular food industry generates specific type and amount of 

wastes. For example, the fruit and vegetables industry generates much more solid 

waste than the dairy industry. The characteristics of the waste load of various fruit 

processing industries indicate the problem of suspended organic matter in the waste 

water (Moon and Woodroof, 1986). The comparison between pineapple waste to 

other fruit processing wastes is given in Table 2.3. The solid waste from pineapple 

processing was about 45% from fresh fruit, followed by citrus, apple, pear, peach 

and cherry were 43, 32, 30, 24, 17, and 14 % respectively. For pineapple processing, 

the suspended and organic matter in the waste water is higher than other fruits 

processing. It can be indicated by the BOD and suspended solid contained in the 

rinse water which are 4.8 kg/m3 and 2.4 kg/m3 respectively.     

 

 

Table 2.3: The comparison between pineapple waste to other fruit processing wastes 

(Moon and Woodroof, 1986). 

 

Fruit Raw 

 

Waste water 

 

BOD  

 

Suspended 
solid 

Solid residual

 

 (tonnes) (m3) (kg/m3) (kg/m3) (tonnes) 

Apple 1,000,000 18,920,000 0.95 0.11 320,000 

Apricot 120, 000 2,270,000 1.39 0.20 21,000 

Cherry 190,000 1,130,000 1.60 0.40 27,000 

Citrus 7,800,000 87,050,000 0.16 0.28 3,390,000 

Peach 1,100,000 16,650,000 1.79 0.29 270,000 

Pear 400,000 6,050,000 2.09 0.74 120,000 

Pineapple 1,000,000 1,890,000 4.80 2.40 450,000 
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The characteristics of solid waste from pineapple processing are shown in 

Table 2.4 reported by different authors. The moisture content of solid waste was 

found to be at the range of 87.50 - 92.80 %. The difference of moisture content might 

be due to the sample obtained from various geographical origins and of varying 

degree of ripeness. The total nitrogen and ash content in the wastes were between 

0.90-0.95 % and 3.9-10.6 %, respectively. 

 

 

Table 2.4: The characteristics of solid pineapple waste reported by different authors. 

 

Composition 
Bardiya et al. 

(1996) 

Viswanath 

(1992) 

Chandapillai and 

Selvarajah  (1978) 

Moisture 92.80 87.69 89.70 

Total solid  7.80 12.31 10.30 

Ash 10.60 6.20 3.90 

Organic carbon  51.85 38.9 - 

Nitrogen free extract - - 75.10 

Total carbohydrates  35.00 - - 

Ether extract - - 0.20 

Cellulose 19.80 - - 

Crude fibre - - 14.70 

Hemicellulose  11.70 - - 

Phosphorus  0.08 0.10 

Total soluble 30.00 - - 

Total nitrogen 0.95 0.90 - 

Crude protein - - 6.10 
 

   

The characteristics of liquid waste from pineapple processing are given in 

Table 2.5 (Sasaki et al., 1991). The compositions vary considerably with the season, 

area and canning process. The waste contains mainly sucrose, glucose and fructose 

while dextrin, raffinose and galactose exist as minor components. 
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Table 2.5: The characteristics of liquid pineapple waste (Sasaki et al., 1991). 

 

Liquid Waste 
  Composition 

 Before sterilisation After sterilisation 

COD (g/l) 100.8 103.7 

Reducing sugar (g/l) 39.20 41.20 

Total sugar (g/l) 100.0 100.9 

Dextran (g/l) 1.50 1.50 

Raffinose (g/l) 2.60 1.50 

Sucrose (g/l) 40.1 40.1 

Glucose (g/l) 23.6 23.6 

Galactose (g/l) 1.70 2.10 

Fructose (g/l) 14.0 15.6 

Soluble protein (g/l) 0.90 - 

Kjeldahl nitrogen (g/l) 0.20 - 

Fe (mg/l) 5.43 - 

Ca (mg/l) 3.31 - 

Mn (mg/l) 13.97 - 

Mg (mg/l) 62.50 - 

Co (mg/l) 0.07 - 

Cu (mg/l) 2.02 - 

Cd (mg/l) 0.03 - 

Na (mg/l) 8.61 - 

SO4
2- (mg/l) 169.7 - 

PO4
3- (mg/l ) 223.8 - 

pH 4.00 4.00 
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2.2.3 Pineapple Waste Utilisation 

 

 All of the raw materials that contain sugar can be processed to high value 

added products such as biomass, methane, alcohols, enzymes, antibiotics and organic 

acids (Kosaric and Velayudhan, 1991). The potential product from sugar waste is 

given in Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: A schematic diagram of the potential products from sugar waste (Kosaric 

and Velayudhan, 1991). 
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Vimal and Adsole (1976) reported that the juice extracted from comminuted 

skin and cores of pineapple when mixed with an equal quantity of fresh juice, can be 

used for the production of acetic acid by fermentation. The residual left after juice 

extraction can be utilised a cattle feed after drying. Bardiya et al. (1996) studied 

about the biomethanation of pineapple waste in aerobic digestion. The digester 

volume is 1.8 litres and it could be operated at 10 days and 58 % substrate. The rate 

of gas production maximum is 0.93 vol/vol/day. The liquid waste from pineapple 

peel can also be used for the production of single cell protein by strain of 

Rhodobacter Sphaeroides. Pineapple peel juice was obtained by a press dehydration 

of the peel and cores followed by filtration before used. The cultivation was 

composed of peel filtrate supplemented with diammonium sulphate, diammonium 

hydrogen phosphate and some vitamins. The culture yielded 26.5 g dry cell / litre 

after 60 hours of cultivation with the maximum specific growth rate of 0.31 / hour 

and growth yield at 0.45 g cell / g sugar; COD removal 85.3 % (Sasaki et al., 1991). 

Pineapple waste was also employed for the production of oxalic acid by oxidation 

with nitric acid in the presence of vanadium pentoxide as a catalyst. Oxalic acid 

produced about 75-80 % yield on dry weight basis (Vimal and Adsole, 1976). 

Pineapple waste juice can also be used to produce citric acid using Candida 

lypolytica ATCC 8661. The maximum citric acid production obtained was 3.2 g/l 

under submerged fermentation after four days (Koshy, 1990). Lategan and Botes 

(1984) studied the production of ethanol by semi solid state fermentation of 

pineapple waste. Pineapple peel was macerated to 3 mm size and 100 ml water added 

to 800 g peel plus 100 ml yeast Inocolum. Using optimal parameters such as pH, 

temperature and combination of a high concentration of yeast in the inocolum and 

recirculating of the yeast, the yield of ethanol is approximately 4 ml ethanol per 100 

g of pineapple peel. 
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2.3 Lactic Acid Industry 

 

2.3.1 Historical Perspective 

 

Lactic acid is the simplest hydroxyl acid having an asymmetric carbon atom. 

It occurs naturally either in the form of the dextrorotatory, L (+), levorotatory, D (-) 

or as a racemic of both. Lactic acid occurs widely in nature, being found in man, 

animals, plants and microorganisms. It was discovered in 1780 by The Swedish 

chemist Scheele in sour milk (Holten, 1971). Blondeau in 1847 recognised lactic acid 

as the final product of fermentation process (Paturau, 1982). 

 

D-lactic acid sometimes known as sarcolactic acid, is present in muscle and 

can be obtained from meat extract by extraction with ether. L-lactic acid does not 

occur naturally, and must be obtained by the separation of optically active 

components of D,L-lactic acid. D,L-lactic acid is present in sour milk and can be 

obtained by fermentation of glucose, lactose or sucrose. The two optically active 

lactic acids are given in Figure 2.6 (Brown, 1957). 

 

 

COOH                                                       COOH 

 

   H     C      OH                                        HO         C       H          

             

           CH3                                                            CH3      

 

D - lactic acid                                                   L -lactic acid 

 

Figure 2.6: Lactic acid structure and isomers (Brown, 1957). 

 

In animal and human cells, L-lactic acid is present only in the form of L-

lactate dehydrogenate and therefore configuration of lactic acid is very important 

from the nutritional point of view. The intake of larger amounts of D-lactic or D, L-

lactic acid can result in an enrichment of D-lactic acid in the blood and hyperacidity 
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of the urine may occur. These findings caused the WHO to limit human consumption 

of D-lactic acid to 100 mg/kg/d (Buchta, 1983). Lactic acid is possible to make lactic 

acid copolymer that emulates many of the thermoplastics now being used in 

packaging and consumer goods. The rate of biodegradation can be controlled. Thus, 

lactic acid could become the source of a family of environmentally friendly 

thermoplastics benign polymer for use in packaging and other applications that affect 

the quality of our life. The potential industrial products from lactic acid are shown in 

Figure 2.7 (Lipinsky and Sinclair, 1986). 

 

Lactic acid was first produced commercially by Charles E. Avery at Littleton, 

Massachusetts, USA in 1881 (Van Ness, 1984). The first successful use in the leather 

and textile industries began in 1894 and the production levels were about 5.0 tonnes 

per year. In 1942, about half of the 2,700 tonnes per year produced in the US was 

used by leather industry, and an emerging use in food product. During the World 

War II, US production peaked at 4,100 tonnes per year (Vickroy, 1983). In 1982 

worldwide production of lactic acid is 26 tonnes per year. More than 50 % of lactic 

acid produced is used in food as an acidulant and a preservative. Fermentation is 

presently used to make about half of the world’s total production of lactic acid 

(Vickroy, 1983; Blanch and Clark, 1997). 

 

The present annual world production has a total volume of nearly 30,000 ton, 

about half of this production is made using chemical synthetic, and it is rapidly 

becoming regarded as a commodity chemical. Compared with the increasing price of 

petroleum, lactic acid produced by fermentation is cheaper. This has created an 

increased demand for knowledge to improve the fermentation and recovery process 

(Van Ness, 1984; Blanch and Clark, 1997). In economic terms, the foremost 

parameters to be considered are price and the volume of production. The world 

production of lactic acid is relatively small compared to other biotechnological 

products and in term of price per tonne, it is relatively expensive (Hacking, 1989). 
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Figure 2.7: The potential industrial products from lactic acid (Lipinsky and Sinclair, 

1986). 
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2.3.2 Physical And Chemical Properties 

 

Lactic acid is a colourless, sour taste odourless, syrup liquid miscible in all 

proportions in water, alcohol and ether but insoluble in chloroform. It does not 

crystallise from solution as do other acids. It is a weak acid with good solvent 

properties and low melting point (Casida, 1964).  

 

Three forms of lactic acid are known; D-lactic acid, L- lactic acid and DL-

lactic acid. D-lactic acid and L-lactic acid are both optically active, and DL-lactic 

acid is optically inactive. The optically inactive form of lactic acid is simply an equi-

molecular mixture of the both forms and denoted as racemic mixture (Brown, 1957).  

 

The commercial product of lactic acid is usually optically inactive. Lactic 

acid is very corrosive, therefore corrosion resistant material must be used for its 

production. The material can be used are high-molybdate stainless steel, ceramic, 

porcelain or glass lined vessel (Paturau, 1982). The physical properties of different 

lactic acid forms are shown in Table 2.6. 

 

 

Table 2.6: The physical properties of three forms of lactic acid (Weast and Astle,  

1985; Holten, 1971). 

 

Formula 
Physical properties 

D-lactic acid L-lactic acid DL-lactic acid 

Melting point 53 26 18 

Boiling point 103 - 122 

Density - - 1.206 

Refractive index (88.6%) - - 1.432 

Viscosity (88.6%) - - 36.9 

Colour White White Yellow 
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Table 2.6: The physical properties of three forms of lactic acid (Continued). 

 

Formula 
Physical properties 

D-lactic acid L-lactic acid DL-lactic acid 

Specific rotation -2.3 +3.8 - 

Solubility 
Water, Ethanol Water, Ethanol Water, Ethanol, 

Ether 

Dissociation constant - - 0.000138 

 

 

Lactic acid has both a hydroxyl group and a carboxylic acid, it is optically 

active and these attributes should provide lactic acid with a high ranking in the top 

organic chemicals. The existence of a hydroxyl group and a carboxylic acid in lactic 

acid enable it to be converted into polyesters directly. Dehydration of the hydroxyl 

group generates unsaturation that is conjugated with the carboxyl group. Therefore 

lactic acid has not only multiple functional groups but they are capable of co-

operating with each other effectively (Holten, 1971).  

 

Lactic acid is one of the smallest molecules that exhibits optical activity. It is 

not only feasible to manufacture D, L, DL lactic acid but also there are distinct 

differences in the physical and chemical properties of polymers and other 

derivatives, depending on the choice of optical polymer (Vickroy, 1985).    

 

Lactic acid can be converted to acrylic material (acrylates, acrylonitrile and 

acrylamide), small molecule such as propylene glycol and ethanol, and lactic acid 

polymers (polylactic acid) that emulate many of the thermoplastics now being used 

in packaging and consumer goods with controllable rate of biodegradation (Lipinsky 

and Sinclair, 1986). 

  

The reaction of lactic acid can be classified into the following main types: 

oxidation, disintegration, reduction, condensation and substitution of the alcohol 
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group and esterification. Oxidation of lactic acid with potassium permanganate in 

sulphuric acid results in the formation of acetic acid, water and carbon dioxide, but in 

alkaline condition with addition sodium hydroxide, it produces oxalate, potassium 

carbonate and water. Lactic acid is decomposed by heat in the presence of sulphuric 

acid to acetal dehyde and formic acid. It can be reduced by hydrogen iodide forming 

propionic acid, liberated iodine and water. Lactic acid can also be substituted by 

hydrogen bromide to 2-bromo propionic acid and water (Holten, 1971).  

 

Polylactic acid can be prepared by either condensation polymerisation of the 

free acid or by catalic, ring opening polymerisation of lactide, which is the dilactone 

of lactic acid and its resulting polyesters are usually named polylactic acid (Lipinsky 

and Sinclair, 1986). Esterification of lactic acid to isopropyl lactate can be performed 

by addition of isopropyl alcohol with catalyse zeolite in benzene and the operating 

temperature at 71 oC. The ester is a colourless liquid and decomposition can occur if 

it is boiled at 157 oC (Vogel, 1973). 

 

 

 

2.3.3 Lactic Acid Uses And Applications 

 

Lactic acid, a normal organic acid, has long been of use in the 

pharmaceutical, chemical, cosmetic and food industry. Recently, lactic acid has been 

considered to be an important material for production of biodegradable lactide 

polymer (Wang et al., 1995). Lactic acid, a highly hygroscopes, syrupy liquid is 

commercially available at different grades (qualities). Technical grade lactic acid is 

used in deliming hides, in the textiles industry, and in the manufacturing of esters 

that are used as solvents and plasticiser. Food grade lactic acid is used as an additive 

in the manufacturing of beverages, essences, fruit juices and syrups; and as an 

acidulant in jams, jellies and confectionery, in the canning industry and in bakeries to 

produce sour flours and dough’s, respectively (Vickroy, 1985).    

 

Lactic acid of pharmacopoeia grade is used for treatments of the intestine, in 

hygienic preparations as well as for the manufacturing of pure pharmaceutical and 
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other derivatives of lactic acid such as calcium lactate. Recently the use of lactic acid 

in hand scrubbing before surgery has been recommended. Plastic grade lactic acid is 

used to manufacture various lacquers, varnishes, and impregnating agents as well as 

polymers (Kascak et al., 1996). Fermentation lactic acid generally has a yellow 

colour that is darkest for the concentrated technical grade, pale yellow for the food 

grade and colourless for pharmaceutical grade (Vickroy, 1983). There are altogether 

four grades of lactic acid and their characteristics are given in Table 2.7 (Paturau, 

1982). 

 

 

Table 2.7: The characteristics of the four grades of lactic acid (Paturau, 1982). 

 

Item Technical Edible Plastics USP* 

Total acidity 44 50 50 85 

Free acidity 40-42 46-48 47-49 76-78 

Volatile acids 1-2 1-2 1-2 2-3 

Ash 0.6-0.7 0.4-0.5 0.005-0.01 0.05-0.1 

Carbonisable 

organic matter 
Present Present none none 

Sulphates Present Trace none none 

Chlorides Present Present none none 

Colour Yellow to 

brown 

Faint straw 

yellow 

Colourless Colourless

Iron Present < 3 ppm Trace Trace 

Copper Present Trace Trace Trace 

*USP: United state pharmaceutical 
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2.3.4    Lactic Acid Production 

 

The methods for the lactic acid production can be categorised into two 

groups, biochemical and chemical processes. The commercial production has until 

recently only been performed by fermentation, but some chemical processes have 

also been used to manufacture lactic acid (Holten, 1971). Lactic acid is generally 

produced from glucose, maltose, sucrose or lactose. Starches, especially those from 

corn and potatoes, are hydrolysed by enzymes or by acid to maltose and glucose 

before used in the lactic acid fermentation (Atkinson and Mavituna, 1991; Blanch 

and Clark, 1997). A large number carbohydrate material have been used, tested or 

proposed for the lactic acid production by fermentation. It is useful to compare feed 

stock on the basis of the following desirable qualities, namely: low cost, low level 

contaminant, fast fermentation rate, high lactic yield, little or no by product 

formation, ability to ferment with little or no pre-treatment, and year round ability. 

Crude feed stocks have historically been avoided because high level of extraneous 

materials can cause separation problems in the recovery stage of lactic acid (Vickroy, 

1985).     

 

Starch or sugar containing substances can be used as raw material. Starches 

as raw materials have to be degraded first enzymatically or by means of acid, 

because the lactobacilli does not have amylolytic enzymes. This again means a 

higher cost for addition step which also brings in impurities (Buchta, 1983). Sucrose 

from cane and beet sugar, whey containing lactose and maltose, and dextrose from 

hydrolysed starch are presently used commercially (Vickroy, 1983). The 

carbohydrates available for lactic acid fermentation of most fruit and vegetables 

consist almost exclusively of glucose, fructose and sucrose (Fleming et al., 1985). An 

anaerobic batch fermentation using Lactobacillus delbrueckii or Lactobacillus 

bulgaricus is generally employed. The batch process is not subjected to significant 

contamination, apart from butiric acid bacteria, and often the fermenters are simply 

steamed or washed with boiling water (Blanch and Clark, 1997). 
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2.4 Lactic Acid Fermentation 

 

2.4.1 General 

 

Fermentation processes are characterised by biological degradation of 

substrate (glucose) by a population of micro-organism (biomass) into metabolites 

such as ethanol, citric acid and lactic acid (Maher et al., 1995). Lactic acid is 

produced from mono or disaccharida via the Embden Mayerhof glycolysis. Under 

anaerobic condition, the pyruvic acid produced is reduced to lactic acid by the 

enzyme lactic dehydrogenase (Milson, 1987).  

 

Metabolism is referred to the chemical reactions which occur in living cells. 

Most chemical reactions in the cell do not occur spontaneously because of high 

kinetic barriers. The cell uses enzymes as catalysts to overcome these barriers, thus 

making possible energetically favourable reaction to take place at sufficiently high 

rates (Singleton, 1995). The metabolism of the cell aims at maintaining and 

multiplying the cell substance, which include the synthesis of the cell component. 

Cell synthesis requires not only structural components but also energy (Prave and 

Fauset, 1987). There are numerous species of bacteria and fungi that are capable to 

produce relatively large amount of lactic acid from carbohydrates (Atkinson and 

Mavituna, 1991). However in industrial fermentation, the use of various species of 

lactobacillus is preferred because of their higher conversion, yield and rate of 

metabolism (Mercier et al., 1992).  

 

Two different types of lactic acid fermentation from carbohydrates are 

known, namely homolactic fermentation and heterolactic fermentation. Pure lactic or 

homolactic fermentation is characteristics of microorganism which form lactic acid 

exclusively or predominantly. 

 

In mixed lactic acid or heterolactic fermentation, considerable amount of 

other fermentation products are formed as well as lactic acid, for instances, acetic 

acid, ethanol, formic acid and carbon dioxide (Holten, 1971). 



 31

2.4.2 Biochemistry Of Lactic Acid Fermentation 

 

2.4.2.1 Biochemistry Of Glucose Metabolism 

 

Two different types of lactic acid fermentation from carbohydrates are known 

namely homolactic fermentation and heterolactic fermentation. Pure lactic or 

homolactic fermentation is essentially performed by the homolactic 

lactobacteriaceae. The lactobacilli have the enzyme aldolase and lack the enzyme 

phosphoketolase, by glycolytic pathway (Embden-Meyerhof pathway) more than 

85% glucose is converted to lactic acid. The equation (2.1) represents the overall 

equation for the metabolism of glucose to lactate under anaerobic condition (Zubay, 

1984). The heterolactic fermentation lacks the enzyme aldolase and by phosketholase 

pathway, it produces equimolar amount of carbon dioxide, lactic acid, and acetic acid 

and or ethanol (Hammes and Whiley, 1993). The equation (2.2) represents the 

overall equation for the hetero lactic fermentation of glucose producing acetic acid 

and ethanol (Zubay, 1984). The type of fermentation occurring depends on the 

presence of certain bacteria. However homolactic fermentation in some cases can be 

converted into heterolactic type by changing the fermentation condition (Buchta, 

1983; Hammes and Whiley, 1993).  

 

ATP 2 + Acid Lactic 2 
(homo)
 2P + ADP 2 + Glucose i →                   …….  (2.1) 

 

Glucose +  2 ADP +  2P  
(hetero)

 Acetic Acid +  Ethanol +  CO  +  2 ATPi 2→  

         …… (2.2) 

 

where ADP, ATP and Pi are Adenosine-5-diphosphate, Adenosibne-5-triphosphate 

and the inorganic phosphorus, respectively. 

 

The first reaction (glycolysis) is phophorylation of glucose on carbon atom 6 

by enzyme hexokinase to glucose 6-phosphate and the second reaction is the 

isomerisation by phosphoglucoisomerase to fructose-6-phosphate. This is followed 

by the third reaction which is phosporilation by phospho-fructokinase on carbon 
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atom 1 yielding the doubly phophorylated sugar fructose-1,6-diphosphate. The forth 

reaction occurs where fructose-1,6-diphosphate is split by aldolase to yield two three 

carbon sugar that turn out to be isomers of other namely dihydroxyacetone phosphate 

and glyceraldehyde-3-phosphate. The fifth is oxidation of glyceraldehyde-3-

phosphate by glyceraldehyde-3-phosphate dehydrogenase to 1,3-diphosphoglyserate.  

The sixth is oxidation by phosphoglycerokinase yield 3- phosphoglycerate and 

subsequently the seventh is movement of the phosphate group from its original 

position on carbon 3 to a new location on carbon 2 by phosphoglyceromutase yield 

2-phosphoglycerate. The eighth reaction is dehydration by enolase to 

phosphoenolpyruvate followed by the ninth reaction which is oxidation of 

phosphoenolpyruvate by pyruvate kinase to pyruvate. The tenth is reduction of 

pyruvate by lactate dehydrogenase to lactate. The metabolic pathways of glucose by 

lactic acid bacteria are shown in Figure 2.8 (Buchta, 1983; Zubay, 1984). 
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 Glucose      
                             1 
                                                ATP        ADP       NADP+ H+ 

 2        
Fru-6-P                       Glu-6-P          11  6-P-gluconic 
3 ATP        acid  
                                          NADP+                          NADP+

 ADP              12  
         CO2     
Fru - 1.6 - P  
 4            
          Dihydroxy Acetone-P   NADPH+H+   
Glyceral dehyde-3-P                   Ribulose-5-P                              
      
Pi NAD+           13 
         Xyulose-5-P 
5 NADH+H+         
          14 
         ATP    ADP     Pi 
1-3-di-P-glyserate      15        
                       Acetic acid    Acetyl-P 
6 ATP                     NADH+H+ 16 
     
 ADP          Pi 
  3-P-glyserate                  NAD+ 
           Acetaldehyde 
 7          NADH+H+          17 
              H20  
  2-P-Glyserate 
                     
8               NAD+ 

              H20        Ethanol 
  Phosphoenol pyruvate  
 9 ATP 
  NADH+H+ NAD 
 ADP     
  Pyruvate      
   10   Lactic acid 
 (homolactic)     (heterolactic)  

Figure 2.8: The metabolic pathway of glucose (Buchta, 1983; Zubay, 1984).  
The enzymes catalysing numbered reactions are: 1. Hexokinase, 2. 
Phosphoglucoisomerase, 3. Phosphofructokinase, 4. Aldolase, 5. Triose 
phosphate isomemerase, 6. Phosphoglycerokinase,  
7. Phosphoglyseromutase, 8. Enolase, 9. Pyruvate kinase, 10. Lactic 
dehydrogenase, 11. Glucose-6- phosphate dehydrogenase, 12. 6-phospho 
gluconate dehydrogenase, 13.Ribolosephosphate-3-epimerase,  
14. Phosphoketolase, 15. Acetokinase, 16.Aldehyde dehydrogenase and 
17. Alcohol dehydrogenase. 
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2.4.2.2 Biochemistry Of Fructose Metabolism 
 

Fructose is most commonly obtained by ingestion hydrolysis of sucrose. 

There are two pathways for metabolism of fructose. First, catalysed by the enzyme 

fructokinase, the phophorylation of fructose by ATP at position of carbon 1 (C1) to 

form fructose 1-phosphate (2.3). Second, the fructose is phosphorylated at position of 

carbon 6 by the enzyme hexokinase to form fructose-6-phosphate (2.4) and followed 

by the phophorylation using phosphofructokinase to form fructose-1,6-diphosphate 

(2.5). 

 

1.   Fructose + ATP      Fructose-1-phosphate  + ADP 

   enzyme fructokinase 

             ……….  (2.3)

  

2.   Fructose + ATP                    Fructose-6-phosphate  + ADP 

    enzyme hexokinase    

                 ………   (2.4) 

 

3.  Fructose-6-phosphate + ATP          Fructose-1,6-biphosphate +  ADP 

 

           ..….…      (2.5)

  

The fructose 1-phosphate is split by fructose 1-phosphate aldolase to 

dihydroxyacetone phosphate and glyceraldehyde. The glyceraldehyde formed is 

converted to glyceraldehyde-3-phosphate by phophorylation of ATP through the 

action of glyseraldehyde kinase. The fructose-1,6-diphosphate is split by aldolase  to 

dihydroxyacetone phosphate and glyceraldehyde-3-phosphate. The glyceraldehyde-

3-phosphate is then undergone catabolism by means of the glycolytic pathway to 

produce lactic acid. The metabolic pathways of fructose by lactic acid bacteria are 

shown in Figure 2.9 (Freeman, 1985; Zubay, 1984; Moat, 1985).  
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                                  ATP     ATP 
              1       10    
Fru-6-P    Fructose   Fruc-1-P  
 ATP           11  
2  ADP    ADP      

ADP      
Fru - 1.6 - P                 Glyseral dehyde 
  
 3            
          Dihydroxy-Acetone-P  ATP     12 
Glyceral dehyde-3-P 
        
Pi   4  NAD+    ADP  
           
 NADH + H+  
     
      
1-3-di-P-glyserate       
   ATP          
5     
 ADP           
  3-P-glyserate 
 
6 
 H20  
      
   2-P-glyserate 
7           
 H20          
  
  Phosphoenol pyruvate  
 8 ATP 
  NADH+H+ NAD 
 ADP 
  Pyruvate      Lactic acid 
   9 
 
 

     Figure 2.9: The metabolic pathway of fructose (Freeman, 1985; Zubay, 1984; Moat,  
1985). The enzymes catalysing the numbered reactions are: 1. 
Hexokinase; 2. Phosphofructokinase; 3. Aldolase; 4.Triose phosphate 
isomemerase; 5. Phosphoglycerokinase; 6. Phosphoglyseromutase; 7. 
Enolase; 8. Pyruvate kinase; 9. Lactic dehydrogenase; 10. Fructokinase; 
11. Fructose 1-phosphatealdolase; and 12. Glyseraldehyde kinase. 
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2.4.2.3 Biochemistry Of Sucrose Metabolism 

 

Many lactobaciili species produce levans sucrase in response to growth on 

sucrose. Depending on the enzymes present in a given strain, the disaccharide 

sucrose (α-glucose-1,2-β-fructose) can be cleaved by two alternatives namely 

hydrolysis by enzymes invertase or levansucrase (2.6) yield glucose and fructose 

(Zubay, 1984; Moat, 1985).  

 

    levan sucrase  

Sucrose (glucose-fructose)    Glucose   +   Fructose     ……..    (2.6) 

   invertase 

 

A few organisms also have phosphorolytic enzymes that phosphorylyze the 

sucrose to glucose-1-phosphate and fructose (2.7). The tranferase reaction of 

glucose-1-phosphate by the enzyme phospho glucomutase yields glucose-6-

phosphate (Freeman, 1985; Zubay, 1984). 

 

Sucrose (glucose-fructose)                Glucose-1-phosphate    +    Fructose ..… (2.7) 

            sucrosephosphorylase 

  

Glucose-1-phosphate                        Glucose-6-phosphate   .…..  (2.8)   

           phosphoglucomutase 

 

The glucose-6-phosphate entry is gained into the glycolytic pathway to 

produce lactic acid. The fructose is phosphorylated at position of carbon 6 by 

hexokinase and then phoporilation by phosphofructokinase. The fructose-1,6-

diphosphate is split by aldolase to dihydroxyacetone phosphate and glyceraldehyde-

3-phosphate. The further catabolism by means of the glycolytic pathway produces 

lactic acid. The metabolic pathways of sucrose by lactic acid bacteria are shown in 

Figure 2.10 (Freeman, 1985; Zubay, 1984; Moat, 1985). 
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Fructose   Sucrose     Glucose 
   1(2)           1  
    3       ATP      2 
 
    Glucose-1-P 
       ADP      ATP        4          ATP   
   5    3 
Fru-6-P   Glucose-6-P                       
 ATP          
4  ADP    ADP      

ADP      
Fru - 1.6 - P  
  5 
      Dihidroxy-Acetone-P     
 
Glyceral dehyde-3-P 
        
 6  NAD+  
Pi           
          
 NADH + H+  
  
1-3-di-P-glyserate       
   ATP          
7     
 ADP           
  3-P-glyserate 
 
8 
 H20  
   2-P-glyserate 
9           
 H20          
  
  Phosphoenol pyruvate  
 10 ATP 
  NADH+H+ NAD 
 ADP 
  Pyruvate      Lactic acid 
   11 
 
Figure 2.10: The Metabolic pathway of sucrose (Freeman, 1985; Zubay, 1984 ;  

Moat, 1985). The enzymes catalysing the numbered reactions are:  
1. invertase (levansucrase); 2. Sucrose phosphorylase; 3.Hexokinase;  
4. Phosphoglucomutase; 5.Phosphoglucoisomerase;  
6. Phosphofructokinase; 7. Aldolase; 8. Triose phosphate isomemerase; 
9. Phosphoglycerokinase; 10. Phosphoglyseromutase; 11. Enolase;  
12. Pyruvate kinase; and 13. Lactic dehydrogenase.  
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2.4.3 Fermentation Operation Conditions 

 

  Lactic acid fermentation has been studied since 1935 using different types of 

microorganism and fermentation operation conditions such as carbon source, pH, 

temperature, inoculum size, initial substrate conditions and nitrogen source 

(Atkinson and Mavituna, 1991; Hofvendahl and Hagerdal, 1997). In this section, the 

types of microorganism and the range of operation conditions used will be described 

briefly in order to provide the background for the present study which will be helpful 

in selecting the appropriate microorganism and operational conditions for lactic acid 

fermentation of pineapple waste. 

 

 

 

2.4.3.1 Types Of Microorganism 

 

There are numerous species of bacteria and fungi that are capable to produce 

large amounts of lactic acid from carbohydrate, and the selection of an organism to 

be applied and selected for higher productivity largely depends primarily on the 

carbohydrate to be fermented (Atkinson and Mavituna, 1991). The most important 

producers of lactic acid belong to the family of Lactobacillaae and they are classified 

into four genera: Pediococcus, Lactobacillus, Streptococcus Leoconostoc and Bifido 

bacterium (Buchta, 1983).  

 

Lactic Acid Bacteria (LAB) are group of gram positive, non spora forming, 

anaerobic bacteria which excrete lactic acid as the main fermentation product into the 

medium if supplied with suitable carbohydrates. Therefore, in practice, low oxygen 

tensions should be maintained but exclusion of oxygen (air) is not an absolute 

requirement (Teuber, 1993). The different types of microorganism have been used 

for lactic acid fermentation such as L. delbrueckii and L. plantarum (Samuel and 

Lee, 1980), L. bulgaricus (Gadgil and Venkatesh, 1997) and L. amylophylus 

(Merciers et al., 1992). 
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Basically, the criteria for selection of bacteria depend on carbohydrate to be 

fermented and higher productivity. In this work, the type of microorganism used was 

L. delbrueckii subspecies delbrueckii, because of their higher productivity and only 

lactic acid is produced. Furthermore, it uses not only glucose as raw material, but 

sucrose and fructose are utilised as well. Therefore, it is suitable for the fermentation 

of sucrose and fructose such as pineapple waste (Teuber, 1993; Hammes and Whiley, 

1993). As reported in literature, the L. delbrueckii is the best strain utilising glucose, 

fructose and sucrose with sugar conversion of 90% ( Kascak et al., 1996; Carr et al., 

1975). 

 

 

 

 2.4.3.2 Carbon Sources 

 

 According to Luedeking and Piret (1959), the rate of lactic acid formation is a 

function of cell growth and cell concentration, which is characterised by increasing, 

cell mass and/or number. It occurs only when certain chemical and physical 

conditions are satisfied, such as acceptable temperature and pH as well as the 

availability of required nutrients (Wang et al., 1979).  

 

The carbon source is important for microbial growth. In lactic acid 

fermentation, glucose, fructose and sucrose have been used as carbon source in the 

pure substrate or in the form of complex system such as whey, molasses and starch.  

The type of carbon source chosen is significant since it will affect the lactic acid 

production as well as metabolic pathway.  

 

Inhibitory levels of microbial growth vary depending on the types of 

substrate, such as glucose which may be inhibitory at concentrations above 200 g/l. 

probably due to a reduction in water activity (Shuler and Kargi, 1992). In industrial 

fermentation, the sugar concentration in the medium is initially adjusted to 5 - 20 % 

but usually not exceed 12 % (Atkinson and Mavituna, 1991). The concentration of 

carbon source such as glucose has an effect on the lactic acid production where the 

maximum productivity obtained was 0.34 g/l.h at sugar concentration of 60 g/l 
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(Buyukgungor et al., 1984). The effect of sucrose concentration on lactic acid 

production from beet molasses by L. delbrueckii shows that the highest yield 

achieved was at 78.2 g/l sugar concentration (Goksungur and Guvenc, 1997). 

 

 

 

2.4.3.3 Nitrogen Sources 

 

Nitrogen is important for microbial growth, and is second to carbon in terms 

of quantity and economic importance. It serves as the building block for the synthesis 

of proteins and other cellular macro-molecules. Sources of nitrogen in fermentation 

media include corn steep liquor, fish meal, yeast extract, and protein hydrolysate 

(Posten and Cooney, 1993). The types and concentration of nitrogen sources affect 

the lactic acid fermentation. Yeast extract is the most commonly used nitrogen 

source in lactic acid fermentation. Lactic acid production increases with increasing 

concentration of the supplement especially yeast extract. The highest production rate 

was found with addition of 5-15 g/l yeast extract (Goksungur and Guvenc, 1997; 

Lund et al., 1992). Yeast extract yielded the highest final level of lactic acid when 

compared with the other nitrogen sources such as malt sprout, corn steep liquor, soy 

flour, urea, cotton oil cake, tryptone, grass extract, NZ case plus, NZ amine YT, a 

mixture of diammonium hydrogen phosphates and ammonium dihydrogen 

phosphates (1:2), casein hydrolisate, and distillers waste (Hujanen and Linko, 1996; 

Lund et al., 1992). However, addition of yeast extract during large scale fermentation 

is unrealistic due to the extra cost introduced for the fermentation process, in 

combination with the low value of lactic acid. It was reported that the ratio of (NH4)2 

SO4 to yeast extract was 3:1, the lactic acid yield was as in whey supplemented with 

20 g/l yeast extract (Arasaratnam et al., 1996). 

 

 

 

2.4.3.4 Macro Elements 
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Macro elements such as phosphorus, potassium, magnesium and sulphur are 

important for microbial growth. Phosphorus is present in the microbial cell as 

phosphate sugar, nucleic acids and nucleotides. Potassium is required for 

maintenance of ionic balance across the cell membranes, and as stabilising 

component RNA. Magnesium is an essential enzyme activator and component of the 

cell membrane meanwhile sulphur is an important component of amino acids and 

coenzymes (Posten and Cooney, 1993).  

 

Optimisation studies were carried out by Monteagudo et al. (1993) to 

determine the most suitable medium for obtaining a maximum cell concentration in 

the lactic acid fermentation of beet molasses by L. delbrueckii. The selected macro 

elements were dipotassium dihydrogen phosphates, potassium dihydrogen 

phosphates as well as magnesium sulphate; yeast extract and peptone were added as 

nitrogen source. They found that the effect of macro elements addition (K, P and S) 

under experimental condition is insignificant, except yeast extract and peptone. 

Therefore, it could be concluded that the addition of potassium dihydrogen 

phosphates (KH2PO4), dipotassium hydrogen phosphates (K2HPO4) and magnesium 

sulphate (MgSO4) does not give significant effect in lactic acid production. These 

results seem to be opposite to what of one expected.   

 

 

 

2.4.3.5 Micro Elements (Trace) 

 

Microbial growth needs, beside the carbon source, macro elements, nitrogen 

and minerals, micro elements such as folic acid, vitamin B and serine. Micro 

elements are required in extremely small amount, for example, in the scale of mM or 

μM. They are important as effectors of enzymes and coenzymes which are normally 

present in complex media and also in tap water in varying amounts (Posten and 

Cooney, 1993).  

 

Lactic acid bacteria have complex nutritional requirements especially 

vitamins B, which are usually met by enrichment of the medium with crude 



 42

vegetables sources, such as malt sprouts (Atkinson and Mavituna, 1991). The types 

of micro elements required depend on fermentation media used. For example, many 

lactic acid bacteria need the addition of aspartic acid for growth in a biotin-deficient 

medium. However in biotin rich medium no aspartic acid is required. A similar 

relationship exists between folic acid and serine. Vitamin B6 is very important in the 

biosynthesis of amino acids for lactic acid bacteria (Buchta, 1983). Even though the 

micro elements required for microbial growth as reported in literature indicated that 

there was no significant effect of vitamin B complex (Arasaratnam et al., 1996), 

mangan and ferrum (Monteagudo et al., 1993) on lactic acid production. 

One of the most important factors in optimisation of a fermentation process is 

the design of the growth medium. The medium must meet the needs for synthesis of 

cell materials and for biosynthetic process as well as for environmental requirements 

of the microorganism. Several mediums for growth of lactic acid bacteria have 

proposed, but many researchers using MRS medium for cultivation of lactobacilli. 

The design of 1 litre medium for growth of lactobacilli is given by different authors 

in Table 2.8 

 

Table 2.8: The design media for growth of lactic acid bacteria published by different 

authors 

 

Composition 
Medium RMS 

(De Man et al., 1960) 

Medium LC 

(Teuber, 1993) 

Medium SY 

(Cejka, 1985)

Peptone (g) 10.00 - - 

Trypticase (g)  10.00  

Meat extract (g) 10.00 - - 

Yeast extract (g) 5.00 10.00 20.00 

K2HPO4 (g) 2.00 - - 

KH2PO4 (g)  6.00 2.50 

Diammonium citrate (g) 2.00 2.00 - 

Glucose (g) 20.00 20.00 - 
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Sucrose (g) - - 100.00 

Tween 80 (mL) 1 1 - 

Sodium acetate (g) 5.00 25.00 - 

MgSO4.7H2O (g) 0.58 0.58 - 

MnSO4.4H2O (g) 0.25 0.15 - 

FeSO4 7H2O (g) - 0.03 - 

Agar (g) 15 15 15 

 

 

 

2.4.3.6 Agitation 

 

As a basic operation of fermentation, stirring can be carried out mechanically, 

pneumatically or hydrodynamically. The functions of stirring and mixing processes 

are to disperse the entering and rising bubbles of air, to homogenise the nutrient 

medium, to produce sufficiently high turbulence for the heat transfer as well as to 

maintain high relative velocities between air bubbles, substrate, and microorganism 

for the optimum exchange of matter (Prave and Fauset, 1987).  

 

The power requirement of agitation systems represents a significant cost in 

running large scale fermentations. The changes of impeller type or relative size need 

to be justified by either a reduction in power cost for the same productivity or an 

increase in productivity at the same cost (Amannullah et al., 1998).  

 

Konda et al. (1997) reported that the productivity of bacterial cellulose is 

affected by agitator configuration and agitator speed because by using certain types 

of agitator, they mix culture broth well and have large mass transfer coefficient. The 

lactic acid fermentation of cheese whey permeate by lactobacillus helviticus was 

studied by Fairbrother (1991). By factorial design, they found that the optimum 

condition for lactic acid formation and cell growth was at the speed of 200 rpm.  
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Effect of agitation speed in Xanthan fermentations has been studied by 

Amannullah et al. (1998) and the result shows that Xanthan production is not 

influenced by changes of agitation speed. They also studied the effect of the ratio of 

impeller diameter and fermentor diameter (D/T) on productivity of Xanthan 

fermentation. The result of this study shows that the productivity increases with 

increasing of D/T from 0.33 to 0.42. If the value of D/T is further increased to 0.54, 

the productivity will increase from 0.56 to 0.68 g/l.h.   

 

L. delbrueckii is facultative anaerobic bacteria, therefore in practice low 

oxygen tensions should be maintained. Based on literature study, the fermentor was 

run with the chosen agitation speed at 50 rpm. The low agitator speed was operated 

to prevent cell damage and to prevent aeration so that an anaerobic process can be 

maintained.  

 

 

 

2.4.3.7 Temperature 

 

Microbial growth rate, as all chemical reaction, is a function of temperature. 

In general, microorganism will grow over a temperature range of 25-30 oC. However, 

it is important to note that there are, in nature, microorganisms which can grow at 

temperatures below 0 oC and above 90 oC, with the primary requirement of liquid 

water (Singleton, 1995). Most of bacteria and fungi are killed at temperature around 

60 oC within 15-20 minutes, yeast and fungal spore are killed only above 80 oC, 

while bacterial spores need about 15-20 minutes to be destroyed at 121 oC (Teuber, 

1993). 

 

Temperature also impinges on the efficiency of the carbon energy substrate 

conversion to cell mass. The maximum conversion yield occurs at temperature that is 

less than the temperature for maximum growth rate. This temperature is particularly 

important in process optimisation when it is desired to maximise yield but not 

growth rate. Temperature also affects product formation. However the temperature 

for growth and product formation may be different (Shuler and Kargi, 1992).  
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Lactic acid bacteria are classified as thermophilic or mesophilic. The 

temperature range for optimal growth of mesophilic is 25-45 oC and the thermophilic 

bacrteria 45-62 oC. L. delbrueckii is a kind of mesophilic bacteria which grows in the 

mid range of ambient temperature and has optimal temperature between 37 and 45 oC 

(Taylor, 1992). 

 

The effect of temperature on lactic acid production using L. delbrueckii has 

been studied by Goksungur and Guvenc (1997). The optimum temperature achieved 

was at 45 oC and lactic acid concentration produced was 4.9%. If the temperature 

was decreased to 40 oC, the production obtained was 4.2%. While at temperature 50 
oC, the lactic acid concentration was only 2.1%. Optimisation of the conditions in the 

fermentation of beet molasses to lactic acid by L. delbrueckii was investigated by 

Monteagudo et al. (1994). A central composite design was used to determine the 

optimal values of the process variable. The temperature was studied at a range of 45-

50 oC. The optimal value obtained was at 50 oC and at maximum yield of 87.8 %.  

 

 

 

2.4.3.8 pH 

 

Most bacteria grow best at or near pH 7 (neutral), and the majority cannot 

grow under strongly acidic or strongly alkaline condition. In lactic acid production 

by fermentation, the pH is kept neutralised by either sodium hydroxide, calcium 

hydroxide or calcium carbonate. For rapid and complete fermentation the optimal pH 

ranges between 5.5 - 6.0 (Buchta, 1983). Hydrogen ion concentration (pH) affects 

the activity of enzymes and therefore also affects the microbial growth rate. The 

optimal pH for growth may be different from that for product formation. Different 

organisms have different pH optima, but the optimum pH for many bacteria ranges 

from pH 3 to 8 (Shuler and Kargi, 1992).  

 

The effect of pH on the production of lactic acid from beet molasses by L. 

delbrueckii was also studied by Goksungur and Guvenc (1997). The optimal pH for 
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growth and lactic acid production was found to be 6.0 with 94.7 % yield. If the pH 

were increased to 6.5, the yield would decrease to 86.3 %. While at pH 5.5, the yield 

was only 67.1 %. Effect of pH on the fermentation of beet molasses to lactic acid by 

L. delbrueckii has also been investigated by Monteagudo et al. (1994). The pH 

studied was between 5.5-6.5. The results showed that the effect of pH, with 

experimental condition under study was found to be significant with an optimal pH 

obtained at 5.5 and a maximum yield at 87.8 %.  

 

 

 

2.4.3.9 Dissolved Oxygen 

 

Some bacteria need oxygen for growth. Bacteria that require oxygen for 

growth are called “ strict “ or “ obligate “ aerobes in order to emphases their absolute 

need for oxygen. Strict or obligated anaerobes grow only when oxygen is present. 

These organisms exist in river mud and in the rumen. Bacteria which normally grow 

in the presence of oxygen but which can still grow under anaerobic condition 

(absence of oxygen) are called facultative anaerobes. Similarly, those which 

normally grow anaerobically but which can grow in the present of oxygen are called 

facultative aerobes (Singleton, 1995). For all organisms, including obligate aerobes, 

oxygen may be toxic at any concentration. The mechanism of oxygen toxicity 

undergoes the formation of single oxygen, superoxida radicals O2
-, peroxida O2

2– or 

hydroxy free radical OH- which are destructive to many cell component (Teuber, 

1993).  

  

Lactic acid bacteria are facultative anaerobic or microaerophilic that grow 

poorly in the presence of oxygen. Sakamoto et al. (1998) reported that the growth of 

22 strains of lactic acid bacteria was observed under aerobic conditions and the result 

showed that most strains grow well under aerobic condition except for L. fermentum 

and L. delbrueckii. They grew well under anaerobic condition but in contrast 

aerobically. The reason could be that these two strains accumulated at high 

concentration of hydrogen peroxide in the culture medium under aerobic condition, 

which caused the growth to cease due to its toxicity.  
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The end product of glucose metabolism using L. delbrueckii has also been 

studied by Sakamoto and Komagata (1996). The result showed that in aerobic 

condition, it produced lactic acid and acetic acid, but in anaerobic condition only 

lactic acid was produced.  

 

 

 

2.4.4 Modes Of Lactic Acid Fermentation 

 

 Fermentation process can be grouped based on native of substrate used which 

is either solid substrate fermentation or liquid state fermentation. Solid substrate 

fermentation (SSF) process has been used by man for many centuries. The term SSF 

describes the biological transformation within particles of solid substrate where the 

liquid contents bond with them. If the substrate is solublised or suspended as fine 

particles in a large volume of water, it is called liquid state fermentation (LSF) or 

submerged fermentation. There are many advantages of LSF such as all types of 

organism (fungi, some yeast, some bacteria, and streptomycetes) can grow at reduced 

water activity, no technical problem in controlling the heat generated during 

fermentation, high product yield, fast fermentation, and ease of using reliable devices 

to measure or control some of the fermentation parameters. Therefore, in general the 

submerged fermentation is better than solid state fermentation (Lopez and Solio, 

1991).  

 

In term of native of bacteria used in fermentation process, it can be in 

immobilised and free cell form. Application of immobilised cell as biocatalyst is a 

new and rapidly growing area in biotechnology. Immobilised cells exhibit many 

advantages over free cells, such as stable activity, high productivity, reusability and 

the possibility of continuous operation. However in immobilised cell systems, mass 

transfer limitations can reduce productivity due to nutrient starvation or inhibitory 

product build-up. Particularly, in the case of immobilised growing cells, their 

productivity will be influenced greatly by the mass transfer limitation due to the 

increase of diffusional resistance with cell growth inside the immobilising support 

(Wang et al., 1996). 
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The use of cell in free solution is wasteful although not necessarily 

uneconomic. To prevent loss, cell may be immobilised by association with insoluble 

materials. The balance of economic factors that have to be taken into account to 

establish the feasibility of immobilisation are cost of cells, extent of cell purification 

required, cost of immobilisation process, cell stability, and inhibition and poisoning 

effect (Atkinson and Mavituna, 1991).  

 

The productivity of lactic acid production by L. delbrueckii NRLL B445 was 

studied by Buyukgungor et al. (1984) in free and immobilised cell. The productivity 

of immobilised cell was higher than free cell due to the cell can be maintained at 

stable and viable state. The production of lactic acid from beet molasses by calcium 

alginate immobilised L. delbrueckii IFO3202 was also studied by Goksungur and 

Guvenc (1999) in batch fermentation. The highest yield obtained was 82%, while 

only 81% if using free cell at similar fermentation conditions. Cells immobilised in 

Ca-alginate gels offer rapid, mild, simple, cheap and versatile technique which may 

be applied to a wide range of cell (Goksungur and Guvenc, 1997). 

 

Based on the fermentation operation, the fermentation can be operated either 

batch, fed batch or continuous operation. In batch fermentation, conditions within the 

fermentor change during the fermentation cycle, with the increase of product and cell 

concentration and the depletion of the substrate (Russel, 1987).  

 

Batch fermentation is less suitable, if substrate inhibition or growth 

dependent inhibitory by product formation occurs (Kascak et al., 1996). Some of the 

problems of batch fermentation can be overcome with fed batch operation where the 

substrates are permanently fed to the reactor without removal of fermentation broth 

and thus the volume of the broth increases (Roukas and Kotzekidou, 1998). 

 

In a continuous fermentation, the condition in the fermentor remains constant 

during operation so that fermentation is controlled with same cell, substrate and 

product concentration. Continuous operation is normally chosen for production at 

low value and high volume production (Russel, 1987). In continuous fermentation 
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processes, considerably higher productivity is achieved, and thus they have been 

performed in various forms. Based on laboratory results, two or three stage 

continuous fermentation could reduce the fermentation time up to 40% compared to 

that required for a batch process (Vickroy, 1985). 

 
 
 
 
2.4.5 Lactic Acid Fermentation Models 

  

Knowledge of the kinetics of fermentation is necessary in order to size the 

fermentor and its associated equipment, and this information is normally obtained 

from laboratory experimentation with one to three litres fermentor. In batch 

fermentation, the kinetic model provides information to predict the rate of cell mass 

or product generation while in continuous fermentation it will predict the rate of 

product formation under given conditions (Russel, 1987). 

 

The kinetic models play an important role in monitoring and predicting 

fermentation process. The models contain kinetic of growth, substrate utilisation and 

product formation. According to this view of the cell, growth models can be divided 

into unstructured and structured types. Unstructured models are the simplest type. 

They take the cell mass as a uniform quantity without internal dynamics where the 

reaction rate depends only upon the conditions in the liquid phase of the reactor 

(Nielsen et al., 1991). 

 

If the internal state of the cell is considered, it is then called structured 

models. Hence changes of structured models in the microorganism composition are 

considered and sometimes needed. One of the problems associated with the 

construction of structured model is the complexity of the model. In principle an 

extensive number of compositional variables can be attributed to biomass. If this is 

pursued to the extreme, very complex models were developed (Bailey and Ollis, 

1977). 

 

Most of the available mathematical models for lactic acid fermentation 

process are unstructured. The biomass is considered as one entity described only by 
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its concentration and the linear relations link the product formation to the biomass 

formation. This model contains a small number of parameters which can be easily 

estimated on the basis of steady state experiments and open ended, and can also be 

extended to describe more complex systems (Roels, 1983).  

  

 

 

2.4.5.1 Kinetics Of Microbial Growth  

 

Many unstructured models of bacterial growth on lactic acid fermentation 

have been presented in the literature where changes in the composition of the 

biomass are totally ignored or the rate of increase is only a function of cell number or 

cell concentration (Nielsen et al., 1991). The growth rate can be described as:  

 

dX
dt

X= μ         ……(2.9) 

 

where X is cell mass concentration (gram / litre), t is time (hour) and μ is specific 

growth rate (hour-1). 

 

The kinetic of microbial growth in lactic acid fermentation has been studied 

by Mercier et al. (1992) and Norton et al. (1994). They used the logistic models that 

express the relationship of the rate of growth and two kinetic parameters such as the 

maximum specific growth rate (μmax) and the maximum biomass concentration 

(Xmax). The two parameters were estimated by non-linear regression using the least 

square methods. The model is described in the following form:  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

max
max 1

X
XX

dt
dX μ       …..(2.10) 

 

Integration of equation (2.10), gives  
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tXXX

oom

mo
t μ

μ
+−

=      ….(2.11) 

 

Parajo et al. (1996) also proposed a similar expression for modelling of lactic 

acid from wood. By statistic method, the logistic models for lactic acid fermentation 

were found to be in good agreement with the experimental data. They obtained the 

kinetic parameters of mX and maxμ which were 2.95 g/l and 0.737 h-1 respectively but 

Mercier et al. (1992) only obtained 2.06 g/l and 0.29 h-1, respectively. This difference 

is due to the substrate and strain used in lactic acid fermentation.  

 

 An unstructured model which is frequently used in the kinetic description of 

microbial growth is the Monod equation. This model expresses that the specific 

growth rate of micro organism increases if the substrate concentration in the medium 

is increased. However the increase in specific growth rate becomes progressively less 

if the substrate concentration level is higher. The equation has the following form: 

 

μ μ=
+

⎡

⎣
⎢

⎤

⎦
⎥m

s

S
K S

       …..(2.12) 

 

Hanson and Tsao (1972) also proposed the kinetics of microbial growth by 

combining equation (2.9) with (2.12) as shown in the following model:  

 

dX
dt

S
K S

X
s

=
+

μmax        …..(2.13) 

 

Similar model has also been proposed by Suscovic et al. (1992), but they 

assumed that the specific death rate cannot be neglected and therefore they simulate 

the equation as follows: 

 

XkX
SK

S
dt
dX

d
s

−
+

= maxμ       …..(2.14) 
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The kinetic models for microbial growth and estimated parameter values have 

been reported in literature and are summarised in Table 2.9. The different parameter 

values due to the different substrates and operation conditions were used in lactic 

acid fermentation.  

 

 

Table 2.9: The proposed kinetic models of microbial growth and estimated parameter 

values. 

 

Strains  Model  
mX  

(g/l) 
maxμ  

(hr-1) 
kd 

(hr-

1) 

Ks 
(g/l) Authors 

L. amylophilus 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

max
max 1

X
XX

dt
dX μ  2.06 0.290 - - 

Mercier et al. 

(1992) 

L. delbrueckii 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

max
max 1

X
XX

dt
dX μ

 2.95 0.732 - - 
Parajo et al. 

(1996) 

L. delbrueckii dX
dt

S
K S

X
s

=
+

μmax
 - 0.150 - 10.5 

Buyukgungo

r et al. (1984)

L. xylosus dX
dt

S
K S

X
s

=
+

μmax
 - 0.722 - - 

Tyree et al. 

(1990) 

L. delbrueckii dX
dt

S
K S

X
s

=
+

μmax
 - 0.831 - - 

Monteagudo 

et al. (1997) 

L. bulgaricus dX
dt

S
K S

X
s

=
+

μmax
 - 0.700 - 1.8 

Gadgil  and 

Venkatesh 

(1997) 

L. delbrueckii XkX
SK

S
dt
dX

d
s

−
+

= maxμ  - 0.827 0.17 36.3 
Suscovic et 

al. (1992) 
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2.4.5.2 Kinetics Model Of Substrate Utilisation 

 

 The substrate utilisation kinetics for lactic acid fermentation using L. 

delbrueckii may be expressed by an equation proposed by Monteagudo et al. (1997) 

which considers both substrate consumption for maintenance and substrate 

conversion to biomass and product. The rate of substrate utilisation is related 

stochiometrically to the rate of biomass and lactic acid formation. The substrate 

requirement to provide energy for maintenance is usually assumed to be first order 

with respect to biomass concentration, mX. This gives: 

 

mX
dt
dP

Ydt
dX

Ydt
dS

spsx

++=−
//

11      …..(2.15) 

 

The parameters of the biomass yield on the utilised substrate (Yx/s), the 

product yield on the utilised substrate (Yp/s) and maintenance coefficient (m) were 

estimated by non linear regression analysis. A similar model was used for the 

kinetics of substrate utilisation in lactic acid fermentation using L. amylophilus by 

Mercier et al. (1992) and Streptococcus cremoris by Aborhey and Williamson 

(1977). 

 

Simpler model has also been proposed by Parajo et al. (1996) and Yeh et al. 

(1991). They assumed that the maintenance coefficient is very much smaller than the 

specific growth rate and therefore the substrate utilisation is only for the conversion 

of biomass and product. The equation is then given as: 

 

dt
dP

Ydt
dX

Ydt
dS

spsx //

11
+=−       …..(2.16) 

 

The simplest model has been proposed by Suscovic et al. (1992). They 

assumed that the substrate utilisation is only for the conversion of biomass. By 

combining Monod equation to this model, the following equation can be obtained: 
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dS
dt Y

S
K S

X
x s s

= −
+

⎛
⎝
⎜

⎞
⎠
⎟

1

/
maxμ       …..(2.17) 

 

The parameters of biomass yield on the utilised substrate (Yx/s,) and 

saturation constant (Ks) can be estimated using linear regression analysis.   

 

Samuel and Lee (1980) have proposed the multi-substrate utilisation on lactic 

acid fermentation by L. bulgaricus and L. plantarum using sorghum extract. Despite 

the complexity of substrate utilisation, the relationship of total carbohydrate 

concentration and fermentation time has repeatedly shown an exponential (first 

order) decay of substrate. This gives:   

 

Sk
dt
dS

3=−         …..(2.18) 

 

The parameter of first-order rate constant (k3) was estimated using linear 

regression analysis. 

 

The glucose utilisation on lactic acid fermentation by L. delbrueckii has also 

been proposed by Hanson and Tsao (1972). The fermentation was analysed generally 

with irreversible biological reaction as follows: 

 

PXSX +→+ 2        ….(2.19) 

 

The kinetic model for substrate utilisation can be expressed according to the 

following equation: 

 

SXk
dt
dS

s=−         …..(2.20) 

 

where, ks is a substrate rate constant. 
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The kinetic models for substrate utilisation and kinetic parameter values have 

been reported in literature and are summarised in Table 2.10. 

 

 

Table 2.10: The proposed kinetic models of substrate utilisation and estimated 

parameter values. 

 

Strains  Model  sxY /  spY /  
m 

(hr-1) Authors 

L. amylophilus − = + +
dS
dt Y

dX
dt Y

dP
dt

mX
x p

1 1  0.250 0.620 0.001 
Mercier et al. 

(1992) 

L. delbreuckii − = + +
dS
dt Y

dX
dt Y

dP
dt

mX
x p

1 1  0.270 0.910 0.090 
Monteagudo 

et al. (1997) 

L. xylosus − = + +
dS
dt Y

dX
dt Y

dP
dt

mX
x p

1 1  0.209 0.880 0.740 
Tyree et al. 

(1990) 

L. delbreuckii 
dt
dP

Ydt
dX

Ydt
dS

px

11
+=−  0.246 0.910 - 

 

Parajo et al. 

(1996) 

 

 

 

2.4.5.3 Kinetics Of Lactic Acid Production 

 

In some fermentation processes, the growth and the formation of product are 

only partly linked (mixed growth associated), especially in lactic acid fermentation 

that was described by Luedeking and Piret (1959). Norton et al. (1994) also reported 

that lactic acid production was strongly linked to biomass production. The enormous 

variety of fermentation processes known can be reduced in complexity using formal 

kinetic concept. With this approach, basically three types of fermentation can be 

distinguished such as growth associated product formation, mixed growth associated 

product formation and non growth associated product formation (Moser, 1983).  
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Many researchers have used the mixed growth associated product formation 

for the study of the kinetics of lactic acid production. They used the model described 

by Luedeking and Piret (1959). This model has a simple relationship between the 

rate of lactic acid production to both the growth rate and the biomass concentration. 

The equation is given as follows: 

 

Xk
dt

dXk
dt
dp

21 +=      …..(2.21) 

 

where 
dp
dt

 is volumetric product formation rate (gram /litre hour), k1 is growth 

associated product formation (g product /g cell), and k2 is non growth associated 

product formation (g product /h. g cell). 

 

A great number of mathematical models for lactic acid production have been 

reported in literature. They proposed similar models to that developed by Luedeking 

and Piret (1959). These models represent lactic acid fermentation process using 

different strains and substrates.    

 

 Mathematical modelling and estimation of kinetic parameters for lactic acid 

production using high-glucose, high fructose and high-sucrose syrup by 

L.delbrueckii have been studied by Suscovic et al. (1992). The growth associated 

lactic acid production constant (k1) and non growth associated product formation 

constant (k2) were estimated by linear regression and the values of k1 obtained were 

always higher than k2. Similar result was also reported by Norton et al. (1994) but 

they used L. helviticus and whey permeate as a substrate. 

   

Samuel and Lee (1980) also studied the production of lactic acid by 

L.bulgaricus and L. plantarum on sorghum extract. They used the same model and 

the kinetic parameters were also estimated by linear regression on integral balance 

equation.  
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Monteagudo et al. (1997) too proposed the kinetic model for lactic acid 

production on beet molasses using L. delbrueckii. Using Luedeking and Piret’s 

model, improvement was made by the addition of a term indicating the dependence 

of the rate of acid production on inhibitor concentration. This model is developed as 

follows: 

 

)1)((
max

21 P
PXk

dt
dXk

dt
dp

−+=               …..(2.22) 

The parameters were estimated by non-linear regression analysis, and similar 

results were also obtained as reported by previous researchers.  

 

Mercier et al. (1992) proposed the kinetic model for lactic acid production by   

analogy with the microbial growth model and it is given by: 

 

)1(
max

'

P
PPP

dt
dp

o −=                      …..(2.23) 

where maxP is the maximum concentration and oP' is defined as the ratio between 

the initial volumetric rate of product formation  (rp)  and the initial product 

concentration oP . The equation (2.23) can be directly solved to give the following 

expression: 

 

)'exp(
)'exp(

tPPPP
tPPP

P
ooom

omo

+−
=       ….(2.24) 

     

Similar expression is also proposed by Parajo et al. (1996) and this logistic 

model adequately describes the kinetics of lactic acid production in the glucose 

fermentation. 

  

Hanson and Tsao (1972) proposed a kinetic model for lactic acid production 

based on the general bioreactios as given in equation (2.19). Similar with the 

substrate utilisation, the lactic acid production rate may be stated as: 
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SXk
dt
dP

p=         …..(2.25) 

 

where kp is  product rate constant. 

The kinetic models for lactic acid production and estimated kinetic parameter 

values as reported in literature are summarised in Table 2.11. 

 

Table 2.11: The proposed kinetic models of lactic acid production and estimated 

parameter values. 

  

Strains  Model  
'oP  

(g/l) 

mP  

(hr-

1) 

1k  

(g/g) 

2k  

(g/h.g) 
Authors 

L. amylophilus 
)'exp(

)'exp(
tPPPP

tPPP
P

ooom

omo

+−
=  0.29 21.4  - 

Mercier et 

al. (1992) 

L. delbreuckii 
)'exp(

)'exp(
tPPPP

tPPP
P

ooom

omo

+−
=

 

0.17 15.5  - 
Parajo et 

al. (1996) 

L. bulgaricus Xk
dt
dXk

dt
dp

21 +=  
- - 18.0 0.19 

Samuel 

and Lee 

(1980) 

L. xylosus Xk
dt

dXk
dt
dp

21 +=  - - 3.17 0.91 
Tyree et 

al. (1990) 

L. delbrueckii Xk
dt
dXk

dt
dp

21 +=  - - 0.23 0.09 
Monteagu

do et al. 

(1997) 

L. plantarum Xk
dt
dXk

dt
dp

21 +=  - - 15.6 0.44 
Samuel 

and Lee 

(1997) 
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2.4.6 Optimisation In Lactic Acid Fermentation 

 

2.4.6.1 Introduction 

 

 The experimentation is required to solve problems but it is always cost and 

time consuming. When an experiment is planned, it has different objectives 

depending on what is known so far about the solution to the problems. There are 

three stages of experimentations such as screening, optimisation and verification. 

Screening experiments are small which include many variables and play an 

important role in the early stages of an investigation. Their objectives are to reduce 

problems, to focus on the important variables and to find out more about their best 

setting. The purpose of optimisation experiments is to build a mathematical model 

which can be used to predict the behaviour of the process being investigated and it 

aims at producing specific optimal values for the experimental factors. The simplest 

type of verification experiment shows that the predicted optimal process performance 

can be reproduced in a second experiment (Haaland, 1989).  

 

 

 

2.4.6.2 Optimisation Through Experiment 

 

Experimental optimisation of chemical reactions has always been of strong 

economic concern to chemical engineers and industrial mathematicians (Deming and 

Morgan, 1973). The optimisation through experimentation cannot be isolated so far 

with the experimental design, model building and optimisation. Even then it has been 

apparent that there are essential interrelationship among the topics of statistics, 

models and optimisation (Biles and Swain, 1980). In order to determine the optimum 

values of the process variables, the statistic of experimental design and the 

optimisation techniques are used and these will be presented and discussed in 

following sections.  
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a)  Experimental Design  

 

The statistical design of the experiments as a proven technique continues to 

show increasing use in chemical and biochemical process industries. Experimental 

designs are frequently performed in the study of empirical relationship, in terms of 

mathematical model, between one or more measured responses and a number of 

variables factors. They have been successfully used a long time ago and these allow 

us to express the response as a polynomial model (Murphy, 1977; Monteagudo et al., 

1994). 

 

A factorial experimental design approach was used to optimise the 

composition of medium in fermentation process by many researchers. They used 

two-level full factorial design consisted of 2n experiments (n is the number of factor). 

Machucha and Duran  (1996) used 24 factorial designs to optimise some parameters 

affecting the growth rate of Thermoacus aurantiacus. It is a very powerful tool 

because it provides information about all main effect and two factors interaction.  

 

Study about optimisation of the fermentation media for maximisation of 

surfactine production was carried out by Sen (1997). A 24 full factorial composite 

design was used. This procedure required 30 experiments consisted of 16 factorial 

designs with 8 stars points and six replicates at the centre points. The design was 

employed to fit the second order polynomial model. The result indicated that the 

central composite design is a useful design to acquire data to fit this polynomial.  

 

Many researchers also employed full factorial design for 2, 3, and 4 variables 

to optimise the nutrient medium in liquid fermentation (Vazquez and Martin, 1998; 

Oijkaas et al. 1999). However, designs that are used most frequently for screening 

experiments are two level fractional factorial designs especially for 5 factors to 

reduce the sample size. Fractional designs are very efficient because of their smaller 

sample sizes (Haaaland, 1989; Box et al., 1978; Karthikeyan et al., 1996).  

 

The number of experiments can be reduced by using only part of the factorial 

design (fractional factorial design). Many researchers applied two-level fractional 
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factorial designs to reduce the sample size, which become very efficient (Haaaland, 

1989; Box et al., 1987; Karthikeyan et al., 1996). To estimate the error and check on 

the linearity, all of the designs were always further expanded to central composite 

design (CCD) with added star and centre points (Strange, 1990; Murphy, 1977; 

Hakkarainen et al., 1984). 

 

A 25-1 fractional factorial central composite experimental design was used by 

Karthikeyan et al. (1996) to optimise the nutrient for dextran production. In these 

designs there are 32 experiments comprised 16 factorial designs (-1/+1) with ten star 

points (-2/+2) and six replicates at centre point (0). Similar design was also utilised 

by Sinha (1998) to optimise the medium constituents for endogluconase production 

by Trichoderma reesei. Application of 25-1 central composite experimental design 

was also reported by Carvalho et al. (1997) to optimise the conditions for 

transestrification reaction using cutinase in AOT-reversed micelles. They reported 

that application of fractional factorial central composite design allowed the 

attainment of information about each factor and the interaction among different 

factors. The identification of optimum value was easier with this methodology and 

further works were not required provided that the range of experimental conditions 

was well defined. Also, it was always possible to determine the more favourable 

conditions within the range studied when there was an optimum.  

 

Many researchers utilised a central composite design to examine the 

influence of variables. The central composite design allowed us: 1) to show which of 

the variables significantly affect each response and 2) to optimise the values of 

variables that were found significantly in stage 1 (Monteagudo et al., 1992; Sung and 

Huang, 2000). The central composite design consists of 32 experiments for five 

experimental factors with ten stars points and six replicates at the centre points to 

allow estimation of the error and to provide a check on linearity (Strange, 1990; 

Murphy, 1977; Hakkarainen et al., 1984).  
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b) Optimisation Techniques 

 

Various procedures have been applied in combining optimisation and 

experimentation to seek the optimum solution of single response as a function of 

multiple independence variables, which are direct search and response surface 

methods (Biles and Swain, 1980).  

 

Myers (1971) reported a response surface method to optimise the yield as a 

function of three independent variables in fermentation process for producing an 

antibiotic. The similar optimisation was also done by Biles and Swain (1980) but 

they used direct search methods to obtain the optimal yield. This solution was almost 

similar to the one found by Myers (1971) but interactions between factors could not 

be clearly examined. 

 

Several optimisation works have also been reported by Sung and Huang 

(2000) and Liu and Tzeng (1998). The conventional methods of optimisation involve 

the changing of one independent factor while fixing the others at a certain level. 

These methods for multiple factor experimental design are time consuming and are 

incapable of detecting the true optimum, due to the interaction among factors 

especially. It was recognised that employing response surface method (RSM) can 

significantly minimise the number of experiments, evaluate mutual interactions 

between multiple variables, and optimise objective functions to predict the 

conditions for the best result. RSM had been successfully employed for optimising 

the medium ingredients and operating conditions in many bioprocesses (Lee and 

Chen, 1997; Sen, 1997; Liu and Tzeng, 1997; Karthikeyan et al., 1996).  

 

 

 

c) Response Surface Methods (RSM) 

 

Response surface method (RSM) is an experimental strategy that was initially 

developed and described by Box and Wilson in 1951. It has been widely employed in 

the development of physical and chemical processes because it provides data to (1) 
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estimate linear, curvature and interaction effects of the variables studied, (2) optimise 

or evaluate multiple responses, and (3) generate statistically valid mathematical 

models which can be utilised for graphic interpretation of the process under study 

(Burtis et al., 1981). 

 

Response surface methods (RSM) consist of a group of empirical techniques 

devoted to the evaluation of relations existing between a cluster of controlled 

experimental factors and responses are measured according to one or more selected 

criteria. The maximum values were taken as the response of the design experiments. 

The optimal conditions of the factors were obtained by solving the regression 

equation and also by analysing the response surface contour plots (Sen, 1997).  

 

The optimisation of batch fermentation for lactic acid production by L. 

delbrueckii using response surface methods has been studied by Monteagudo et al. 

(1994) and Hakkarainen et al. (1984). The results of this study illustrated the ability 

of the method to satisfactorily predict and optimise biotechnological processes. 

Monteagudo et al. (1993) also studied the determination of the best nutrient medium 

for the production of lactic acid. The results also indicated that response surface 

methodology is well suited for process optimisation of nutrient medium and lactic 

acid fermentation.  
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CHAPTER III 

 

 

 

MATERIALS AND METHODS  

 

 

 

3.1 Introduction 

 

In order to achieve the outlines of the objectives and the scopes of the 

research, several materials along with experimental and analytical procedures used in 

this study are presented and discussed with more details in the following sections.  

 

 

 

3.2      Materials 

 

3.2.1    Strain 

 

The microorganism used in this study was Lactobacillus delbrueckii subsp. 

delbrueckii ATCC 9649, a mesophilic homo fermentative lactic acid bacterium. It 

was obtained from DSMZ Germany. 

 

 

 

3.2.2 Stock Culture 

 

In stock culture, the cell was maintained at - 80 oC in MRS broth containing 

15 % (v/v) glycerol solution until it was ready for used. Lactobacillus delbrueckii 



 65

was maintained on MRS agar plate at 37 oC for 24 hours and transferred to fresh 

medium every month (Goksungur and Guvenc, 1997). The MRS medium was 

suggested by DSMZ catalogue (1993). The composition of 1 litre MRS medium are 

as follows: yeast extract, 5g; meat extract, 5g; peptone, 10g; K2HPO4, 2g; 

diammonium citrate, 5g; glucose, 20g; sodium acetate, 2g; MgSO4.7H2O, 0.58g; 

MnSO4.4H2O, 0.25g and 1 ml of Tween-80. All chemicals used were of analytical 

grade and used as received without pre-treatment or stated otherwise.  

 

 

 

3.2.3    Substrates 

 

The fermentation media used to carry out the fermentation process were solid 

and liquid pineapple waste juices obtained from Malaysian Cannery of Malaysia 

Sdn. Bhd. In order to study the effect of different types of sugar, glucose, fructose 

and sucrose were purchased from several suppliers (Sigma, Fluka and Merck). All 

chemicals used were of analytical grade and used as received.   

 

 

 

3.3 Experimental Methods 

 

3.3.1 Pineapple Waste Treatment  

 

The liquid pineapple waste contains undissolved and suspended particulate 

matters that need to be separated before used to avoid any interference in biomass 

determination. The solution was boiled for 5 minutes resulting particulate flocs 

which settled rapidly upon cooling at room temperature. The particulate was then 

separated by centrifugation at 4000 rpm for 15 minutes. The clear supernatant was 

stored at -18oC (Lazaro et al., 1989; Samuel and Lee, 1980). Before use, the samples 

were carefully defrosted using a microwave oven and filtered through Whatman No. 

54 filter paper under vacuum (Blake and Clarke, 1987). The solid pineapple waste 

sample was dried in the oven at 55oC for a week, reduced the size by blender and 
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then screened with screener (Lazaro et al., 1989; Bryan, 1990). To analyse the sugar 

content in solid waste, 10g of sample was transferred to glass beaker where 100 ml 

of solvent mixture of alcohol:water (1:1) was added and then weighed for example, x 

gram. The mixture was placed in water bath at 80-85oC for 25 minutes, stirred 

occasionally, then cooled at room temperature and added with the solvent until the 

original weigh (x gram). The mixture was then centrifuged for 10 minutes at 2000 

rpm. If the mixture is not clear, it will be recentrifuged for 5 minutes at 3500 rpm and 

filtered through 0.45-0.7 μm filter paper. The filtrate was used to determine the sugar 

content in the solid waste (Zygmunt, 1982). 

 

 

 

3.3.2 Extraction Of Sugar From Solid Waste  

 

The solid pineapple wastes were extracted by mixing 10g solid in 90g 

distilled water and then being shaken in the incubator shaker at 200 rpm for one hour 

which was adequate to achieve the equilibrium. The mixture was then filtered to 

remove the solid particles followed by centrifugation. The supernatant was used to 

determine the physical and chemical properties which represent the characteristics of 

the solid waste.  

 

 

 

3.3.3 Inoculum Media Preparation 

 

 Each fermentation process was initiated by transferring a small amount of 

biomass to a 250 ml Erlenmeyer flask containing 50ml of liquid MRS medium. 

Anaerobic condition was created by flushing with nitrogen and sealing them with 

tight-fitting rubber stopper. The flask was then incubated in incubator shaker at 

37oC, 150 rpm for 24 hours (Sakamoto and Komagata, 1996; Mercier, et al., 1992; 

Chatterjee and Chakrabarty, 1997). 
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3.3.4 Batch Fermentation 

 

Parameter studies such as pH, temperature, initial sugar concentration, 

inoculum size and nitrogen source were carried out in 3-litre fermentor (Biostat B 

Model, Braun, Germany). The fermentor was equipped with pH, temperature and 

dissolved oxygen controllers. The fermentor containing 950 ml of substrate was first 

sterilised at 121oC for 15 minutes. 50 ml of inoculum was sterilised separately and 

added aseptically to the fermentor. Anaerobic system was produced by sparged the 

fermentor by nitrogen at 6.5 ml/minute and stirring speed at 50 rpm (Lund et al., 

1992). Samples of 10-20ml were withdrawn from the fermentor at regular time 

intervals. The microbial cells were separated by centrifugation for dry biomass 

determination. The supernatant was immediately frozen for further determination of 

the lactic acid, glucose, fructose and sucrose concentrations (Mercier et al., 1992). 

The flow chart of liquid pineapple waste fermentation to lactic acid by L. delbrueckii 

is shown in Figure 3.1 

 

The optimisation study was carried out in incubator shaker (New Brunswick 

Scientific, Innova 4080 Model). The shake flask fermentation was performed by 

transferring 5 ml of inoculum to a 250 ml Erlenmeyer flask containing 95 ml of 

fermentation medium and, by adding 3g of CaCO3 (3% w/v) to control the pH 

(Goksungur and Guvenc, 1997; Vahvaselha and Linko, 1987). The flask was then 

incubated in incubator shaker at certain temperature and speed for 10 days. The 

fermentation broth was then separated by centrifugation and the supernatant was 

used for the determination of lactic acid and residual sugar. 

 

In studying the effect of size and type of fermentor, the culture vessels of B2 

and B5 of the BIOSTAT B were used with total volume of 3 and 6.6 litres, 

respectively. The geometric of two fermentors is shown in Figure 3.2. 
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Figure 3.1: Flow chart for lactic acid production from liquid pineapple waste. 



 69

 

 
 
 
 
 

 
 

 
Figure 3.2: The culture vessel with total volume A) 3 litres and B) 5 litres. 
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3.3.5 Fed Batch Fermentation 

 

The fermentation was carried out in 3-litre fermentor (Biostat B Model, 

Braun, Germany) with initial broth of 0.70 litre. The fermentation was performed in 

two phases: in the first phase, the lactic acid bacteria were grown in batch culture 

until the late of the exponential growth phase (20 hours), and in the second phase, the 

medium was continuously added into the fermentor using peristaltic pump at a 

constant feeding rate of 14 ml/h until the total volume of liquid reaches to 2.5 litres. 

The fermentation conditions used were similar to that described in batch 

fermentation (Roukas and Kotzekidou, 1998; Chen and Zhang, 1997). 

 

 

 

3.4 Analytical Methods 

 

3.4.1 Pineapple Waste Characterisation  

 

3.4.1.1 Metal Content 

 

The metal concentration was determined according to the method described 

by Clesceri et al. (1989). The method of Atomic Absorption Spectrophotometer 

(model: Philips PU 9200) and Direct Air-Acetylene Flame was used. In this 

measurement, the hallow cathode lamp was used where each specific lamp was 

selected for each element being measured. The measurement was carried out at least 

in triplicates and the standard deviation for the measurement was 0.002. 

 

 

 

3.4.1.2 Anion Content 

 

Sulphate, nitrate, phosphate and chlorine ions were measured by using the 

Ion Chromatography (model LC20) equipped with Dionex DX 500 Column and the 

electric chemical detector ED40. Fig. 3.3 shows the chromatogram for liquid 
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pineapple waste. The measurement was carried out at least in triplicates and the 

standard deviation for the measurement was 1.17. 

 

 

 

Figure 3.3: A typical chromatogram for liquid pineapple waste sample. 

 

 

 

3.4.1.3 pH 

 

The pH was measured by the Cyberscan 1000 pH meter supplied by 

Chemopharm Sdn. Bhd. The electrode assembly should be checked at least daily 

with buffer solution of pH = 7, and samples for ordinary control work should be 

cooled to room temperature. The electrode assembly was rinsed thoroughly with the 

test solution, and immersed in the solution to sufficient depth to cover the bulbs of 

the electrode. The reading of pH should be taken after a minimum period of five 

minutes. The measurement was carried out at least in triplicates and the standard 

deviation for the measurement was 0.01.  



 72

3.4.1.4 Moisture Content  

 

Moisture content measurement was carried out according to Malaysian 

Standard (1973). 5g of sample were accurately weighed into a dish and dried in an 

air oven at 105 ± 2 oC. The sample was then cooled in a desiccator and weighed. 

Drying, cooling and weighing were repeated until two consecutive weighing should 

not deviate by more than 1 milligram. The moisture content was calculated according 

to equation (3.1).  

 

Moisture content (%) = ( )WW
WW

−
−

1

21 ×100    ……(3.1) 

 

where W1 is weight in g of dish and sample before drying, W2 is weight in g of dish 

and sample after drying and W is weight in g of empty dish. The measurement was 

carried out at least in triplicates and the standard deviation for the measurement was 

0.21. 

 

 

 

3.4.1.5 Ash Content 

 

Ash content was determined according to Malaysian Standard (1973). 5g of 

sample were accurately weighed into a dish and the material was ignited with the 

flame of a suitable burner for about 1 hour. The sample was then transferred into a 

muffle furnace until grey ash was obtained. The sample was then cooled in a 

desiccator and weighed. Igniting, cooling and weighing were repeated at half-hour 

intervals until two consecutive weighing should not deviate by more than 1 

milligram. The ash content was calculated according to equation (3.2). 

 

Ash content (%)  = ( )WW
WW

−
−

1

2 ×100     ……(3.2) 
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where W1 is weight of sample and dish in g before ashing, W2 is weight of dish and 

ash in g, and W is weight of empty dish in g. The measurement was repeated at least 

three times and the standard deviation for the measurement was 0.24. 

 

 

 

3.4.1.6 Crude Fibre Content 

 

Crude fibre content of the sample was determined according to Malaysian 

Standard (1973). 2.5 g of sample were accurately weighed and placed in a Soxchlet 

apparatus. The sample was then extracted for about 1 hour with petroleum ether. The 

sample which was free of the fat material was then transferred to the flask and 200 

ml of hot dilute sulphuric acid were added to the flask. The flask was then connected 

to a water-cooled reflux condenser and boiled for 30 minutes. After that, the content 

of the flask was filtered through a fine linen hold in funnel. The residue was washed 

on the linen with boiling water until the washings were no longer acidic to litmus. 

The residue was transferred into the flask with 200 ml of boiling sodium hydroxide 

solution. The condenser was fitted to the flask and reflux for 30 minutes. The 

condenser was then removed and the contents of the flask were filtered through the 

filtering cloth. The residue was thoroughly washed with boiling water and then with 

15 ml of ethanol 95 % and finally transferred to a Gooch crucible. The crucible was 

dried in an air oven at 105 ± 2 oC, then cooled in a desiccator and weighed (W1). The 

contents of the crucible were ignited in the muffle furnace at 600 ± 20 oC until all 

carbonaceous matters were burnt. The crucible containing the ash was cooled in a 

desiccator and weighed (W2). The crude fibre content was calculated according to 

equation (3.3).  

 

Crude fibre content (%) = ( )W
WW 21 −

× 100   ……(3.3) 

 

where W1 is weight in g of crucible and contents before ashing, W2 is weight in g of  

crucible containing ash, and W is weight in g of sample. The measurement was 

carried out at least in triplicates and the standard deviation for the measurement was 

0.51. 
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3.4.1.7 Crude Protein Content 

 

Crude protein content was carried out according to Malaysian Standard 

(1973) using the Kjeldahl method. 1g of sample was accurately weighed and 

transferred to the Kjeldahl flask containing 25 ml of concentrated sulphuric acid, 10g 

of potassium sulphate, 0.3g of copper sulphate, and 0.1g of zinc metal. The mixture 

was than digested until the solution turned green or light green in colour (30-60 

minutes). The flask and the content were cooled slightly before being transferred to 

the distillation unit. 250ml of water and 50ml of 50 % sodium hydroxide were added 

into the flask. The distillate was collected in 50ml of sulphuric acid (0.1N) 

containing the methyl red indicator. The distillate was then titrated with 0.1 N of the 

standard sodium hydroxide until an end point was observed. The blank sample 

containing 1g of pure sucrose was determined and the titrate deducted from the 

sample titrate. The crude protein or total nitrogen content was calculated according 

to equation (3.4).  

 

Nitrogen content (%)  = 1.4 ( )V V
W

2 1−
N    ……(3.4) 

 

Crude protein  = % Nitrogen × 6.25 

 

where V2  is volume in ml of sodium hydroxide required for the blank determination,  

V1  is volume in ml of sodium hydroxide required for the sample determination, N is 

the exact normality of sodium hydroxide standard volumetric solution and W is 1.0 

g. The measurement was carried out at least in triplicates and the standard deviation 

for the measurement was 0.053. 

 

 

 

3.4.1.8 Reducing Sugar 

 

Reduction sugar was measured by using an alkaline 3,5-dinitrosalicilioc acid 

(DNS) method. 1.0 ml of distilled water was transferred into a test tube (blank) and 

1.0 ml of standard glucose solution (0.25-1.5 g/l) was also transferred into 5 other 
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labelled test tubes. 1.0 ml of DNS reagent and 2 ml of distilled water were added to 

each tube using pipettes. All tubes were heated in boiling water bath for 5 minutes to 

allow the reaction between glucose and DNS. The mixture was then cooled and made 

up to 10 ml accurately with distilled water using pipette or burette. The mixture was 

then mixed well and the absorbance of the solution was measured at 540 nm 

(Ceirwyn, 1995). The concentration of reduction sugar was determined by standard 

curve of glucose concentration (Figure 3.4). The reduction sugar measurement was 

carried out at least in triplicates with the calculated standard deviation was 0.28.  

 

 

Figure 3.4: A calibration curve for glucose determination. 

 

 

 

3.4.1.9 Total Sugar 

 

The total sugar determination was carried out at first, by hydrolysing the non 

reducing sugar to reducing sugar. This was carried out by transferring 25.0 ml of 

sample into volumetric flask (50ml). The sample was then added with 2.5 ml of HCl 

2 M and boiled for 5 minutes. The mixture was cooled and then neutralised with 10% 
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NaOH and made up to 50 ml using distilled water. This hydrolysate was then 

determined for the reduction sugar by DNS method (Ceirwyn, 1995). The absorbance 

of the solution was measured by using UV/VIS spectrophotometer at 540 nm. The 

total sugar measurement was carried out at least in triplicates with the calculated 

standard deviation of 0.42. 

 

 

 

3.4.1.10 Phosphorus 

 

Phosphorus was measured by the molybdenum blue calorimetric method. 

0.00, 0.25, 0.5, 1.0 and 2.0 ml of the standard phosphate solution containing 0.1mg P 

per ml were prepared and 1 ml of each of the sample were transferred to a 100 ml of 

volumetric flask. To each flask 1 drop of phenolphthalein was added, neutralised 

with ammonia (1:4) and made up to 85 ml with distilled water. The mixture was 

added with 4 ml of ammonium molybdate reagent (4% ammonium molybdate in 

sulphuric acid) and 0.7 ml of 2% stanno chloride solution. The solution was then 

shaken, made up to 100 ml and kept in a cupboard for about 20 minutes to allow the 

blue colour to develope which will give the maximum absorption intensity. The 

absorbance of each solution was measured at 710 nm using UV/VIS 

spectrophotometer (Ceirwyn, 1995). The concentration of phosphorus was 

determined by standard curve of phosphorus concentration (Figure 3.5). The 

measurement was repeated at least three times and the standard deviation for the 

measurement was 0.050.  
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Figure 3.5: A calibration curve for phosphorus determination. 

 

 

 

3.4.1.11 Soluble Protein 

 

 Soluble protein was measured according to Lowry method (Regensteine, 

1984). 2 ml of Biuret reagent were added to 0.4 ml of the sample. This reagent 

consisted of 1ml of 1% cupric sulphates, 1 ml of 2% sodium potassium tartrate and 

100 ml of 2% sodium carbonate. The solution was then mixed and cooled for 10 

minutes at room temperature. After that, the solution was mixed rapidly within 1 

second using 0.2 ml of Folin-Ciocalteu reagent. The absorbance of each solution was 

measured at 750 nm after 30 minutes. The soluble protein was estimated from the 

standard curve prepared with bovine serum albumin (Figure 3.6). The measurement 

was repeated at least three times and the standard deviation for the measurement was 

0.036. 
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Figure 3.6: A calibration curve for protein determination. 

 

 

 

3.4.1.12 Acidity 

 

Total acidity was measured by Official Method of Analysis (AOAC, 1984). 

The pineapple waste contains a number of fairly simple organic acids such as malic 

acid and citric acid which are readily neutralised by strong bases and can be titrated 

against standard bases such as sodium hydroxide. The total acidity is then expressed 

as concentration of citric acid (g/l). 10 ml of sample were transferred into a 100 ml 

volumetric flask and made up to 100 ml with distilled water.10 ml of diluted sample 

were then transferred into 100 ml Erlenmeyer flask and 0.3 ml of phenolpthaline 

indicator was added to the Erlenmeyer. The solution was titrated to a faint pink end 

point with 0.1N sodium hydroxide.1 ml 0.1N NaOH is equivalent to 0.018 g citric 

acid. The total acidity was calculated according to equation (3.5).  
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Total acidity (g/l) = ml 0.1N NaOH ×100    ……(3.5)

  

The measurement was repeated at least three times and the standard deviation for the 

measurement was 0.015.  

 

 

 

3.4.1.13 Sugar 

 

The individual sugar concentration was determined according to the method 

described by Official Method of Analysis (AOAC, 1984). Glucose, fructose and 

sucrose content were measured by HPLC (Waters TM 600), using a 300mm×4 mm 

ID μ Bondapak/Carbohydrate column (Waters) with RI detector. The eluent used 

was a mixture of acetonitrile:water (80:20) at a flow rate of 2 ml per minute and at 

ambient temperature. The samples were diluted with water before analysed. If a clear 

solution was not obtained, the solution was centrifuged at 500 rpm for 10 minutes. 

The samples was then mixed with acetonitrile:water (50:50) and filtered through 0.45 

μm paper filter. 10 μl of the clear solution were injected into HPLC to obtain peak 

height or peak areas. Similar method was also performed on standard sugar solution. 

The sample sugar concentration was determined by comparing peak areas with those 

of the standard curve at various sugar concentrations as given in Figure 3.7. Hence 

the amount of each sugar in the sample taking was determined into the account of the 

dilution made. 
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Figure 3.7: The calibration curves for fructose, glucose and sucrose determination. 

 

 

 

3.4.1.14 Organic Acids 

 

The organic acid concentration was determined using the method described 

by Brogley et al.(1993). The organic acid concentration was measured using HPLC 
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detector at maximum wavelength of 210 nm was used.  The eluent used was 0.2 M 

phosphoric acid at flow rate of 0.8 ml per minute at ambient temperature. The 

samples were diluted with water before analysed. If a clear solution was not 

obtained, the solution was centrifuged at 500 rpm for 10 minutes. The samples were 

then mixed with 0.2 M phosphoric acid and filtered through 0.45 μm paper filter. 10 

μl of the clear solution were injected into HPLC to obtain peak highs or peak areas. 

Similar method was also performed on standard organic acid solution. The 
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those of the standard curves at various organic acid concentrations as given in Figure 

3.8.  

 

 

Figure 3.8: The calibration curves for organic acid determination. 

 

 

 

3.4.2     Fermentation Product Analysis 

 

3.4.2.1 Reducing Sugar 

 

The reducing sugar in the culture broth was determined by DNS method 

described in Section 3.4.1.8. Each experiment was repeated at least three times and 

the calculation of standard deviation for the measurement was 0.24 
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3.4.2.2 Total Sugar 

 

The total sugar in culture broth was determined at first by hydrolysing the 

non reducing sugar to reducing sugar as described in Section 3.4.1.9. This 

hydrolysate was then determined by DNS method described in Section 3.4.1.8. Each 

experiment was repeated at least three times and the calculation of standard deviation 

for the measurement was 0.41 

 

 

 

3.4.2.3 Sugar 

 

Fructose, glucose and sucrose in the culture broth were determined using the 

method described in Section 3.4.1.13. The chromatogram of sugar standard solution, 

pineapple waste, and fermentation sample is given in Figure 3.9. The measurement 

was repeated at three times and the calculation of standard deviation for the 

measurement was 0.2 

 

 

 

3.4.2.4 Organic Acids 

 

The lactic, acetic, citric and malic acid in the culture broth were determined 

by the method described in Section 3.4.1.14. The chromatograms of standard 

solution and fermentation sample are given in Figure 3.10. Determination of the 

organic acids was carried out in triplicates with the calculated standard deviation of 

0.15. 

 

 

 

 

 

 



 83

 

Figure 3.9: The chromatograms for standard sugar solution, pineapple waste, and 

fermentation samples. Retention time for acetonitrile (solvent), fructose, 

glucose and sucrose are 1.7, 4.71, 5.80 and 9.40 minutes, respectively. 
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Figure 3.10: The chromatograms for the standard organic acids solution and 

fermentation samples. Retention time for phosphoric acid, water 

(solvent), malic acid, lactic acid, acetic acid and citric acid are 3.28, 

3.63, 4.46, 4.93, 5.21 and 5.88 minutes, respectively. 
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3.4.2.5 Biomass 

 

Cell concentration was measured by constructing a calibration curve of 

optical density as a function of dry cell weight. Dry cell weight was determined by 

centrifugation of the sample at 4000 rpm for 15 minutes. The supernatant was 

carefully removed by pipette and the pellet was washed twice with distilled water 

and recentrifuged. The washed cell was dried to a constant weight at 103 oC in the 

centrifuge tube. The optical density was measured using UV/VIS spectrophotometer 

(UV-1601 Model) at 620 nm (Aeschlimann and Stockar, 1987; Monteagudo et al., 

1997). The dry cell weight was estimated from the standard curve of dry cell weight 

concentration versus optical density as given in Figure 3.11. The measurement was 

repeated at least three times with the standard deviation of measurement obtained at 

0.31. 

 

 

Figure 3.11: A calibration curve for dry cell weight (biomass) determination. 
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CHAPTER IV 

 

 

 

PARAMETRIC STUDY OF LACTIC ACID FERMENTATION 

 

 

 

4.1 Introduction 

  

Several parameters such as temperature, pH, inoculum size, initial substrate 

concentration and types of nitrogen sources that affect the lactic acid fermentation as 

reported in the literature were reviewed and discussed in Chapter II. In this chapter, 

the effect of those parameters on lactic acid fermentation of pineapple waste as well 

as on pure and mixed sugar is presented and discussed. Since the pineapple waste 

contains not just carbon source such as glucose, fructose and sucrose as reported in 

the literature, the characterisation of this waste is important in order to know the 

actual composition of the waste which will definitely affect the results of the 

fermentation process. Therefore the characterisation results are presented and 

discussed in this chapter.  

 

 

 

4.2 The Characteristics Of Pineapple Wastes 

 

In this study, three types of pineapple waste were characterised which were 

the liquid, solid and liquid extract pineapple wastes. This characterisation study is 

important since the compositions of the wastes especially from food processing 

factories are varied and are dependent on both the nature of the product and the 
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production technique employed. Hence, the characteristics of the waste will affect 

the lactic acid fermentation process.  

 

 

 

4.2.1 The Characteristics Of Liquid Pineapple Waste 

  
 The variation of physical and chemical composition of liquid pineapple waste 

for different sampling times from pineapple cannery is given in Table 4.1. Table 4.2 

shows the comparison of physical and chemical compositions of liquid pineapple 

waste between the present work and the report of Sasaki et al. (1991). Analysis of 

sugar indicates that the liquid pineapple waste contains sugar mainly sucrose, 

glucose and fructose. The fructose concentration was slightly higher than glucose 

concentration. These results are similar to those for pineapple juice as reported by 

Krueger et al. (1992) as given in Table 2.2, but it is different with those reported by 

Sasaki et al. (1991) for liquid pineapple waste stating that the sucrose content is 

higher than glucose’s and the fructose content is smaller than glucose’s. The 

difference in sugar composition is probably due to wastes generated by different 

processes, season and area. Analytical results of soluble protein and total nitrogen 

obtained were at the range of 1.13-2.38 g/l and 0.64-1.4 g/l, respectively.  

 

The pH of the liquid pineapple waste is between 4.0 to 4.5, which is quite 

similar to the pH of pineapple juice as reported by Moon and Woodroof (1986) and 

Sasaki et al. (1991) (Table 2.5). Organic acid analysis by liquid chromatography 

indicated that the acidity is mainly due to citric acid and malic acid. The value of 

acidity in pineapple waste is ranging from 2.6-4.8 g/l with the ratio of citric acid and 

malic acid between 4.2-8.7. These results are similar to those reported by Krueger et 

al. (1992) where the acidity in pineapple juice is between 4.6-12 g/l and the ratio of 

citric acid and malic acid is between 1.8 and 8.2. The pH decreases with increasing 

total acidity indicated by increasing organic acid content in the liquid pineapple 

waste.  
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The waste contains very little nitrogen and soluble protein. The elements such 

as Fe, Ca, Mn, Zn, Cu, Cd, Na and K are also present in the waste. Potassium content 

is the highest (425-612 mg/l), but it is lower than the potassium content in pineapple 

juice as reported by Krueger et al (1992). The chlorine ion concentration is higher 

than sulphate and nitrate, but the phosphate ion concentration is nil for all samples 

analysed. 

 

Table 4.1: The characteristics of the liquid pineapple waste at different sampling 

times. 

 

Composition Parameters Nov. 

(1997) 

June 

(1998) 

June 

(1999) 

March 

(2000) 

 Reducing sugar (g/l) 17.65 39.62 39.64 42.38 

 Sucrose (g/l) 6.54 15.51 13.89 14.37 

Sugars Glucose (g/l) 9.00 20.00 19.54 20.29 

 Fructose (g/l) 9.88 20.76 20.18 21.47 

 Total sugar (g/l) 30.86 70.20 66.18 65.04 

Soluble protein (g/l) 1.36 1.10 2.38 0.82 
Proteins 

Total nitrogen (g/l) 0.86 0.53 1.097 0.46 

 Acidity, as citric acid (g/l) 4.80 2.93 2.55 3.30 

Organic Acids Citric acid (g/l) 3.10 2.38 2.12 2.76 

 Malic acid (g/l) 0.96 0.36 0.29 0.39 

 Fe (mg/l) 18.90 3.70 6.60 7.20 

 Ca (mg/l) 89.00 145.0 44.0 82.00 

Cations Mn (mg/l) 1.70 3.10 1.30 2.48 

 Mg (mg/l) 53.0 55.60 69.0 55.40 

 Zn (mg/l) 5.80 8.00 3.90 4.60 

 Cu (mg/l) 1.00 1.80 0.80 1.30 
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Table 4.1: The characteristics of the liquid pineapple waste at different sampling 

times (Continued). 
 

Compositions Parameters Nov. 

(1997) 

June 

(1998) 

June 

(1999) 

March 

(2000) 

 Cd (mg/l) 0.00 0.00 0.00 0.00 

Cations Na (mg/l) 382.0 346.0 310.4 307.0 

 K (mg/l) 425.0 561.0 571.0 612.0 

 SO4
2-(mg/l) 5.64 25.60 19.18 28.40 

Anions PO4
3 -(mg/l) 0.00 0.00 0.00 0.00 

 NO3 
1-(mg/l) 12.40 6.50 17.80 5.35 

 Cl1- (mg/l) 105.0 43.20 96.0 87.5 

 Phosphorus (mg/l) 12.00 24.41 8..67 18.14 

pH  4.00 4.30 4.50 4.10 

 

 

 

Table 4.2: The comparison of the liquid pineapple waste composition between this 

work and as reported by Sasaki et al. (1991). 

 

Composition Parameters This Work Sasaki et al., 1991

 Reducing sugar (g/l) 40.62 39.20 

 Sucrose (g/l) 15.51 40.10 

Sugars Glucose (g/l) 20.00 23.60 

 Fructose (g/l) 20.76 14.0 

 Total sugar (g/l) 70.20 100.00 
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Table 4.2: The comparison of the liquid pineapple waste composition between this 

work and as reported by Sasaki et al. (1991) (Continued). 

 

Composition Parameters This work Sasaki et al., 1991

Soluble protein (g/l) 1.10 0.90 
Proteins 

Kjeldahl nitrogen (g/l) 0.53 0.20 

 Acidity, as citric acid (g/l) 2.93 - 

Organic Acids Citric acid (g/l) 2.38 - 

 Malic acid (g/l) 0.36 - 

 Fe (mg/l) 3.70 5.43 

 Ca (mg/l) 145.0 3.31 

 Mn (mg/l) 3.10 13.97 

 Mg (mg/l) 55.60 62.50 

Cations Zn (mg/l) 8.00 - 

 Cu (mg/l) 1.80 2.02 

 Cd (mg/l) 0.00 0.00 

 Na (mg/l) 346.0 8.61 

 K (mg/l) 561.0 - 

 SO4
2- (mg/l) 25.60 169.7 

 PO4
3- (mg/l) 0.00 223.8 

Anions NO3
1-(mg/l) 6.50 - 

 Cl1-(mg/l) 43.20 - 

 Phosphorus (mg/l) 24.41 - 

pH  4.30 4.00 
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4.2.2 The Characteristics Of Solid Pineapple Waste 

 

The compositions of solid pineapple waste obtained from this work and 

published by different authors are given in Table 4.3. The moisture content of the 

solid waste is ranging from 87.50-92.20 %. The difference of moisture content 

obtained by other researchers as reported in literature might result from the different 

samples obtained from various geographical origins and of varying degree of 

pineapple ripeness. Ash and phosphorus contents are 4 and 1%, respectively. This is 

quite similar to those reported by Chandapillai and Selvarajah (1978) because the 

wastes are obtained from the same area (Johor). The total nitrogen content in waste is 

0.9 %, which is similar to those previously reported by other researchers.  

 

The determination of sugar content in solid pineapple waste was carried out 

by extracting 10 g of solid waste using 100 ml of ethanol-air mixture (1:1). The 

solution was heated at 80 oC for 15 minutes (Zygmunt, 1982). The glucose and 

fructose content in solid waste was found to be 8.24 and 12.17 %, respectively. 

Sucrose was not detected and this might be due to the sucrose conversion to glucose 

and fructose, and degradation and polymerisation of sucrose forming brown colour 

of glucosan polymer (Chen, 1993). The highest mineral constituent in the waste was 

potassium which was 4%, and it is similar to those previously reported by other 

researchers.  

 

Table 4.3: The characteristics of solid pineapple waste. 

 

Composition  

(% w/w) 

This Work 

(1998) 

Bardiya et al. 

(1996) 

Viswanath  

(1992) 

Chandapillai 
and Selvarajah 

(1978) 

Moisture 87.50 92.20 87.69 89.70 

Total solid  12.50 7.80 12.31 10.30 

Ash 4.05 10.60 6.20 3.90 

Organic carbon  - 51.85 38.90 - 
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Table 4.3: The characteristics of solid pineapple waste (Continued). 

 

Composition  

(% w/w) 

This work 

(1998) 

Bardiya et al. 

(1996) 

Viswanath  

(1992) 

Chandapillai 
and Selvarajah 

(1978) 

Total carbohydrates - 35.00 - - 

Reducing sugar 20.93 - - - 

Glucose 8.24 - - - 

Fructose 12.17 - - - 

Sucrose 0.00 - - - 

Cellulose  - 19.80 - - 

Crude fibre 10.57 - - 14.70 

Hemicellulose - 11.70 - - 

Total soluble - 30.00 - - 

Total nitrogen  0.83 0.95 0.90 0.97 

Crude protein 5.18 - - 6.10 

Ether extract 0.15 - - 0.20 

Phosphorus 0.14 - 0.08 0.10 

Fe  0.20 - - - 

Ca 0.26 - - - 

Mn 0.01 - - - 

Mg 0.40 - - - 

Zn 0.02 - - - 

Cu 0.03 - - - 

Cd 0.00 - - - 

Na 0.30 - - - 

K 4.00 - - - 

SO4
2- 0.23 - - - 

PO4
3-  0.00 - - - 

NO3
1- 0.06 - - - 

Cl1- 0.38 - - - 
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4.2.3 The Characteristics Of Liquid Pineapple Waste Extract 

 

The liquid pineapple waste extract was obtained by extracting the solid waste 

using water at a ratio of solid to water of 5, 10 and 15% (w/w). The extraction was 

carried out by shaking the mixture at 150 rpm and at room temperature for 100 

minutes. This time is enough to extract the solid waste constituents. Table 4.4 shows 

the composition of liquid pineapple waste extract for different percentage of solid 

present. The concentration of sugar increases proportionally with increasing 

percentage of solid waste used. The result also indicates that the sucrose content is 

nil. Sucrose inversion during drying could be the reason to this. The inversion is a 

decomposition of sucrose to glucose and fructose under acidic condition, and the rate 

of reaction depends on temperature, pH, time and sugar concentration (Chen, 1993).  

 

The mineral and soluble protein contents increase proportionally with 

increasing percentage of solid except for calcium. This might due to the limited 

solubility of calcium salt in water. The potassium content in the liquid pineapple 

waste extract was the highest which was similar to the liquid pineapple waste’s. 

There was no change of pH if the percentage of solid was increased. The extraction 

process could be carried out up to 15% of solid waste only and thus the mixture was 

very viscous and it was very difficult to perform extraction.  
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Table 4.4: The characteristics of liquid pineapple waste extract. 

 

Solid (% w/w) 
Parameters 

5 10 15 

Fructose (g/l) 6.80 13.01 19.12 

Glucose (g/l) 5.01 10.33 15.44 

Sucrose (g/l) 0.00 0.00 0.00 

Reducing sugar (g/l) 11.43 24.20 36.88 

Soluble protein (g/l) 2.38 4.93 7.54 

Fe (mg/l) 6.20 14.5 17.2 

Ca (mg/l) 170.0 146.0 123.0 

Mn (mg/l) 2.20 3.40 4.50 

Mg (mg/l) 105.0 141.0 197.0 

Zn (mg/l) 9.70 9.80 11.40 

Cu (mg/l) 3.20 3.70 6.90 

Cd (mg/l) 0.00 0.00 0.00 

Na (mg/l) 276.0 411.0 500.0 

K (mg/l) 758.0 1058 1205 

SO4
2 -(mg/l) 125.0 191.0 227.0 

PO4
3-(mg/l) 0.00 0.00 0.00 

NO3
1-(mg/l) 32.00 115.0 197.0 

Cl1- (mg/l) 20.50 39.00 76.00 

Phosphorus 6.00 10.3 0 22.4 0 

pH 4.0 0 4.00 4.00 
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4.2.4 Sterilisation 

 

All fermentation media such as substrate were sterilised to prevent 

contamination during fermentation process. Steam was used almost universally for 

the sterilisation process which was carried out in an autoclave at 120 oC and a 

pressure of 15 lb/in2 for 15 minutes. Effect of sterilisation on pineapple waste 

composition is shown in Table 4.5.  

 

The concentrations of glucose and fructose after sterilisation were constant 

but the concentration of sucrose decreased probably due to the caramelisation 

process. The caramelisation is the degradation of sucrose at high temperature (above 

80 oC) and followed by polymerisation resulting in the formation of glucosan 

polymer with brown colour. Sasaki et al. (1991) results show that the contents of 

glucose, fructose, sucrose and total sugar after sterilisation are relatively constant, 

but in this work, only the contents of glucose and fructose are constant whereas total 

sugar and sucrose decreased. This result is different due to difference in the waste 

generated, season and area. 

 

The protein concentration after sterilisation decreased because the protein is 

expected to denature at 55 oC. The acidity or organic acid content was not affected 

by heating and this is indicated by the constant pH value. The cation concentrations 

after sterilisation increased but anion concentrations decreased. This phenomenon 

cannot be explained at present therefore further investigation is required.  
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Table 4.5: Effect of sterilisation on pineapple waste compositions. 

 

This Work 
Composition Parameters 

A B 

 Reducing sugar (g/l) 40.40 40.62 

 Sucrose (g/l) 16.75 15.51 

Sugars Glucose (g/l) 19.72 20.00 

 Fructose (g/l) 20.62 20.76 

 Total sugar (g/l) 73.76 70.20 

Soluble protein (g/l) 1.13 1.10 
Proteins 

Kjeldahl nitrogen (g/l) 0.64 0.53 

 Acidity, as citric acid (g/l) 2.95 2.83 

Organic Acids Citric acid (g/l) 2.82 2.78 

 Malic acid (g/l) 0.19 0.16 

 Fe (mg/l) 3.30 3.70 

 Ca (mg/l) 194.0 245.0 

 Mn (mg/l) 3.60 3.90 

 Mg (mg/l) 47.70 55.60 

Cations Zn (mg/l) 5.80 8.00 

 Cu (mg/l) 1.40 1.80 

 Cd (mg/l) 0.00 0.00 

 Na (mg/l) 294.0 346.0 

 K (mg/l) 526.0 561.0 

 SO4
2- (mg/l) 25.60 19.50 

 PO4
3- (mg/l) 0.00 0.00 

Anions NO3 
1-(mg/l) 8.20 6.50 

 Cl1- (mg/l) 256.0 243.20 

 Phosphorus (mg/l) 27.40 24.41 

pH  4.30 4.30 

A: Before sterilisation B: After sterilisation 
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4.3 Lactic Acid Fermentation Of Pineapple Wastes 

 

Several parameters that affect the lactic acid fermentation process as reported 

in literature such as temperature, pH, inoculum size, initial substrate concentration 

and types of nitrogen sources were studied. In this section, the pineapple waste was 

used as an alternative to the conventional carbon sources such as glucose, fructose 

and sucrose. The results of this study are presented and discussed in the following 

sub-sections. 

 

 

 

4.3.1 Liquid Pineapple Waste 

 

The liquid pineapple waste after sterilisation contains 15 g/l, sucrose; 20 g/l, 

fructose; 20 g/l, glucose and 70 g/l, total sugar. In industrial fermentation of lactic 

acid, the carbohydrate containing medium has been enriched with nutrient such as 

yeast extract to achieve the optimal growth conditions for the demand of nutrient on 

lactic acid bacteria (Lund et al., 1992). Based on the characteristics of pineapple 

waste, it is known that the liquid pineapple waste has little nitrogen and soluble 

protein therefore the substrate must be supplemented with yeast extract as a nitrogen 

source. In this initial study, 0.5 % of yeast extract was supplemented to the liquid 

pineapple waste. The fermentations were carried out in the fermentor at 40oC; pH, 

6.0; stirring speed, 50 rpm; inoculum, 5% and concentration of yeast extract, 0.5%. 

The results of the microbial growth, sugar utilisation and lactic acid production are 

given in Figure 4.1.  

 

A profile of dry cell weight concentration shows that the lag phase ended 

approximately after 8 hours, followed by the logarithmic growth phase until 48 hours 

with the maximum concentration of biomass of 1.6 g/l. The stationary growth phase 

was obtained after 4 hours, followed by gradual decline of cell concentration (death 

phase). The decreasing of the cell concentration might be due to inhibition of lactic 

acid production and lack of the nutrient to maintain the cell growth. Although the 

growth ceased, the bacteria still produce lactic acid. The similar results were also 
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reported by Monteagudo et al. (1997) on the subject of lactic acid fermentation using 

beet molasses by L. delbrueckii. The maximum lactic acid concentration obtained 

was 54.97 g/l or 79 % yield at 168 hours. It was found that sucrose was diminished 

completely after 62 hours. During the fermentation process the microorganisms 

which have phosphorolytic enzymes will phosphorylyze the sucrose to glucose-1-

phosphate and fructose (Freeman, 1985) and in acidic condition, the sucrose will be 

hydrolysed to glucose and fructose (Chen, 1993). As a result, the concentrations of 

glucose and fructose increase. This also indicates that the rate of sucrose hydrolysis 

is faster than fermentation process. The glucose consumption is better than 

fructose’s, but both sugars were not completely utilised even after 240 hours. The 

sucrose was completely utilised after 48 hours. 

 

 

Figure 4.1: The time course of biomass, sugar (glucose, fructose and sucrose) and 

lactic acid concentrations during fermentation of liquid pineapple waste. 

Experimental conditions: T, 40oC; pH, 6.0; inoculum, 5%; and stirring 

speed, 50 rpm.  
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4.3.2. Liquid Pineapple Waste Extract 

 

The liquid pineapple waste extract was obtained by extracting the solid waste 

(10 % w/w). The substrate was then supplemented with 5 g of yeast extract and the 

fermentations were carried out at similar conditions for liquid pineapple waste 

fermentation. The bacterial growth, sugar utilisation and lactic acid production are 

given in Figure 4.2. 

 

During the lag phase (8 hours), the concentration of glucose and fructose 

decreased as a result of sugar utilisation for growth and maintenance of the cell by L. 

delbrueckii. This is followed by the exponential growth phase until 32 hours with the 

maximum concentration of biomass of 1.32 g/l. The stationary growth phase was 

obtained after 12 hours, followed by gradual decline of cell concentration occurred in 

the death phase.  

 

The initial sugar concentration of liquid pineapple waste extract was 23.33 

g/l, containing only glucose and fructose. After 6 days of fermentation, the 

concentration of glucose and fructose in the fermentation medium decreased from 

10.26 to 1.24 and 12.84 to 4.45 g/l, respectively. This shows that glucose utilisation 

was better than fructose’s but both sugars were not completely utilised. The 

utilisations of glucose and fructose were only 87.9 % and 65.34%, correspondingly. 

The lactic acid production was only 13.1 g/l or 56% yield based on initial sugar 

concentration. 
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Figure 4.2: The time course of biomass, sugar (glucose and fructose) and lactic acid 

concentrations during fermentation of liquid pineapple waste extract. 

Experimental conditions: T, 40oC; pH, 6.0; inoculum, 5%; and stirring 

speed, 50 rpm.  

 

 

 

4.3.3 Solid Waste 

 

 The substrate was obtained by mixing 100 g of solid waste with 900 g of 

water. The substrate contains mainly the reducing sugar and crude fibre such as 

cellulose, hemicellulose, legnocellulose and lignin (Table 4.2). Initial sugar 

concentration was about 15.72 g/l containing glucose and fructose only. The time 

course of sugar utilisation and lactic acid production on solid waste fermentation is 

shown in Figure 4.3. After 24 hours of fermentation, the concentration of sugar 

increased to 18.24 g/l. This indicates that the hydrolyses of cellulose to glucose by 

enzymes were still carried on. The glucose utilisation is better than fructose’s, but 

both sugars were completely utilised after 144 and 216 hours, respectively.  

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250

Time (h)

Su
ga

r, 
la

ct
ic

 a
ci

d 
(g

/l)

0.0

0.4

0.8

1.2

1.6

2.0

B
io

m
as

s 
(g

/l)

Glucose
Fructose
L. Acid
Biomass



 101

 In this experiment, the biomass concentration was not measured because the 

solid pineapple waste used as substrate will interfere on the biomass measurement. 

The lactic acid production obtained was 22.51 g/l or 93% yield, based on initial 

sugar concentration. The yield was higher than liquid pineapple waste extract (56%), 

which indicates that the solid pineapple waste medium is better than liquid pineapple 

waste extract because the extraction process is longer and the complete solubility of 

nutrient from the solid waste into the liquid fermentation medium is taken place.   

 

 

Figure 4.3: Profile of sugar (glucose and fructose) and lactic acid concentrations 

during fermentation of solid waste. Experimental conditions: T, 40oC; pH, 

6.0; inoculum, 5%; and stirring speed, 50 rpm.  
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4.4 Parameter Study On Lactic Acid Fermentation Of Liquid Pineapple  

Waste 

 

4.4.1 Effect Of pH 

 

The optimal pH for the growth of lactobacillus has been reported to be at pH 

5.5-6.0. Fermentation is strongly inhibited at pH below 5.0 and ceases at pH 4.5 

(Buchta, 1983). In lactic acid fermentation, pH can cause reduction of lactic acid 

productivity due to the formation of lactic acid inhibitor. This lactic acid inhibitor is 

higher than ammonium lactate, sodium lactate or calcium lactate. The effect of pH 

inhibitor on cell growth of L. delbrueckii is very significant. Hence the production of 

lactic acid must be neutralised with alkaline such as ammonium hydroxide, sodium 

hydroxide and calcium carbonate (Tyagi et al., 1991). Calcium carbonate cannot be 

used because it is insoluble in the substrate and thus the suspended particulate matter 

will form where it will interfere with bacterial density measurement. Sodium 

hydroxide is the most suitable alkaline for pH control agent in fermentation process. 

 

 

 

4.4.1.1 Controlled pH vs. Uncontrolled pH 

 

Effect of controlled and uncontrolled pH on L. delbrueckii growth can be 

seen in Figure 4.4. During the early stages of the fermentation (lag growth phase), 

lactic acid was not produced (pH=6.0), but the concentration of sucrose decreases 

while the concentrations of glucose and fructose are increasing. It is perhaps due to 

hydrolysis of sucrose to glucose and fructose. After 8 hours, the exponential growth 

was attained followed by lactic acid production, decrease of pH (5.95) and increase 

of the concentrations of glucose and fructose because of the enzymatic hydrolysis of 

sucrose to glucose and fructose.  

 

After 24 hours, the biomass concentration for controlled pH was 0.96 g/l, 

while for uncontrolled pH the biomass concentration was only 0.33 g/l and the pH 

dropped from 6.0 to 5.8. The concentrations of glucose and fructose still increased 
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most likely for the reason that the hydrolysis of sucrose was faster than the 

conversion of glucose and fructose to lactic acid. The maximum growth for 

controlled pH was achieved after 48 hours with biomass concentration of 1.6 g/l, but 

for uncontrolled pH only 0.8 g/l was obtained at 56 hours and pH 5.5. The lactic acid 

production was found to be 10.41 and 5.85 g/l, for controlled and uncontrolled pH 

respectively. This implies that the growth for uncontrolled pH was inhibited by lactic 

acid production. Therefore, the addition of alkaline to the medium was needed to 

obtain higher biomass concentration.  

 

After 56 hours of fermentation, for controlled pH, the death phase was 

occurred but the lactic acid production still increased with decline of concentrations 

for glucose and fructose. Similar result was also obtained for uncontrolled pH where 

it diminished gradually from pH 5.5 to 5.1 with the maximum lactic acid production 

obtained at 13.5 g/l for 192 hours.  

 

 

 
Figure 4.4: Effect of controlled and uncontrolled pHs on L. delbrueckii growth of 

lactic acid fermentation. Experimental conditions: T, 40oC; pH, 6.0; 

inoculum, 5%; and stirring speed, 50 rpm. 
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The profile of sugar consumption during lactic acid fermentation using liquid 

pineapple waste by L. delbrueckii is shown in Figure 4.5. During the first 48 hours, 

glucose and fructose accumulated in the medium due to higher rate of sucrose 

hydrolysis to glucose and fructose than the conversion of these substrates to lactic 

acid.  In controlled and uncontrolled pH, the glucose utilisation was better than 

fructose’s. The sucrose consumption during lactic acid fermentation was almost 

analogous for controlled and uncontrolled pH and was completely utilised after 40 

and 56 hours, respectively. 

 

The concentration of lactic acid produced depends on whether the pH of the 

fermentation was controlled or not. Figure 4.6 illustrates that if the pH was 

controlled, lactic acid yield after 168 hours was found to be 54.97 g/l or 78.52 %, 

while for uncontrolled pH the lactic acid yield was only about 13.52 g/l or 19.31 %. 

If the pH were not controlled, the pH itself would drop from 6.0 to 5.1 within 168 

hours. After that no more lactic acid was produced. This result shows that continuous 

control of pH is advantageous since the yield and the rate of sugar utilisation can be 

increased thereby.  
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Figure 4.5: Effect of controlled and uncontrolled pHs on sugar consumption during 

lactic acid fermentation: a) glucose, b) fructose and c) sucrose. 

Experimental conditions, T: 40oC, pH: 6.0, inoculum: 5% and stirring 

speed: 50 rpm.  

 

 

 

a) 
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Figure 4.6: Effect of controlled and uncontrolled pHs on lactic acid production 

during lactic acid fermentation. Experimental conditions: T, 40oC; pH, 

6.0, inoculum, 5% and stirring speed, 50 rpm.  
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and 144-192 hours, respectively. Therefore the optimal growth of the liquid 

pineapple waste fermentation using L. delbrueckii was pH 6.0, which is similar to 

those reported by Goksungur and Guvenc (1997) using beet molasses as a substrate. 

 
 

 

Figure 4.7: Effect of controlled pH on L. delbrueckii growth during lactic acid  

fermentation. Experimental conditions: T, 40oC; inoculum, 5%; and 

stirring speed, 50 rpm.  
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utilised for pH 6.0, 6.5 and.5.0 after 48, 56 and 144 hours, respectively.  

 

0.0

0.5

1.0

1.5

2.0

0 50 100 150 200 250

Tim e (h)

B
io

m
as

s 
(g

/l)

pH=6.0

pH=6.5

pH=5.5



 108

Effect of controlled pH on lactic acid production is given in Figure 4.9. The 

optimal pH for production of lactic acid was found to be at 6.0 with lactic acid 

production and yield at 54.97 g/l and 78.52 %, respectively. If the pH were increased 

to 6.5, lactic acid production and the yield obtained would decrease to 21.88 g/l and 

31.25 %, respectively. For pH 5.5 however, lactic acid production and the yield were 

11.59 g/l and 16.55 %, respectively which were the lowest among the three pHs 

under study. These results are similar to those reported by Goksungur and Guvenc 

(1997) using beet molasses as a substrate where the optimal pH obtained was pH 6.0.  
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Figure 4.8: Effect of controlled pH on sugar consumption during lactic acid  

fermentation: a) glucose; b) fructose and c) sucrose. Experimental  

conditions, T: 40oC, inoculum: 5% and stirring speed: 50 rpm.  
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 Figure 4.9: Effect of controlled pH on lactic acid production: a) time dependence of 

lactic acid concentration and b) pH versus maximum lactic acid  

production. Experimental conditions: T, 40oC; inoculum, 5% and  

stirring speed, 50 rpm.  
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4.4.1.3 Initial pH   

 

The effect of initial pH was studied at four different pH values of 6.0, 6.5, 7.0 

and 7.5. The results of this study were also used to express the effect of CaCO3 (3% 

w/v) addition and mechanism for pH control in the shake flask fermentation. The 

initial studied cannot be carried out on pH below 6.0 due to the fact that addition of 

3% calcium carbonate into pineapple waste medium resulted in the pH of the 

medium to be of measurement at 6.0.  

 

The effect of initial pH to the end results of fermentation process is given in 

Table 4.6. The last pH values of initial pH 6.0 and 6.5 were similar but the yields 

were different. This might be due to the initial pH of 6.0 was higher than 6.5 or the 

lactic acid production for initial pH of 6.0 was higher than pH 6.5 (55.36 and 44.97 

g/l). With increasing of initial pH from 7.0 to 7.5, the final pH increases from 6.15 to 

6.4. These results indicated that that the calcium carbonate was effective in 

controlling pH value at about 6.0. The process of neutralisation involves the reaction 

of alkaline in the fermentation medium with lactic acid produced. As a result, the pH 

of the fermentation medium was constant. The similar results were also reported by 

Goksungur and Guvenc (1997) and Vahvaselha and Linko (1987).  

 

 The effect of pH on the performance of lactic acid fermentation by L. 

delbrueckii is summarised in Table 4.6 
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Table 4.6: Summary of fermentation results for effect of pH  

 

pH End pH Xm (g/l) Pm (g/l) Yield (%) Productivity (g/l.h)

Uncontrolled pH 5.1 0.80 13.52 19.37 0.082 

Controlled pH, 6.0 6.0 1.60 54.97 78.52 0.327 

Controlled pH, 5.5 5.5 0.52 11.59 16.55 0.053 

Controlled pH, 6.5 6.5 0.81 21.88 31.25 0.101 

Initial pH, 6.0 6.02 - 55.36 79.80 0.329 

Initial pH, 6.5 6.05 - 46.23 66.04 0.275 

Initial pH, 7.0 6.15 - 44.20 63.10 0.263 

Initial pH, 7.5 6.40 - 36.25 51.78 0.215 

 Xm and Pm are maximum concentration of biomass and lactic acid production. 
 

 

 

4.4.2 Effect Of Temperature 

 

 Temperature is one of the most important factors that impinges on the growth 

of microorganism. Most species have a characteristic range of temperature in which 

they can grow, but they do not grow at the same rate over the whole of temperature 

range. Microbial growth is governed by the rate of chemical reaction catalysed by 

enzymes within the cell. Lactic acid bacteria are classified as thermophilic or 

meshopilic bacteria. The L. delbrueckii is meshopilic bacteria which grow at 17-50 
oC and have optima growth between 20 to 40 oC (Taylor, 1992). 

 

The effect of temperature on lactic acid fermentation was studied at 40, 45, 

and 50 oC using 70 g/l of sugar concentration, 0.5 % of yeast extract, 5% of inoculum 

and at pH 6.0. Effect of temperature on bacterial growth is given in Figure 4.10. The 

lag phase of bacterial growth for 50 oC was longer than for 40 and 45 oC, which are 

only 4 hours, respectively. This longer lag phase was due to the bacteria needed to 

adapt with their environment. The maximum concentration of dry cell weight 
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decreases with increment of temperature. This is probably because above 45 oC the 

protein enzymes start losing their activity (Taylor, 1992). The maximum 

concentrations of dry cell weight for 40, 45 and 50 0C obtained were 1.6, 1.4 and 1.3 

g/l, respectively.  

 

The stationary phase of the bacterial growth for 40 oC was started at 48 to 52 

hours, followed by the death phase. For 45 and 50 0C, the stationary phase started at 

92 and 104 hours and ended at 104 and 128 hours, respectively. The stationary phase 

of bacterial growth for 50 oC was longer than for 40 and 45 oC, which were only 4 

and 12 hours, respectively. Inhibition by lactic acid production and depletion of 

nutrient concentration could be the reasons for it. 

 

 

Figure 4.10: Effect of temperature on L. delbrueckii growth during lactic acid  

fermentation. Experimental conditions: T, 40oC; inoculum, 5% and  

stirring speed, 50 rpm.  
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to hydrolysis of sucrose to glucose and fructose. At temperature 40, 45 and 50 oC, the 

sucrose was utilised completely after 40, 44 and 52 hours, respectively.  

 

The lactic acid formation was occurred at exponential growth phase, but the 

concentration of the sugars still increased. Increase in glucose and fructose 

concentrations designates that the hydrolysis of sucrose was faster than the 

conversion of glucose and fructose to lactic acid. The maximum concentration for 

glucose obtained for temperatures of 40, 45 and 50 oC were 30.6, 31.4 and 33.51 

meanwhile for fructose, 30.1, 30.2 and 32.8 g/l, respectively. The glucose utilisation 

was higher than fructose’s and the consumption of sucrose was faster than both 

sugars. However glucose and fructose were not completely utilised even after 240 

hours. 

 

The effect of temperature on the lactic acid production is given in Figure 

4.12. The highest lactic acid production and yield obtained were 54.97 g/l with the 

yield of 78.52 % at 40 oC. Similar observation was obtained if the temperature was 

increased to 45 oC (53.61 g/l lactic acid or 76.59 % yield). Nevertheless if the 

temperature were increased to 50 oC, the lactic acid production or yield would 

decrease rapidly to 25.14 g/l or 35.30 %.  

 

This result indicates that the lactic acid production depends on microbial 

growth or cell concentration. With increasing cell concentration, the lactic acid 

production increased as well. However for temperature 50 oC, the growth of bacteria 

was not optima and therefore the lactic acid production decreased. These results 

differ from those reported by Goksungur and Guvenc (1997). They obtained the 

highest yield was at 45 oC. Difference in the substrate and strain used in lactic acid 

fermentation process could be the explanation. 

 

The effect of temperature on maximum biomass concentration, maximum 

lactic acid production, yield and productivity on lactic acid fermentation of liquid 

pineapple waste by L. delbrueckii is summarised in Table 4.7. 
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Figure 4.11: Effect of temperature on sugar consumption during lactic acid  

fermentation: a) glucose; b) fructose and c) sucrose. Experimental  

conditions, T: 40oC; inoculum: 5%; and stirring speed: 50 rpm.  
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Figure 4.12: Effect of temperature on lactic acid production during lactic acid  

fermentation. Experimental conditions: T, 40oC; inoculum, 5% and 

stirring speed, 50 rpm. 

  

 

 

 

 

Table 4.7: Summary of fermentation results for effect of temperature. 

 

Temperature Xm (g/l) Pm (g/l) Yield (%) Productivity (g/l.h) 

40 oC 1.60 54.97 78.52 0.327 

45 oC 1.40 53.61 76.59 0.279 

50 oC 1.30 25.14 35.30 0.116 
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4.4.3 Effect Of Nitrogen Source 

 

The lactic acid bacteria require substrates with high nitrogen content and 

have a particular demand for vitamins B. The nitrogen sources required for the 

fermentation medium are supplied in the form of malt sprout, corn steep liquor, yeast 

extract, cotton oil cake, soy flour, tryptone and pepton (Hujanen and Linko, 1996).  

 

Yeast extract is most commonly used as nitrogen source in lactic acid 

fermentation as it provides a convenient source of growth factors for lactic acid 

bacteria. Lactic acid production increases with the increasing concentration of 

supplement especially yeast extract. The highest production rate was found with 

addition of 5-15g/l of yeast extract. However the addition of yeast extract during 

large scale fermentation is unrealistic due to the extra cost introduced for the 

fermentation process in combination with the low value of lactic acid (Lund et al., 

1992; Goksungur and Guvenc, 1997).  

 

5 nitrogen sources such as yeast extract, corn steep liquor, malt sprout, 

ammonium sulphate and urea were chosen for this study on the basis of their 

nitrogen content and cost. The quantity of nitrogen sources added to the fermentation 

medium depends on nitrogen sources used by the total nitrogen that were kept 

constant with equivalent to 5 g/l of yeast extract (0.5 % w/v). Table 4.8 shows the 

amount of nitrogen sources required to give the nitrogen content equivalent to 0.5 % 

(w/v) of yeast extract. 
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Table 4.8: The amount of nitrogen source used for lactic acid fermentation.  

 

Nitrogen source Nitrogen content 
(% w/w) 

Total 
required (g) 

Total nitrogen in 
medium (g/l) 

Yeast extract  11.0 5.0 0.55 

Corn steep liquor 3.5 15.71 0.55 

Malt sprout 4.0 13.75 0.55 

Ammonium sulphates 21.0 2.61 0.55 

Urea  46.7 1.17 0.55 
 

 

The effect of different nitrogen sources on lactic acid fermentation was 

studied using 70 g/l of sugar concentration at pH, 6.0; temperature, 40 oC; inoculum, 

5 % and stirring speed, 50 rpm. The effect of nitrogen sources on bacterial growth is 

given in Figure 4.13.   

 

The fermentation using yeast extract as nitrogen source gave the shortest lag 

phase (4 hours). The lag phases for other nitrogen sources such as corn steep liquor, 

malt sprout, ammonium sulphate and urea were up to 12 hours. During the lag phase, 

the concentration of glucose and fructose increased but the concentration of sucrose 

decreased. This points out that during this period the sucrose was hydrolysed to 

glucose and fructose.  

 

After the lag phase, exponential growth phase and simultaneous biosynthetic 

of lactic acid with growth were observed. During the exponential growth, the lactic 

acid production increased while the concentrations of glucose and fructose also 

increased. This might be due to the sucrose hydrolysis was faster than conversion of 

glucose and fructose to lactic acid. The maximum concentration of dry cell weight 

obtained was 1.6 g/l followed by urea, corn steep liquor, malt sprout and ammonium 

sulphates with each maximum concentration at 0.90, 0.82, 0.60 and 0.46 g/l, 

respectively. The death phase occurred after 52 hours. Although the growth ceased, 

the bacteria still produced lactic acid.  
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Figure 4.13: Effect of nitrogen source on L. delbrueckii growth during lactic acid  

fermentation. Experimental conditions: T, 40oC; inoculum, 5% and  

stirring speed, 50 rpm.  
 

 

The effect of nitrogen source on sugar utilisation is given in Figure 4.14. The 

trends of sugar utilisation were similar with other effects such as temperature and 

pH. Glucose utilisation was higher than fructose’s whereas the sucrose consumption 

was faster than both sugars’. The glucose and fructose were not completely utilised 

but sucrose was completely utilised for yeast extract, urea, corn steep liquor, malt 

sprout and ammonium sulphates after 48, 64,72, 80 and 92 hours, respectively.  

 

The residual sugar concentrations at the end of fermentation time for yeast 

extract, urea, corn steep liquor, malt sprout and ammonium sulphates were 2.49, 

21.38, 24.66, 26.85 and 28.32 g/l for glucose, and 9.11, 26.64, 27.79, 30.34 and 

30.57 g/l for fructose, respectively, along with sugar conversion to lactic acid at 93, 

83, 70, 64 and 32 % respectively. 
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Figure 4.14: Effect of nitrogen source on sugar consumption during lactic acid  

fermentation: a) glucose; b) fructose and c) sucrose. Experimental  

conditions, T: 40oC, inoculum: 5%  and stirring speed: 50 rpm.  
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  The effect of nitrogen source on lactic acid production is given in Figure 

4.15. The yeast extract gave the highest lactic acid production followed by urea, corn 

steep liquor, malt sprout and ammonium sulphates with maximum lactic acid 

concentration each at 54.97, 18.34, 13.25, 9.30, and 3.65 g/l. Table 4.9 also indicates 

the effect of nitrogen source on the performance of lactic acid fermentation by L. 

delbrueckii. The yeast extract exhibited the highest volumetric productivity, followed 

by urea, corn steep liquor, malt sprout and ammonium sulphates. Therefore the yeast 

extract is the best nitrogen source for lactic acid production using L. delbrueckii. 

Lund et al. (1992), Arasaratnam et al. (1996) as well as Hujanen and Linko (1996) 

reported similar findings as well.  

 

 

Figure 4.15: Effect of nitrogen sources on lactic acid production during lactic acid 

fermentation. Experimental conditions: T, 40oC; inoculum, 5% and  

stirring speed, 50 rpm.  
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The use of yeast extract as nitrogen source not only increases the bacterial 

yield but also reduces the time required for the completion of fermentation. This 

could be due to the yeast extract contains substances such as amino acid, peptides, 

vitamins, and several organic acids including pyruvic and glyseric acid which are 

needed for the L. delbrueckii growth. According to Lund et al. (1992) and 

Arasaratnam et al. (1996), yeast extract is the best nitrogen source for L. delbrueckii 

growth. However it is expensive compared to other nitrogen sources. 

 

The fermentation results of nitrogen source effect on lactic acid fermentation 

using liquid pineapple waste by L. delbrueckii is summarised in Table 4.9.  

 

 

Table 4.9: Summary of fermentation results for effect of nitrogen source.  

 

Nitrogen source Xm (g/l) Pm (g/l) Yield (%) Productivity (g/l.h) 

Yeast extract  1.60 54.97 78.52 0.327 

Urea  0.90 18.34 26.68 0.08 

Corn steep liquor 0.82 13.52 19.14 0.06 

Malt sprout 0.60 9.30 14.10 0.05 

Ammonium sulphates 0.46 3.65 5.60 0.02 

 
 
 
 
 
4.4.4 Effect Of Inoculum Size 

 

 The main objective of inoculum development for bacterial fermentation is to 

produce an active culture which will give the shortest lag phase in the subsequent 

culture. A long lag phase is disadvantageous because it is time consuming and the 

medium is used in maintaining a viable culture prior to growth. The length of the lag 

phase is affected by the size of the inoculum and its physiological condition. The 

inoculum size normally ranges between 3 to 10% (v/v) of the culture volume 
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(Stanbury, 1984). In industrial lactic acid fermentation process, the inoculum volume 

is usually about 5% (v/v) of the fermentation broth volume (Atkinson and Mavituna, 

1991; Blanch and Clark, 1997 and Casida, 1964). 

 

The maximum concentrations of lactic acid and biomass can be achieved 

depending on quantity or size of inoculum added in the substrate. In this study, the 

inoculum sizes of 5%, 10% and 15 % (v/v) were used. Effect of bacterial growth on 

inoculum size is given in Figure 4. 16. The growth started at 4 hours for 5% of 

inoculum followed by 10 % and 15 % of inoculum at 12 and 20 hours, respectively. 

Therefore the shortest lag phase for bacterial growth was obtained at 5% of inoculum 

size.  

 

During the lag phase the concentration of glucose and fructose increased 

while the concentration of sucrose decreased. The concentration of both sugars at 

5%, 10% and 15 % of inoculum size were 21.83, 22.4 and 23.35 g/l for glucose, and 

21.30, 22.15 and 22.95 g/l for fructose, respectively. Increase of both sugars was 

probably owing to sucrose hydrolysis to glucose and fructose. The lag phase was 

followed by exponential phase with the maximum concentrations of dry cell weight 

obtained for 5 and 10 % of inoculum were similar (1.6 g/l), but only 1 g/l was 

attained if 15 % of inoculum was used.  

 

However 5% of inoculum performed better than 10 % because the length of 

lag phase for 10 % inoculum caused higher consumption of sugar to maintain the 

growth. As a result, the production of lactic acid decreased. During this period, the 

growth associated with lactic acid production occurred but the concentrations of both 

sugars still increased. This, again, might be due to the hydrolysis of sucrose to 

glucose and fructose was faster than the conversion of both sugars to lactic acid. The 

short stationary phases were observed, followed by the death phase respectively after 

52, 72 and 64 hours for 5%, 10% and 15 % inoculum sizes. During death phase, the 

lactic acid production still continued and this indicates that the bacteria were still 

able to produce lactic acid even after cease of growth. Similar results were also 

reported by Monteagudo et al. (1997) on lactic acid fermentation using beet molasses 

as a carbon source.  
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Figure 4.16: Effect of inoculum size on L. delbrueckii growth during lactic acid 

fermentation. Experimental conditions: T, 40oC; pH, 6.0 and 

stirring speed, 50 rpm.  
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Figure 4.17 shows the consumption pattern of the sugar during fermentation 

of pineapple waste at different inoculum sizes. The trends of glucose and fructose 

utilisation were similar to the effect of temperature and pH on sugar utilisation. The 

results showed that the accumulation of glucose in the medium until 48, 72 and 80 

hours acquired maximum concentrations of 30.96. 31.37 and 31.58 g/l for 5, 10 and 

15% inoculum sizes, respectively while the maximum concentrations of fructose 

were 28.38, 28.42 and 28.64 g/l, respectively. These might be due to the rate of 

hydrolysis of sucrose to glucose and fructose was faster than the conversion of these 

substrates to lactic acid. This denotes that hydrolysis of sucrose caused higher 

glucose concentration than fructose’s. The glucose utilisation was again faster than 

fructose’s whereas the sucrose consumption was faster than both sugars’. Glucose 

and fructose were not completely utilised but sucrose was completely utilised at 48, 

56 and 64 hours for 5%, 10% and 15% of inoculum sizes, respectively. 

 

Figure 4.18 gives the time course of the lactic acid production for three 

different inoculum sizes. The highest lactic acid concentration was 54.97 g/l, 

produced after 168 hours. When the inoculum sizes were increased, the lactic acid 

production decreased to 51.8 and 44.84 g/l for 10% and 15 % inoculum sizes, 

respectively.  

 

The effect of inoculum size on the performance of lactic acid fermentation by 

L. delbrueckii is given in Table 4.10. As illustrated, the best inoculum size for lactic 

acid production was 5% with the highest maximum volumetric productivity of lactic 

acid obtained at 0.327 g/l.  

 

Optimisation studies were carried out by Monteagudo et al. (1994) for the 

lactic acid production from the beet molasses using L.delbrueckii. They found that 

the maximum yield of lactic acid production obtained was 87.8% at 5.14 % of 

inoculum concentration. In comparison of the result obtained in this study to those 

reported in literature, the optimal inoculum size for lactic acid production by L. 

delbrueckii is quite similar for both. 
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Figure 4.17: Effect of inoculum size on sugar consumption during lactic acid  

fermentation: a) glucose; b) fructose and c) sucrose. Experimental  

conditions, T: 40oC, pH: 6.0 and stirring speed: 50 rpm.  
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Figure 4.18: Effect of inoculum size on lactic acid production during lactic acid  

fermentation. Experimental conditions: T, 40oC; pH, 6.0 and  

stirring speed, 50 rpm.  

 

 

 

Table 4.10: Summary of fermentation results for effect of inoculum size.  

 

Inoculum size Xm (g/l) Pm (g/l) Yield (%) Productivity (g/l.h) 

5 % 1.60 54.97 78.52 0.327 

10 % 1.60 51.80 74.00 0.308 

15 % 1.00 44.84 64.05 0.233 

 

 
 
 
 
4.4.5 Effect Of Initial Sugar Concentration  
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The initial sugar concentrations used in this study varied between 7.0 and 

13.5% by addition of pure sugar to liquid pineapple waste with proportional quantity 

according to composition of sugar in original pineapple waste. The composition of 

three initial sugar concentrations is given in Table 4.11. 

 

Table 4.11: The composition of three initial sugar concentrations 
 

Initial sugar concentration (g/l) 
Types of sugar 

70.0 95.0 135.0 

Glucose 20.0 29.0 43.5 

Fructose 20.0 29.0 43.5 

Sucrose 15.0 22.0 33.0 

Others 15.0 15.0 15.0 

Total sugar 70.0 95.0 135.0 

 

 

Effects of initial sugar concentrations on L. delbrueckii growth are illustrated 

in Figure 4.19. The lag phase of bacterial growth was achieved for 4 hours for initial 

sugar concentration of 70 g/l. When the concentration was increased to 95 and 135 

g/l, the lag phase increased to 12 and 16 hours, respectively. It is obvious that higher 

initial sugar concentration increased the lag phase due to the bacteria needed longer 

time to adapt to their environment. This result is similar to those reported by 

Goncalves et al. (1991). During this period, the concentrations of glucose and 

fructose increased contrary to sucrose. The increasing of both sugars was probably 

because fo hydrolysis of sucrose to glucose and fructose. 

 

The lag phase was followed by the exponential phase where the growth for 

the initial sugar concentration of 70 g/l was faster than the initial sugar concentration 

of 95 and 135 g/l. This indicates that the bacteria growth was inhibited by higher 

sugar concentration which was more than 70 g/l. The maximum concentrations of 

biomass achieved were 1.6, 2.5 and 2.3 g/l at 48, 116 and 168 hours, respectively. 
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Although the growth occurred simultaneously with biosynthetics of lactic acid 

production, the concentration of glucose and fructose still increased. Higher rate of 

hydrolysis of sucrose to glucose and fructose than conversion of both sugars to lactic 

acid was again the possible explanation to the above occurrence. The short stationary 

phase for the concentrations of 70, 95 and 135 g/l were occurred until 52, 124 and 

190 hours, respectively. Following the stationary phase was the death phase where 

the growth rate began to decrease due to depletion of nutrient or inhibitory effect due 

to product accumulation, but the bacteria were still able to produce lactic acid.  

 

  

Figure 4.19: Effect of initial sugar concentrations on L. delbrueckii growth during 

lactic acid fermentation. Experimental conditions: T, 40oC; pH, 6.0;  

inoculum, 5%; and stirring speed, 50 rpm.  

 

 

Figure 4.20 shows the consumption pattern of the sugar during the 

fermentation of pineapple waste at different initial sugar concentrations. The trends 

of glucose and fructose consumption were similar to the effect of temperatures, 
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28 hours, and fructose until 48, 24 and 20 hours for initial sugar concentration of 70, 

95 and 135 g/l, respectively. The maximum concentration of sugars in the medium is 

given in Table 4.12. 

 

 

Table 4.12: The maximum sugar concentration accumulated in the medium for 

different initial sugar concentration. 

 

Maximum sugar concentration accumulated 

Glucose  Fructose  
Initial sugar 

concentration 

(g/l) Concentration (g/l) Time 

(hr) 
Concentration (g/l) Time 

(hr) 

70.0 30.96 48 28.38 48 

95.0 44.42 32 38.42 24 

135.0 67.94 28 53.05 20 

 

 

The accumulation of both sugars was due to the rate of hydrolysis of sucrose 

to glucose and fructose was faster than the conversion of these substrates to lactic 

acid. The concentration of glucose in the medium was higher than fructose, which 

indicates that hydrolysis of sucrose resulted in higher concentration of glucose than 

fructose. The glucose utilisation was higher than fructose’s, and the sucrose 

consumption was faster than both sugars’. Both glucose and fructose were not 

completely consumed but sucrose was fully utilised after 48 and 64 hours for initial 

sugar concentrations of 70 and 95 g/l, but for the initial sugar concentration of 135 

g/l, the sucrose was not totally utilised. This might be due to the enzyme activity to 

hydrolyse the sucrose was slower at higher sugar concentration. 
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Figure 4.20: Effect of initial sugar concentration on sugar consumption during lactic 

 acid fermentation: a) glucose; b) fructose and c) sucrose. Experimental 

 conditions: T, 40oC; pH, 6.0; inoculum, 5%; and stirring speed, 50 rpm.  
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Effect of initial sugar concentration on lactic acid production is given in  

Figure 4.21. The highest lactic acid production obtained was 54.97 g/l with the yield 

of 78.52 % for 70 g/l sugar concentration. When the concentration of sugar was 

increased to 95 g/l, the lactic acid production or yield decreased to 51.53 g/l or 54.24 

%. And when the initial sugar concentration was increased to 13.5 %, the lactic acid 

production or yield decreased rapidly to 19.92 g/l or 14.75 %. Although the cell 

concentration increased with increasing of the initial sugar concentration, but the 

lactic acid yield decreased. The decreasing of yield might be due to inhibition by 

higher sugar concentration.  

 

 

 

 

Figure 4.21: Effect of initial sugar concentration on lactic acid production during 

lactic acid fermentation. Experimental conditions: T, 40oC; pH, 6.0; 

inoculum, 5%; and  stirring speed, 50 rpm.  
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Effect of initial sugar concentration was also studied in shake flask 

fermentation by diluting the pineapple waste giving the final sugar concentrations of 

23.3, 35.0 and 52.5 g/l. The results can be seen in Table 4.13 and Figure 4.22. The 

yield increased with increasing of the initial sugar concentration, and the yields 

obtained were 82.25, 82.6, 85.65 and 79.8 % each. When the initial sugar 

concentration exceeded 52.5 g/l, the yield decreased due to inhibition caused by high 

sugar concentration. This is a characteristic of batch culture fermentation.  

 

In this experiment, the highest yield obtained was 85.65 % for the initial 

sugar concentration of 52.50 g/l. This result was almost similar to those reported by 

Monteagudo et al. (1994). The maximum yield obtained was 87.8 % for 58.8 g/l of 

initial sugar concentration. Goksungur and Guvenc (1997) also reported that the 

highest yield obtained was 81 % for the initial sugar concentration of 78.2 g/l. This 

difference might be due to different substrate and operation condition used in the 

study. 

 

 The effect of initial sugar concentration on the performance of lactic acid 

fermentation using liquid pineapple waste by L.delbrueckii is summarised in Table 

4.13. 

 

 
Table 4.13: Summary of fermentation results for effect of initial sugar concentration. 
  
 

Initial sugar concentration 

(g/l) 

Xm  

(g/l) 

Pm  

(g/l) 

Yield  

(%) 

Productivity 

(g/l.h) 

23.33 - 19.19 82.25 0.114 

35.00 - 28.94 82.60 0.172 

52.50 - 44.97 85.65 0.267 

70.00 1.6 54.79 78.52 0.327 

95.00 2.5 51.53 54.24 0.238 

135.00 2.3 19.92 14.75 0.115 
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Figure 4.22: Effect of initial sugar concentration on the yield of lactic acid 

fermentation. Experimental conditions: T, 40oC; pH, 6.0; inoculum, 

5% and stirring speed, 50 rpm.  
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4.5.1 Single Sugar vs. Mixed Sugar 

 

In order to understand the fermentation characteristics of different carbon 

sources, three types of sugars: glucose, fructose and sucrose were chosen due to their 

existent in the pineapple waste. The study on mixed sugar system is important to 

understand the effect of sugar types and their concentrations on lactic acid 

fermentation of pineapple waste. This can be done by comparing mixed sugar system 

to pure sugar system. The concentration of sugar used was the same as the 

composition of inoculum broth which was 20 g/l of glucose because of the low 

resistance of the microorganism to the acidity of medium and the efficiency of the 

microorganism diminished in highly acidic medium in which the sugar level is 

higher than 25-30 g/l (Buyukgungor et al., 1984). The results of the microbial 

growth, sugar utilisation and lactic acid production are given in Figures 4.23, 4.24 

and 4.25. 

 

 

 

4.5.1.1 Bacterial Growth  

 

The profiles of dry cell weight concentration with fermentation time on 

several of sugar types are given in Figure 4.23. The profiles of biomass concentration 

with time of fermentation show that the lag phases, which are the adaptation period 

for bacteria to fermentation environment, were up to 4 hours for all types of sugars. 

The exponential growth phase of glucose medium ended at 68 hours followed by 

mixed sugar, sucrose and fructose at 80, 116 and 128 hours, respectively. The 

exponential phase is followed by stationary phase with the maximum biomass 

concentration achieved at 2.28, 2.16, 1.44 and 1.36 g dry cell weight/l, respectively. 

This denotes that the optimal growth of L. delbrueckii was obtained when glucose 

was used as a carbon source, followed by mixed sugar, sucrose and fructose. 
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Figure 4.23: Time course of biomass concentration during lactic acid  

fermentation of single and mixed sugar. Experimental conditions:  

T, 40oC; pH, 6.0; inoculum, 5%; and stirring speed, 50 rpm.  
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4.5.1.2 Sugar Utilisation 

 

The glucose, fructose, sucrose and mixed sugar (7.25g fructose, 7.25g 

glucose and 5.5g sucrose) concentrations used were 20 g/l. Figure 4.24 shows that 

the sucrose was completely utilised at 56 hours, followed by glucose and fructose at 

68 and 104 hours, respectively. The consumption pattern of the mixed sugar during 

the first 8 hours of fermentation indicates that the glucose and fructose 

concentrations increased in the medium due to the rate of hydrolysis of sucrose to 

glucose and fructose was higher than the conversion of these substrates. The 

maximum concentrations of glucose and fructose were 8.48 and 7.84 g/l, 

respectively. The sucrose, glucose and fructose consumption were entirely utilised at 

24, 56 and 72 hours. Detailed discussion on sugar utilisation selectivity will be 

presented in Section 4.5. 
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Figure 4.24: Time course of sugar concentration during lactic acid  

fermentation of single and mixed sugar. Experimental conditions:  

T, 40oC; pH, 6.0; inoculum, 5%; and stirring speed, 50 rpm.  
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4.5.1.3 Lactic Acid Production 

 

Effect of the sugar types used on the lactic acid production is given in Figure 

4.25. The maximum concentration of lactic acid obtained for glucose medium was 

18.25 g/l or 92 % of yield at 68 hours. The maximum concentration of lactic acid 

(yield) for mixed sugar, fructose and sucrose obtained were 18.41 g/l (93 %), 18.3 g/l  

(93 %) and 18.22 g/l (92%) at 72, 104 and 116 hours, respectively. Although 

maximum lactic acid concentrations obtained were almost similar for each, the 

productivities were different. Maximum lactic acid productivities for glucose, mixed 

sugar, fructose and sucrose were 0.27, 0.26, 0.19 and 0.17 g /l.h, respectively.   

 

Buyukgungor et al. (1984) has reported that the production of lactic acid 

using L. delbrueckii on glucose was 85%. The results differ because of the difference 

in fermentation process conditions used.  
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Figure 4.25: Time course of lactic acid concentration during lactic acid  

fermentation of single and mixed sugar. Experimental conditions:  

T, 40oC; pH, 6.0; inoculum, 5%; and stirring speed, 50 rpm.  
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 The effect of different carbon sources on the performance of lactic acid 

fermentation by L. delbrueckii is summarised in Table 4.14. 

 

Table 4.14: Summary of fermentation results for fermentation characteristics of 

different carbon sources. 

 

Fermentation 
Xm 

(g/l) 

Pm 

(g/l) 

Fermentation time 

(hr) 

Yield 

(%) 

Productivity 

(g/l.h) 

Glucose (20 g/l) 2.28 18.25 68 92 0.270 

Fructose (20 g/l) 1.44 18.41 104 93 0.190 

Sucrose (20 g/l) 1.32 18.30 116 93 0.170 

Mixture of glu, fru 

and suc (20 g/l) 
2.16 18.22 72 92 0.260 

 

 

 

4.5.2 Mixed Sugar vs. Pineapple Waste  

 

The substrate used was pineapple waste, which contains a complex of 

saccharides such as glucose, fructose and sucrose. This study was to compare the 

bacterial growth, sugar utilisation and product formation of pineapple waste 

fermentation with the mixed sugar prepared according to pineapple waste 

composition. 

 

 

 

4.5.2.1 Bacterial Growth  
 

The composition of mixed sugar concentration chosen was proportional to the 

composition of pineapple waste. The first mixed sugar contains 7.25 g fructose, 7.25 

g glucose and 5.5 g sucrose, and the second contains 20 g fructose, 20 g glucose and 

15 g sucrose or total sugar of 20 and 55 g/l, respectively. The bacterial growth on 
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pineapple waste was compared for both 20 and 55 g/l mixed sugar fermentation. The 

profile of dry cell weight concentration with time of fermentation can be seen in 

Figure 4.26. This figure shows that the lag phase was achieved until 8 hours for all 

fermentation media used. The exponential growth phase seemed to last at 48 hours 

on pineapple waste, similar with 55 g of mixed sugar, and 80 hours for 20 g of mixed 

sugar.  

 

The maximum biomass concentration obtained for 20 g of mixed sugar was 

2.18 g/l. When the concentration of mixed sugar was increased to 55 g/l, the 

maximum biomass concentration decreased to 1.8 g/l. This was likely due to 

inhibition by higher mixed sugar concentration. Maximum biomass concentration 

obtained was only about 1.6 g/l for pineapple waste. This may reflect the complex 

nature of pineapple waste. This result shows that the most favourable growth of L. 

delbrueckii was at mixed sugar concentration of 20 g/l. Following by the stationary 

phase, a gradual decline of cell concentration (death phase) was observed 

approximately after 104, 64 and 55 hours for 20 g of mixed sugar, pineapple waste 

and 55 of mixed sugar, respectively. 

  

 

Figure 4.26: Time course of biomass concentration during lactic acid fermentation of 

mixed sugar and pineapple waste. Experimental conditions: T, 40oC; 

pH, 6.0; inoculum, 5% and stirring speed, 50 rpm.  
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4.5.2.2 Sugar Utilisation 

 

The trends of glucose and fructose consumption are given in Figure 4.27. 

During the first hours of fermentation, the glucose and fructose accumulated in the 

medium until 8, 16, and 48 hours for 20 g of mixed sugar, 55 g of mixed sugar and 

pineapple waste, respectively. The maximum sugar concentration accumulated in the 

medium is given in Table 4.15. 

 

Table 4.15: The maximum sugar concentration accumulated in the mixed sugar and 

pineapple waste medium. 

 

Maximum sugar concentration accumulated 

Glucose  Fructose  Fermentation 
Concentration (g/l) Time 

(hr) 
Concentration (g/l) Time 

(hr) 

Mixed sugar  

(20 g/l) 

8.40 8 7.82 8 

Mixed sugar  

(55 g/l) 

24.36 16 23.75 16 

Pineapple 
waste (70 g/l) 

30.59 48 28.32 48 

 

 

The accumulation of these sugars was due to the higher rate of sucrose 

hydrolysis to glucose and fructose than the conversion of these substrates to lactic 

acid. The concentration of glucose in the medium was higher than fructose’s, which 

designates that hydrolysis of sucrose resulted in higher concentration of glucose than 

fructose. The glucose utilisation is so far higher than fructose whereas the sucrose 

consumption was faster than both sugars’. The glucose and fructose in 20 g/l of 

mixed sugar medium were completely utilised but only glucose in 55 g/l of mixed 

sugar was wholly utilised. On the other hand both sugars were not completely 

utilised in the case of pineapple waste. Sucrose was fully consumed for all mediums 

used. 
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Figure 4.27: Time course of sugar concentration during lactic acid fermentation 

of mixed sugar and pineapple waste. a) glucose; b) fructose and c)  

sucrose. Experimental conditions: T, 40oC; pH, 6.0; inoculum, 5%; 

and stirring speed, 50 rpm.  

 

c) 
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4.5.2.3 Lactic Acid Production 

 

The time dependence of lactic acid production during lactic acid fermentation 

of mixed sugar medium is given in Figure 4.28. Comparing the yield of pineapple 

waste fermentation to 20 and 50 g/l of mixed sugar fermentation, increasing mixed 

sugar concentration from 20 to 55 g/l made the lactic acid production increased from 

18.22 to 47.65 g/l and the yield decreased from 92 to 87 %. The lactic acid yield 

decreased due to inhibition as a result of higher sugar concentration. The lactic acid 

yield was smaller using pineapple waste as a substrate, which contains 70 g/l total 

sugar, compared to pure mixed sugar which was only 54.97 g/l or 78.54 % of yield. 

This may reflect the complex nature of pineapple waste that inhibited the lactic acid 

production.  

 

 

 

Figure 4.28: Time course of lactic acid concentration during lactic acid 

fermentation of mixed sugar and pineapple waste. Experimental 

conditions: T, 40oC; pH, 6.0; inoculum, 5%; and stirring speed, 50 rpm.  
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 The effect of different sugar concentrations of lactic acid fermentation by L. 

delbrueckii is summarised in Table 4.16.  

 

Table 4.16: Summary of fermentation results for fermentation characteristics of  

different concentrations of carbon source. 

 

Fermentation Xm 

(g/l) 

Pm 

(g/l) 

Fermentation time 

(hr) 

Yield 

(%) 

Productivity 

(g/l.h) 

Mixed sugar 

(20 g/l) 
2.18 18.25 72 92.00 0.260 

Mixed sugar 

(55 g/l) 
1.80 47.65 168 86.63 0.280 

Pineapple waste 

(70 g/l) 
1.60 54.97 168 78.54 0.327 

 

 

 

4.5.3 Substrate Utilisation Selectivity 

 

In general, lactic acid bacteria use carbon sources such as glucose, fructose, 

lactose, maltose and sucrose for growth and lactic acid production. Starch cannot be 

utilised but there are several reports stating that certain members of lactic acid 

bacteria can be used to liquefy the starch. Lactobacillus delbrueckii ATCC 9649 is 

the preferred organism for lactic acid production by using glucose, fructose, and 

sucrose as carbon source. Lactose cannot be utilised by Lactobacillus delbrueckii 

(Atkinson and Mavituna, 1991). 

 

There are three carbon sources which exist in the pineapple waste namely 

glucose, fructose and sucrose that are potential to be fermented to produce lactic 

acid. In this section, the selectivity of the sugar utilisation for lactic acid production 

by Lactobacillus delbrueckii ATCC 9649 using pure single sugar, mixed sugar and 
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pineapple waste, as a carbon source will be discussed. The fermentations were 

performed anaerobically at pH, temperature inoculum and stirring speed of 6.0, 40oC, 

5 % and 50 rpm, respectively.  

 

 

 

4.5.3.1 Mixed Sugar  

  

Three different substrates were used in this study, which were glucose, 

fructose and sucrose with initial concentrations of 20 g/l each. The sugar 

concentration (20g/l) was chosen according to the sugar concentration existed in the 

pineapple waste. Effect of different substrates and concentrations on bacterial 

growth, sugar utilisation and lactic acid production are given in Figures 4.29 and 

4.30, and Table 4.17 

 

During the first 54 hours of fermentation, the growth rate of Lactobacillus 

delbrueckii was similar for both glucose and mixed sugar medium. After that, the 

growth for glucose was faster than mixed sugar, and maximum concentrations of 

biomass were achieved at 2.28 and 2.16 g/l respectively (Figure 4.29a). The growth 

of Lactobacillus delbrueckii for fructose and sucrose medium was slower than mixed 

sugar medium (Figures 4.29b and 4.29c). A conclusion is drawn that glucose is the 

best medium for growth of Lactobacillus delbrueckii, followed by mixed sugar, 

fructose and sucrose.   

 

The rate of sugar utilisation was almost similar for glucose and mixed sugar 

medium, except for the end of fermentation process where the glucose medium 

performed higher sugar utilisation than mixed sugar medium. Similar trend was also 

observed in lactic acid production. Although the maximum lactic acid concentration 

obtained was similar, glucose medium showed faster response than mixed sugar 

medium at the end of fermentation process (Figures 4.30a and 4.30d).  

 

After 32 hours of fermentation, all lactic acid production was associated with 

microbial growth. Sucrose utilisation was faster than that of glucose and fructose but 
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the lactic acid production was slower in general. This indicates that the rate of 

hydrolysis was higher than the conversion of glucose and fructose to lactic acid.  

 

After 64 hours of fermentation, sucrose was completely utilised (Figure 

4.30c) but glucose and fructose were fully utilised only after 68 and 104 hours, 

respectively (Figures 4.30a and 4.30b). The fructose utilisation was slower than 

mixed sugar utilisation (Figure 4.30b) but the sucrose utilisation was faster than 

mixed sugar or glucose utilisation. The sucrose consumption depends on the rate of 

sucrose hydrolysis. The lactic acid yield obtained for glucose, fructose and sucrose 

fermentation were 92, 93 and 93 %, respectively with the residual sugar of 7-8% that 

was utilised for bacterial growth and maintenance requirement of the cell. This result 

is similar to those reported by Buyukgungor et al. (1984) and Goncalves et al. 

(1997). They stated that glucose consumption in lactic acid fermentation using 

Lactobacillus delbrueckii was complete for initial glucose concentration from 2 to 

10% with the yield of 90 %.  
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Figure 4.29: Effect of different substrate on L. delbrueckii growth of lactic acid 

fermentation. Experimental conditions: T, 40oC; pH, 6.0; inoculum, 

5%; and stirring speed, 50 rpm.  
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Figure 4.30: Mixed sugar utilisation and lactic acid production compared with pure 

sugar. Experimental conditions: T, 40oC; pH, 6.0; inoculum, 5%; and 

stirring speed, 50 rpm.  
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4.5.3.2 Pineapple Waste  

 

The sugar utilisation, L. delbrueckii growth and lactic acid production is 

given in Table 4.17. During the first 4 hours of fermentation (lag phase), the 

concentration of the glucose and fructose for sucrose, mixed sugar and pineapple 

waste increased while the sucrose concentration decreased. It is obvious that sucrose 

is converted to glucose and fructose. The reason could be that before fermentation 

process the sucrose was hydrolysed by levanse sucrose enzyme or inverted to 

glucose and fructose. The exponential phase was achieved after 4 hours of 

fermentation except for sucrose. During this period, lactic acid was produced but the 

concentration of glucose and fructose still continued to increase. The increase of 

these sugars concentration shows that the rate of hydrolysis was higher than the rate 

of conversion of these sugars to lactic acid. The growth rate of L. delbrueckii on 

mixed sugar (55 g/l) was faster than pineapple waste, glucose, mixed sugar (20 g/l), 

fructose and sucrose. 

 

A short stationary phase (48-52 hours) was observed for mixed sugar (55 g/l) 

and pineapple waste, and it was followed by death phase. A long stationary phase 

was observed for glucose (64-80 hours), mixed sugar (20 g/l) (72-104 hours), 

fructose (104-144 hours) and sucrose (116-144 hours). The maximum biomass 

concentrations for glucose, mixed sugar (20 g/l), fructose, sucrose, mixed sugar (55 

g/l) and pineapple waste were 2.43, 2.31, 1.41, 1.58, 1.97 and 1.76 g/l, respectively. 

Although the death phase for mixed sugar (55 g/l) and pineapple waste occurred at a 

shorter period, the lactic acid production still continued. This denotes that the 

bacteria were able to produce lactic acid even after growth had ceased. The glucose 

consumption was faster than fructose’s meanwhile the sucrose utilisation is faster 

than both sugars. All pure sugar and mixed sugar (20 g/l) were completely utilised. 

When the concentration of mixed sugar was increased to 55 g/l, fructose was not 

completely converted to lactic acid. However when the concentration was increased 

further to 70 g/l (pineapple waste), both glucose and fructose were not fully utilised 

due to inhibition effect as a result of higher sugar concentration. This may reflect the 

complex nature of pineapple waste, which could inhibit the fermentation process.  
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Table 4.17: Lactic acid fermentation of multisubstrates with different concentrations. 

 

T = 0 hours T = 4 hours T = 8 hours 

S (g/l) S (g/l) S (g/l) 

Types 

of 

sugar 
X 

(g/l) Glu Fru Suc 
P (g/l) X 

(g/l) Glu Fru Suc 
P (g/l) X 

(g/l) Glu Fru Suc 
P (g/l) 

Glucose 0.150 20.00 - - 0.00 0.156 19.75 - - 0.23 0.300 18.86 - - 0.95 

Fructose 0.150 - 20.00 - 0.00 0.155 - 19.66 - 0.05 0.219 - 18.56 - 0.67 

Sucrose 0.150 - - 20.00 0.00 0.151 1.12 0.95 17.24  0.00 0.158 2.18 1.64 15.35 0.26 

Mixed 

(20 g/l) 
0.150 7.25 7.25 5.50  0.00 0.156 8.25 7.62 3.56 0.18 0.282 8.45 7.83 2.96 0.91 

Mixed 

(55 g/l) 
0.150 20.00 20.00 15.00 0.00 0.155 20.59 20.28 14.37 0.06 0.276 21.41 21.37 14.26 0.76 

Pine- 

apple 
0.150 20.00 20.76 15.51 0.00 0.152 21.28 21.83 13.48 0.00 0.238 22.68 22.51 11.45 0.22 

X, S and P are biomass, sugar and lactic acid concentration (g/l), respectively 
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Table 4.17: Lactic acid fermentation of multisubstrate with different concentrations (Continued). 

   

T = 12 hours T = 16 hours T = 32 hours 

S (g/l) S (g/l) S (g/l) 

Types 

of 

sugar 
X 

(g/l) Glu Fru Suc 
P (g/l) X 

(g/l) Glu Fru Suc 
P (g/l) X 

(g/l) Glu Fru Suc 
P (g/l)

Glucose 0.370 17.64 - - 1.74 0.440 17.18 - - 2.59 0.971 9.66 - - 8.28 

Fructose 0.245 - 18.12 - 0.95 0.271 - 17.97 - 1.18 0.523 - 13.26 - 5.45 

Sucrose 0.180 2.72 1.87 14.56 0.54 0.197 3.21 2.28 13.49 0.79 0.344 4.85 4.33 6.38 3.61 

Mixed 

(20 g/l) 
0.312 8.18 7.52 3.59 1.58 0.365 7.92 7.33 1.63 2.57 0.890 6.09 6.25 0.00 7.19 

Mixed 

(55 g/l) 
0.430 22.37 21.64 8.41 1.56 0.742 23.36 22.16 5.56 2.21 1.54 16.64 21.21 0.00 14.23 

Pine- 

apple 
0.365 23.90 23.48 9.35 0.74 0.610 24.88 24.56 7.59 3.82 1.250 27.54 25.89 3.12 3.82 

X, S and P are biomass, sugar and lactic acid concentration (g/l), respectively. 
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Table 4.17: Lactic acid fermentation of multisubstrate with different concentrations (Continued). 

  

T = 48 hours T = 64 hours T = 80 hours 

S (g/l) S (g/l) S (g/l) 

Types 

of 

sugar 
X 

(g/l) Glu Fru Suc 
P (g/l) X 

(g/l) Glu Fru Suc 
P (g/l) X 

(g/l) Glu Fru Suc 
P (g/l) 

Glucose 1.270 5.62 - - 12.48 2.430 1.13 - - 17.55 2.430 0.00 - - 18.32 

Fructose 0.748 - 9.39 - 9.15 1.087 - 6.72 - 11.54 1.233 - 2.86 0.00 15.47 

Sucrose 0.489 5.38 5.07 1.25 7.06 0.880 4.55 4.58 0.00 9.67 1.203 0.58 2.97 0.00 14.89 

Mixed 

(20 g/l) 
1.140 1.49 5.16 0.00 12.23 1.960 0.00 1.144 0.00 17.42 2.310 0.00 0.00 0.00 18.20 

Mixed 

(55 g/l) 
1.976 13.65 18.77 0.00 19.22 1.843 12.90 18.06 0.00 22.74 1.761 11.24 17.13 0.00 25.51 

Pine- 

apple 
1.766 30.96 28.37 0.00 7.95 1.652 27.28 26.24 0.00 13.06 1.147 24.53 24.54 0.00 15.24 

X, S and P are biomass, sugar and lactic acid concentration (g/l), respectively. 
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4.6 Fed Batch Fermentation 

 

4.6.1 Introduction 

 

Batch culture is still the most important process operation used in 

fermentation industry. There are technical and biological reasons for the choice of 

this strategy, which include simple operation and less effort in chemical engineering, 

measurement and control. Batch culture is less suitable if substrate inhibition or 

growth dependent inhibitory by product formation occurs (Hammes and Whiley, 

1993).    

 

Some pitfalls of batch culture can be overcome with fed batch operation. Fed 

batch culture is a batch culture where the nutrients are fed continuously or 

sequentially with substrate without the removal of fermentation broth. It is widely 

used for the production of microbial biomass, ethanol, organic acids, antibiotics, 

vitamins, enzymes, and other compounds (Roukas and Kotzekidou., 1997). 

 

 The rationale for fed batch operations are: the excess of carbon caused 

inhibition of cell growth, the excess of carbon or nitrogen caused the catabolite 

repression or relative decrease in the rate of synthesis of a specific enzyme resulting 

from exposure to rapidly assimilated carbon source, the formation of undesirable 

product, and unable to initially batch all nutrient (Wang et al., 1979). 

 

The nutrient limiting for the cell growth in a fed-batch bioreactor provides an 

excellent means of controlling the growth rate and the metabolism of the cell. Thus, 

fed-batch bioreactor may be operated in a variety of ways by regulating the feed rate 

in a predetermined manner (feed forward control) or using feed back control. The 

most commonly used are constantly, exponentially fed, extended and repeated fed-

batch cultures. In extended fed-batch culture, the feed rate is regulated to maintain 

the substrate concentration constant until the bioreactor is full. These modes of 

operations are limiting cases of the complex optimal feed rate profiles. In a repeated 

fed-batch culture a part of the broth remaining after a partial removal at the end of a 

cycle is used as an inoculum for the next cycle (Lim and Lee, 1993) 
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Effects of constant feeding rate on lactic acid production from deproteinised 

whey by mixed cultures of Lactobacillus casei and Lactococcus lactis using fed 

batch culture have been reported by Roukas and Kotzekidou. (1998). The lactic acid 

production was performed by feeding substrate containing 75, 100 and 150 g/l of 

sugar. The result shows that the lactic acid concentration increased slightly with the 

increase in sugar concentration up to100 g/l, but remained constant beyond this 

value. Effect of feeding rate was also studied and the result indicated that the lactic 

concentration decreased if the feeding rate was increased from 250 to 1000 ml/h. The 

lactic acid productivity and yield remained practically constant with an increase in 

feeding rate from 250 to 334 ml/h, but decreased at higher feeding rate from 500 to 

1000 ml/h. 

 

For the results of batch fermentation, as discussed in Section 4.4.5, the 

increasing of initial sugar concentration over 70 g/l in lactic acid fermentation of 

pineapple waste by L. delbrueckii caused the decreasing of maximum lactic acid 

production, yield and productivity. In order to obtain higher lactic acid productivity 

and lactic acid concentration, fed-batch fermentation study is significant. According 

to literature, the constantly feed used with slower feed rate to maintain the 

concentration of substrate does not increase as a result of the lengthy time of 

fermentation (240 hours). The effect of feeding concentration on L. delbrueckii 

growth, sugar utilisation and lactic acid production are presented and discussed in the 

following section. 

 

 

 

4.6.2 Fed-Batch Culture  

 

The fermentation was performed in a 3-litre stirred fermentor with working 

volume of 2.5 litres. The fermentation was performed in two phases. In the first 

phase, 700 ml of pineapple waste containing 65 g/l of sugar was inoculated with 5% 

(v/v) of inoculum. L. delbrueckii were grown in batch culture for 24 hours. In the 

second phase, the production mediums containing 65, 90, and 115 g/l sugar were 

continuously added into the fermentor at constant rate of 8.5 ml/h. 
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 Effect of the sugar feeding concentration on L. delbrueckii growth is shown 

in Figure 4.31a. The feeding was begun at exponential growth rate (24 hours) and the 

L. delbrueckii growth after 24 hour shows that the specific growth rates [defined as 

(1/X) (dX/dt) = µ] determined by the slopes in the logarithmic phase increased from 

feeding concentration of 65 to 90g/l.  If the sugar feeding concentration were further 

increased from 90 to 115 g/l, the specific growth rates would decrease. The possible 

reason could be the substrate inhibition as result of higher sugar concentration in the 

medium. The residual sugar concentration after feeding decreased for feeding 

concentration of 65 and 90 g/l but for 115 g/l, the residual sugar concentration in the 

medium was almost constant. The concentrations of sugar in the medium after 56 

hours for initial sugar concentration of 65, 90 and 115 g/l were 45.24, 47.75 and 

58.34, respectively.  

 

The maximum concentration of biomass obtained for sugar feeding 

concentration of 90 g/l was similar to 115 g/l as 2.55 g/l. At feeding rate of 65 g/l, 

the maximum concentration was achieved at 2.0 g cell dry weight /l meanwhile the 

L. delbrueckii growth was faster than that of 115 g/l. However after 80 hours, the 

growth declined gradually which indicates that at the feeding concentration of 65 g/l, 

the concentration of nutrient in the medium was not enough to maintain the cell 

growth. The short stationary phases for three sugar feeding concentration occurred at 

56-72, 56-72 and 104-116 hours, respectively. Followed by the death phase, the 

growth rate began to decrease gradually and the concentrations of biomass reached at 

the end of fermentation were 0.6, 2.3 and 2.2 g/l, respectively. The decreasing of 

biomass concentration was due to the increasing of the volume in medium (diluted) 

or dying. Although the L. delbrueckii growth decreased, it continued to produce 

lactic acid.  

 

Effect of feeding concentration on sugar consumption is given in Figure 

4.31b. During the first 24 hours of fermentation (before feeding), the concentration 

of sugar decreased from 65.0 to 59.4 g/l as a result of sugar utilisation for L. 

delbrueckii growth and lactic acid production. During this period, the microorganism 

was building the necessary enzymes for the sugar conversion to lactic acid with 

lactic acid concentration obtained at only 6.8 g/l. After 24 hours, the consumption 
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pattern of the sugar shows that for sugar feeding concentration of 65 g/l, the sugar 

concentration continuously decreased while for 115 g/l it was constant although the 

lactic acid production increased. It might be due to the lactic acid production was 

faster than sugar addition to the system. A similar pattern was also obtained for sugar 

feeding concentration of 90 g/l. The sugar concentration for 65 and 90 g/l at 192 

hours decreased to 11.9 and 23.2 g/l, respectively. For the sugar feeding 

concentration of 115 g/l, after 24 hours the concentration of residual sugar was 

relatively constant until 80 hours. This might be due to the rate of feeding was equal 

to the conversion rate of sugar to lactic acid. After that, the concentration of sugar 

decreased which indicates that the conversion of sugar to lactic acid was faster than 

the increasing of sugar concentration in the medium.  After 216 hours, the 

concentration of the sugar increased while the lactic acid production was constant. 

This indicates that the addition of sugar to the fermentor was faster than the 

conversion of sugar to lactic acid.  

 

Figure 4.31c illustrates the effects of sugar feeding concentrations on lactic 

acid production. The lactic acid production before feeding (24 hours) was 4.8 g. 

After that lactic acid production for 90 g/l was faster than those of 115 and 65 g/l.  

The maximum lactic acid production shows that the highest lactic acid concentration 

observed (122.91 g) was for 90 g/l of sugar, followed by 115 g/l (113.88 g) and 65 

g/l (109.63 g). After 216 hours, the lactic acid production was relatively constant but 

the sugar concentration increased because after this time, the sugar addition was 

faster than the conversion of sugar to lactic acid, and also due to the increase in 

substrate volume in the fermentor with the time.  
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Figure 4.31: Effect of sugar feeding concentration on pineapple waste fermentation  

using fed batch culture. a) L. delbrueckii growth, b) sugar consumption,  

c) lactic acid production. Experimental conditions, T: 40oC, pH: 6.0,  

inoculum: 5% and stirring speed: 50 rpm.  
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 Effect of sugar feeding concentration on lactic acid productivity is given in 

Figure 4.32. By increasing the sugar feeding concentration from 65 to 90 g/l, the 

productivity increased but if it was further increased to115 g/l, the productivity 

decreased due to the inhibition by high sugar concentration in the medium. The 

maximum productivity obtained was 0.44 g/l.h with sugar feeding concentration of 

90 g/l at 48 hours of fermentation. This followed by sugar feeding concentration of 

115 g/l and 65 g/l. Batch fermentation with the maximum productivity obtained was 

0.36, 0.35 and 0.16 g/l h for the three sugar feeding concentrations respectively. 

These results were different from those reported by Suscovic et al. (1992). They 

obtained 4 g/l.h at feeding rate of 97.2 g/l after19 hours. This difference might be due 

to substrate used in lactic acid fermentation. If the results were compared with batch 

culture, the lactic acid productivity was twice and half fold higher than batch 

productivity at 48 hours. The fed batch culture also gave higher lactic acid 

concentration, lactic acid yield, specific lactic acid productivity and biomass 

concentration compared to batch fermentation. 

  

Figure 4.32: Effect of sugar feeding concentration on volumetric productivity of 

pineapple waste fermentation  using batch and fed batch cultures. 

Experimental conditions, T: 40oC, pH: 6.0, inoculum: 5% and stirring  

speed: 50 rpm. A) Batch, B) fed batch (65 g/l), C) fed batch (90 g/l), 

and D) fed batch (115 g/l). 
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CHAPTER V 

 

 

 

MODELLING Of LACTIC ACID FERMENTATION  

 

 

 

5.1 Introduction   

 

Knowledge of the kinetics of fermentation is necessary in order to size the 

fermentor and its associated equipment, and this information is normally obtained 

from laboratory experiment using one to three litres of fermentor. In batch 

fermentation, the kinetic model provides information to predict the rate of cell mass 

or product generation; while in continuous fermentation it will predict the rate of 

product formation under given conditions (Russel, 1987). The mathematical model 

can be constructed by setting up a verbal model, translation into a mathematical 

model, solving the equations, determination of parameter sensitivity and testing the 

model. The verbal model or verbal statement is the relationship between variables 

which are not stated by symbols (Roels, 1983). 

 

In this section, the development of process models on batch fermentation was 

performed at first by translating a verbal model of the process into a mathematical 

expression. The kinetic parameters such as specific growth rate and specific product 

formation rate were determined by application of conservation laws (material 

balance) for bacterial growth, substrate utilisation and lactic acid production to 

obtain the models in the form of mathematical equations. The differential equations 

were solved by integration to estimate the parameters. The validity of the models was 

tasted using standard deviation between the measured and calculated concentrations 

of biomass, substrate and lactic acid.  
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5.2 Model Development 

 

The model can be structured on the basis of biomass concentration, biomass 

component such as concentrations of metabolite (M), enzymes (E) and RNA (R), by 

population related variables, describing different morphological types of cells or cell 

aging (Nielsen et al., 1991). The structured model can be described by  

 

,.......),,,( REMXf
dt
dX

=         ….. (5.1) 

 

where X is cell concentration (g/l) and t is time (hour). 

 

In the simplest approach to model batch culture, the unstructured batch 

growth models were used. Based on this model, the rate of increase in biomass is a 

function of the single parameters such as cell number or biomass concentration only 

(Bailey and Ollis, 1977). Thus, 

 

dX
dt

f X= ( )         …… (5.2) 

 

One of the simplest models belonging to the general form given by equation 

(5.2) is Malthus’ law, which is in the form of   

 

X
dt
dX .μ=         ……(5.3) 

 

where μ  is specific growth rate (hour-1). 

 

 

Unstructured models are the simplest; they take the cell mass as a uniform 

quantity without internal dynamics where reaction rate depends only on the 

conditions in the liquid phase of the reactor. Therefore, the models only contain 

bacterial growth, substrate utilisation and product formation. 
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5.2.1 Bacterial Growth 

 

Microbial growth is usually characterised by an increase in cell mass and cell 

number with the time. Mass doubling time may differ from cell doubling time 

because the cell mass can increase without an increase in cell number. However the 

interval between cell mass or number doubling is constant with time, the 

microorganism is growing at an exponential rate. The material balance of cell can be 

described by, 

 

XkX
dt
dX

d .. −= μ        …… (5.4) 

 

where 
dt
dX  is microbial growth rate (g l-1 h-1) and  kd is  specific death rate (hour-1).  

 

In batch fermentation, the specific growth rate is constant and independent of 

the changing of the nutrient concentration. It is expected that growth rate, as any 

chemical reaction rate, will depend on the concentration of chemical nutrients. 

Monod-Type relationship on the specific growth rate μ, is usually expressed as a 

function of the limiting substrate concentration (S), 

 

μ μ=
+

⎡

⎣
⎢

⎤

⎦
⎥m

s

S
K S

       ……(5.5) 

 

where μ max is maximum specific growth rate (h-1), S is substrate concentration (g/l) 

and Ks is saturation constant (g/l).  

 

Substituting the value of μ from equation (5.5) to (5.4), gives 

 

dX
dt

S
K S

X k X
s

d=
+

⎛

⎝
⎜

⎞

⎠
⎟ −μmax       ……(5.6) 

or, 

 



 162

{ }dX
dt

S
K S

k X
s

d=
+

⎛
⎝
⎜

⎞
⎠
⎟ −μ m ax     ……(5.7) 

 

 

 

5.2.2 Substrate Utilisation 

 

The growth was described in term of simple first order rate equation and then 

related to substrate utilisation via a stoichiometric relationship. Metabolic product 

formation can be similarly related to nutrient consumption. Furthermore, product 

formation cannot occur without the presence of cells. Thus, it is possible to relate 

substrate consumption and product formation with growth by making material 

balance as follows:  

 

mX
dt
dP

Ydt
dX

Ydt
dS

spsx

++=−
//

11 ,     ……(5.8) 

 

where (
dt
dS  ) is the specific rate of substrate utilisation, (

dt
dP ) is the specific rate of  

product formation, Yp/s is the product yield on the utilised substrate (g product / g 

substrate), Yx/s is biomass yield on the utilised substrate (g cell / g substrate) and m is 

coefficient of maintenance (g substrate / h g cell).  

 

When the product is associated with energy metabolism as a catabolic of the 

carbon source (Wang et al., 1979), the equation (5.8) can be written as 

 

− = +
dS
dt Y

dX
dt

mX
x s

1

/
       ……(5.9) 

 

Frequently the maintenance requirement is low relative to growth 

(
dt
dX

Y
mX

sx /

1
<<< ) (Wang et al., 1979), therefore equation (5.9) becomes, 
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− =
dS
dt Y

dX
dtx s

1

/
       …..(5.10) 

Substitution equation (5.3) and (5.5) into (5.10), gives 

 

dS
dt Y

S
K S

X
x s s

= −
+

⎛
⎝
⎜

⎞
⎠
⎟

1

/
maxμ       ..…(5.11) 

 

 

 

5.2.3 Product Formation  

 

The product formation kinetics on lactic acid fermentation by L.delbrueckii 

have been proposed by Luedeking and Piret (1959). This model indicates a simple 

relationship between the rate of lactic acid production and the growth rate and 

biomass concentration as given by 

 

dP
dt

k
dX
dt

k X= +1 2        …..(5.12) 

 

where k1 is growth associated product formation (g product / g cell) and k2 is non 

growth associated product formation (g product / h. g cell). 

 

 

 

5.3 Parameter Estimation 

 

Batch fermentation of pineapple waste to lactic acid by Lactobacillus 

delbrueckii was studied in 3-litre stirred fermentor as a function of temperature, pH 

and size of inoculum. During fermentation process, the product, substrate and cell 

concentrations were measured. The data were used for the estimation of kinetic 

parameters such as kd, Ys/x, μmax, k1, k2 and Ks in the differential equations for the 

cell balance (5.7), substrate balance (5.11) and product balance (5.12) by linear 

regression analysis.  
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To calculate the parameters of kd, Ys/x, μmax, and Ks, it can be assumed that 

the concentration of the substrate (S) at initial stages of fermentation is larger than 

the saturation constant (Ks). Therefore the value of  ( SSKs ≈+ ) or [ )/( SKS s + = 

1], and the equations (5.7) and (5.12) can be expressed as follows: 

 

X
Ydt

dS

sx
max

/

1 μ−=       .……(5.13) 

and 

Xk
dt
dX

d )( max −= μ       ……..(5.14) 

 

Substitution equation (5.13) into (5.14), gives 

 

)( 010 XXSS tt −=− γ       ……. (5.15) 

 

where 0S  and 0X are initial sugar and initial cell concentration, tS  and tX  are sugar 

and cell concentrations after the time interval t. 

 

Integration of the equation (5.14), can be obtained  

 

t
X
Xt .ln 2

0

γ=        ……..(5.16) 

The coefficients in the equation (5.15) and (5.16) have the following groups 

of parameters,  

 

)( max2 dk−= μγ        ………(5.17) 

and 

sxY /2

max
1 γ

μγ −=        ………(5.18)  

 

Integration of equation (5.7), gives 
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dthXkX sdmt ..exp.),( 0 ∫=μ      ……..(5.19) 

 

where 

 

  d
s

m
s k

SK
Sh −
+

=
.μ       …….(5.20) 

 

Substitution the equation (5.17) with (5.20) becomes  

 

h
K

K Ss
m s

s
= −

+
γ

μ
2

.
      …….(5.21) 

 

Enters the value of hs  into equation (5.19), becomes 

 

( )dt
SK

KXkX
s

sm
dmt ...exp.),( 20 ∫ +

−=
μγμ    ……..(5.22) 

 

If the value of smKμγ =3 , the equation (5.22) becomes 

  

( )dt
SK

XkX
s

dmt ..exp.),( 3
20 ∫ +
−=

γ
γμ    ……..(5.23) 

 

Integration of equation (5.11), gives: 

 

t
Y
X

S
S

KSS
s

x

om

t
sot ..exp

.
ln 2

2

0 γ
γ
μ

+−=     ……..(5.24) 

 

The equation (5.24) can be written as, 

 

t
S
SKSS

t
sot ..expln 24

0 γγ+−=     …….(5.25) 

The saturation constant ( sK ) is estimated by equation (5.25) as follows, 
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t

o

to
s

S
S

tSS
K

ln

..exp 24 γγ+−
=      ……..(5.26) 

where oX14 γγ = and tS  is concentration of substrate after the time interval t.  

 

The parameters k1 and k2 from the Luedeking-Piret model are obtained from 

measured concentration of lactic acid during complete fermentation. By integration 

of equation (5.12) gives  

 

P k X X k X dtt

t

= − + ∫1 0 2
0

( ) .     ……..(5.27) 

 

Substitution value of tX  from equation (5.16) into equation (5.27) will give 

dttXkXXktP
t

t ...exp)()( 2
0

0201 γ∫+−=    …….(5.28) 

  

Integration of equation (5.28) gives  

 

tXkXXktP o
t ..exp)()( 2

2

2
01 γ

γ
+−=     …… (5.29) 

where )(tP  is concentration of lactic acid after the time interval t.  

 
 

 

5.3.1  Microbial Growth 

 

 Growth, which is characterised by increase in cell mass and or number, 

occurs only where certain chemical and physical conditions are satisfied, such as 

acceptable temperature and pH as well as the availability of required nutrients. The 

kinetics of growth and product formation reflects the cell ability to respond to the 

environment and here in lies the rationale for a study of growth kinetics. In this 



 167

section the effect of various parameters such as types of sugar, temperature, pH and 

inoculum size are presented.   

 

 

 

5.3.1.1 Dependence Of The Model Parameters On Types Of Sugar 

  

L. delbreuckii is the best strain to produce lactic acid using glucose, fructose 

and sucrose as substrates with conversion of 90% (Hammes and Whiley, 1993). 

Based on the characteristics of pineapple waste, the sugar consists of mainly glucose, 

fructose and sucrose. The objective of this study is to compare the kinetic parameters 

for microbial growth on single sugar and mixed sugar with liquid pineapple waste on 

lactic acid fermentation.  

 

The fermentation data under anaerobic condition at pH, 6.0; temperature, 40 
oC; inoculum size, 5%; and stirring speed, 50 rpm were used to obtain the model 

parameters on the various of types of sugar. The data obtained from these 

experiments and predicted model from equation (5.23) are illustrated in Figure 5.1. 

The parameters for L. delbrueckii growth are shown in Table 5.1. The maximum 

specific growth for glucose was higher than fructose and sucrose. This is also shown 

in the values of γ2 (Eqs.5.16), which express that the concentration of biomass at any 

time t is a function of maximum specific growth rate and specific death rate. If the 

maximum specific growth rate increases, the rate of biomass production will increase 

as well. Therefore the glucose medium is the best for the cultivation of L. delbrueckii 

to produce lactic acid.  

 

The maximum specific growth rate for L. delbrueckii grown on glucose in 

this work was 0.103 h-1 which is comparative favourably with results obtained by 

Hakkarainen et al. (1984) who found the maximum specific growth rate of 0.150 h-1.  

Mercier et al. (1992) also studied about kinetics of lactic acid fermentation on 

glucose by L. amylophilus in which they obtained the maximum specific growth rate 

of 0.29 h-1 at pH, 6; temperature, 30 oC; and stirring speed, 350 rpm. Meanwhile 

Tyree et al. (1990) obtained higher maximum specific growth rate than other authors 
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which was 0.722 h-1 using L. xylosus with operation conditions of pH: 6.0, 

temperature: 30 oC and stirring speed, 150 rpm. The different results might be due to 

difference of operation conditions and types of strain used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Time courses of the L. delbrueckii growth in lactic acid fermentation of 

glucose, fructose and sucrose for experimental and model predicted data.  

Glucose (      model, o-experiment), fructose (      model, x-experiment) 

and sucrose (       model, +-experiment ). Experimental conditions: pH, 

6.0; T, 40oC; Stirring speed, 50 rpm and inoculum, 5%. 

 

The sugar contents in liquid pineapple waste are: 20 g/l fructose, 20 g/l 

glucose and 15 g/l sucrose. To compare with the pure sugar, the fermentation was 

also carried out for mixed sugar consisting glucose, fructose and sucrose with 

concentration of 20 and 55 g/l of total sugar at same conditions. The experimental 

and model predicted data are shown in Figure 5.2. 
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Figure 5.2: Time courses of the L. delbrueckii growth in lactic acid fermentation of 

mixed sugar for experimental and model predicted data. Mixed sugar-20 

g/l(        model, x-experiment) and mixed sugar-55 g/l (      model,  

o-experiment ). Experimental conditions: pH, 6.0; T, 40oC; stirring 

speed, 50 rpm; and inoculum, 5%. 

 

 

The maximum specific growth rate for fermentation using mixed sugar at 

total sugar concentration of 55 g/l was higher than 20 g/l. This can be seen on the γ2 

value which expresses the function of the maximum specific growth rate and specific 

death rate (Table 5.1). If the results were compared with single sugar at total sugar 

concentration of 20 g/l, the value of μmax for mixed sugar was between glucose-

fructose and glucose-sucrose. This indicates that the growth rate of L. delbrueckii on 

mixed sugar was slower than glucose, contrary to fructose and sucrose. 

When the concentration of mixed sugar was increased to 55 g/l, the maximum 

specific growth rate (μmax) increased from 0.101 to 0.169 h-1. This is also shown in 

the values of γ2 which increased from 0.0380 to 0.0678 h-1. The values of μmax and γ2 

on lactic acid fermentation of pineapple waste were lower than 55 g/l of mixed sugar. 

This denotes that the growth rate for mixed sugar was faster than liquid pineapple 

waste. 
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Table 5.1: Model estimated parameters expressing the kinetics of microbial growth  

 in lactic acid fermentation for different types of sugar. 

 

Types of 

sugar  

Concentration of sugar

 (g/l) 
γ2 = μmax-kd  (h-1) 

μmax  

(h-1) 

kd  

(h-1) 

 Glucose (20) 0.0462 0.103 0.0568 

Single sugar Fructose (20) 0.0316 0.0448 0.0132 

 Sucrose (20) 0.0251 0.0398 0.0147 

 Glucose (7.25) + 

Fructose (7.25) + 

Sucrose (5.5) 

 

0. 0380 

 

0.101 

 

0.065 

Mixed sugar Glucose (20) + 

Fructose (20) + 

Sucrose (15) 

 

0.0678 

 

0.169 

 

0.101 

Pineapple 

Waste 

Glucose (20) + 

Fructose (20) + 

Sucrose (15) 

 

0.0599 

 

0.104 

 

0.0441 

 

 

 

5.3.1.2 Dependence Of The Model Parameters On Process Variables 
 

 The fermentation of pineapple waste was carried out to obtain the kinetic 

parameters as a function of process variables. The variables are pH, temperature, and 

inoculum size ranging from 5.5 to 6.5, 40 to 50 oC and 5 to 15 %, respectively. 
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The experimental and model predicted data for kinetics of microbial growth 

on pineapple waste with different pHs are shown in Figure 5.3. The effect of pH on 

model estimated parameter is given in Table 5.2.  

 

It was found that the maximum specific growth rate μmax for pH 6.0 was 

higher than at pHs 6.5 and 5.5.  This is illustrated by the slope of curves presented in 

Figure 5.3 and the value of γ2. The maximum specific growth rate obtained at pH 6.0 

was 0.104 h-1. This figure was smaller than that reported by Monteagudo et al. 

(1997) which was 0.831 h-1. The reason could be the difference of type of substrate 

and strain used in fermentation process. They used L. delbrueckii CECT 286 on 

lactic acid fermentation of beet molasses. 

 

The specific death rate (kd) increases with increasing of γ2 and μmax  

(Table 5.2). A similar trend was also obtained by Suscovic et al. (1992) in lactic acid 

fermentation study using sucrose, high-fructose syrup and high-glucose syrup, as a 

carbon source. They obtained the values of μmax and kd were 0.671, 0.827, 3.44 and 

0.035, 0.177, 2.62 h-1, respectively.  

 

The effect of pH on maximum specific growth rate μmax or γ2 is illustrated in 

Figure 5.4, and can be presented by equation: 

 

 μmax = -0.3316 pH2 + 4.0028 pH - 11.975 

  

and  

 

   γ2 = -0.1722 pH2 + 2.0829 pH - 6. 2383.  

Effects of pH on lactic acid fermentation of glucose by L. amylophilus have 

been studied by Mercier et al. (1992) at five different pH values from 5.4 to 7.8. The 

result was explained by second order polynomial equation of μmax = -0.1515 pH2 + 

1.415 pH – 5.7355 (R2 = 0.985). Similar trend was also obtained by Yeh et al. (1991) 

on lactic acid fermentation of glucose by L. delbrueckii at five different pH values 

from 4.5 to 6.0. 
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Figure 5.3: Time courses of the L. delbrueckii growth in lactic acid fermentation of 

pineapple waste for experimental and model predicted data at different 

pHs. pH:5.5 (      model, o-experiment), pH:6.0 (     model,  

x-experiment) and pH:6.5 (       model, +-experiment). 

Experimental conditions: Temperature, 40oC; stirring speed, 50 rpm; and 

inoculum, 5%. 
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Table 5.2: Model estimated parameters expressing the kinetics of microbial growth  

in lactic acid fermentation on pineapple waste with different process  

variables.  

 

Parameters Values γ2 = μmax-kd μmax (h-1) kd (h-1) 

 5.5 0.0086 0.0093 0.0007 

pH 6.0 0.0599 0.1040 0.0441 

 6.5 0.0251 0.0329 0.0078 

 5 % 0.0599 0.1040 0.0441 

Inoculum size 10 % 0.0492 0.0899 0.0407 

 15 % 0.0462 0.0735 0.0273 

 40 oC 0.0599 0.1040 0.0441 

Temperature 45 oC 0.0561 0.0870 0.0317 

 50 oC 0.0485 0.0760 0.0275 
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Figure 5.4: pH dependence of maximum specific growth rate (μ max ) and γ2 in lactic  

acid fermentation of pineapple waste. A) γ2 and B)μ max  

Experimental conditions: Temperature, 40oC; stirring speed, 50 rpm;  

and inoculum, 5%. 

 

 

The experimental and model predicted data for kinetics of microbial growth 

on pineapple waste for different inoculum sizes and temperatures are illustrated in 

Figures 5.5 and 5.6. The effect of inoculum size on μ max shows that when the 

inoculum size was increased from 5 to 10 %, the value of specific growth rate 

decreased from 0.104 to 0.0899 (Table 5.2). With further increase of inoculum size 

from 10 % to 15 %, μ max decreased from 0.0899 to 0.0735. Monod equation (5.5) 

shows that if the concentration of nutrient increased, the value of μ max decreased. It 

might be due to the concentration of nutrient in inoculum size of 5% was higher than 

10 and 15%. This can be indicated with the slope of curves in Figure 5.5. The highest 

value was found with the inoculum size of 5%.  
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The effect of temperature on the value of μ max shows that if the temperature 

was increased, the value of specific growth rate decreased (Table 5.2). Similar effect 

was obtained for the value of specific death rate. The highest specific growth rate 

was obtained at 40oC. The process variables such as pHs, temperatures and inoculum 

sizes influence the μ max, and the highest values were achieved at 40 oC, pH, 6.0; and 

inoculum, 5%. These results are shown in the Figures 5.3, 5.5 and 5.6. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Time courses of L. delbrueckii growth in lactic acid fermentation of  

pineapple waste for experimental and model predicted data for different 

inoculum sizes. Inoculum size:5 % (         model, o-experiment),  

inoculum size:10 % (         model, x-experiment ) and inoculum size:15 

% (          model, +-experiment). Experimental conditions: pH, 6.0; 

temperature, 40oC; and stirring speed, 50 rpm. 

 
 
 
 
 
 
 
 
 
 

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

Time, hours

Bi
om

as
s,

 g
/l



 176

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 5.6: Time courses of L. delbrueckii growth in lactic acid fermentation of  

pineapple waste for experimental and model predicted data for different  

temperatures. T: 40 oC (      model, o-experiment), T: 45 oC (       model,  

x-experiment ) and T:50 oC (       model, +-experiment). 

Experimental conditions: pH, 6.0; stirring speed, 50 rpm; and inoculum  

size, 5%. 
 
 
 
 
5.3.2 Sugar Utilisation 

 

 The growth was described in terms of a simple first order rate equation and 

then related to substrate utilisation via a stoichiometric relationship. Effect of 

substrate concentration on growth rate is given by Monod equation which expresses 

the hyperbolic relationship between specific growth rate and substrate. The equation 

(5.26) was used to obtain the parameters that represent the substrate utilisation in 

batch culture for single sugar, mixed sugar and pineapple waste. 
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5.3.2.1 Dependence Of The Model Parameters On Types Of Sugar 

 

The data obtained from these experiments as well as predicted model 

(Eqs.5.25) for fructose, glucose and sucrose fermentation are shown in Figure 5.7. 

The model predicted that all sugars were completely utilised during the fermentation 

process. The effects of sugar types on saturation constant (Ks) and biomass yield 

(Yx/s) are given in Table 5.3. 

 

The biomass yield (Yx/s) had a maximum value of 0.23 g cell / g substrate in 

glucose fermentation (Table 5.3). This was almost similar to the figure reported by 

Mercier et al. (1992) in the fermentation of glucose-yeast extract medium using L. 

amylophilus. Table 5.4 also shows that the Yx/s value on sucrose fermentation was 

smaller than that obtained by Monteagudo et al. (1997). The results were different 

due to variation in initial substrate concentration used in lactic acid fermentation.    

 

The saturation constants (Ks) of the L. delbrueckii for fructose, glucose and 

sucrose and mixed sugar fermentation at concentration of 20 g/l obtained in this 

work were almost similar. In glucose fermentation the value of Ks was found to be 

2.13 g/l, which was smaller than the figure obtained by Buyukgungor et al. (1984) 

(Table 5.4). For sucrose fermentation, Ks was higher than the result obtained by 

Gadgil and Venkatesh (1997), but smaller than that obtained by Suscovic et al. 

(1992) (Table 5.5). The reason could be difference in types of substrate and strain 

used in the fermentation process. 
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Figure 5.7: Time courses of the sugar utilisation in lactic acid fermentation of pure 

sugar (20 g/l) for experimental and model predicted data. 

Glucose (        model, o-experiment), fructose (      model,  

x-experiment) and sucrose (      model, +-experiment).  

Experimental conditions: pH, 6.0; temperature, 40oC; stirring speed, 50  

rpm ; and inoculum, 5%. 
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Table 5.3: Model estimated parameters expressing the kinetics of sugar utilisation in   

     lactic acid fermentation with different types of sugar. 

 

Types of sugar 
 

Sugar concentration 
(g/l) 

 
Yx/s (Eqs. 5.18) 

(g biomass / g sugar) 
 

 
Ks (Eqs.5.26) 

(g/l) 

 Glucose (20) 0.230 2.13 

Single sugar Fructose (20) 0.100 2.67 

 Sucrose (20) 0.078 3.32 

Glucose (7.25) +  

Fructose (7.25) + 

Sucrose (5.5) 

 

0.185 

 

2.76 

Mixed sugar 

Glucose (7.25) + 

Fructose (7.25) + 

Sucrose (5.5) 

 

0.216 

 

7.57 

 

Pineapple 

waste 

Glucose (20) + 

Fructose (20) + 

Sucrose (15) 

 

0.376 

 

10.93 
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Table 5.4: Comparison of the saturation constant (Ks) and biomass yield (Yx/s) on  

 glucose utilisation in lactic acid fermentation. 

 

Strain  pH T (oC)
Speed 

(Rpm) 
Yx/s Ks Authors 

L. delbrueckii 6.00 40.0 50 0.23 2.31 This work 

L. delbrueckii  6.20 44.0 400 - 10.50 
Buyukgungor et al. 

(1984) 

L. amylophilus 6.00 30.0 350 0.24 - 
Mercier et al. 

(1991) 
 

 

 

Table 5.5: Comparison of the saturation constant (Ks) and biomass yield (Yx/s) on 

 sucrose utilisation in lactic acid fermentation. 

 

Strain  pH T (oC) 
Speed 

(Rpm) 
Yx/s Ks Authors 

L. delbrueckii 6.00 40.0 50 0.078 3.32 This work 

L. delbrueckii 5.90 49.0 100 0.27 - 
Monteagudo et al. 

(1994) 

L. delbrueckii  6.00 49.0 800 - 4.47 
Suscovic et al. 

(1992) 

L. bulgaricus  5.60 45.0 400 - 1.80 
Gadgil and 

Venkatesh (1997) 

  

 

The data obtained from the experiment and predicted model on mixed sugar 

utilisation is shown in Figure 5.8. The effects of different types of sugar on saturation 

constant (Ks) and biomass yield (Yx/s) are shown in Table 5.3. 
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Figure 5.8 shows that the model predicted for mixed sugar fermentation at 

concentration of 20 and 55 g/l was completely utilised. The biomass yield on mixed 

sugar fermentation at concentration of 20 g/l was found to be 0.185 g cell / g 

substrate. This value was higher than that of sucrose and fructose fermentation but 

smaller than the biomass yield for glucose fermentation (Table 5.3). If the 

concentration of mixed sugar were increased to 55 g/l, the Yx/s would increase as 

well due to the higher consumption of bacteria on sugar.  

 

 The saturation constant increases with increasing sugar concentration in the 

medium. The values of Ks obtained were 2.76 and 7.57 g/l for 20 and 55 g/l, 

respectively. When the concentration was further increased to 70 g/l (liquid 

pineapple waste), the value of Ks increased from 7.57 to 10.93. This can be 

expressed in equation (5.5) which shows that the saturation constant values depend 

on sugar concentration in the medium. Suscovic et al. (1992) reported that the value 

of Ks obtained on lactic acid fermentation of high fructose syrup was 36.3 g/l. This 

result was higher than for single sugar (20 g/l), mixed sugar (20 g/l) and mixed sugar 

(55 g/l) because they used 97.2 g/l of sugar concentration.  
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Figure 5.8: Time courses of the sugar utilisation in lactic acid fermentation of mixed  

sugar for experimental and model predicted data. 

Mixed sugar-20 g/l (      model, o-experiment) and mixed sugar-55 g/l 

(        model, x-experiment. Experimental conditions: pH, 6.0; 

temperature, 40oC; stirring speed, 50 rpm and inoculum, 5%. 
 
 
 
 
5.3.2.2 Dependence Of The Model Parameters On Process Variables 

 

 Effects of some parameters such as pH, temperature and inoculum size on 

substrate utilisation of pineapple waste fermentation were also studied. The 

experimental and model predicted data were shown in Figures 5.9, 5.10 and 5. 11. 

The model estimated parameters are given in Table 5.6. 

 

Effects of pHs (5.5, 6.0 and 6.5) on bacterial yield shows that the pH 6.0 gave 

the highest value of Yx/s which was 0.376 g biomass / g sugar (Table 5.6). When the 

pH was increased to 6.5, the biomass yield decreased to 0.101 g biomass / g sugar. 

This can be shown by the maximum specific growth rate or maximum dry cell 

weight concentration obtained. For instance, for pH 6.0 , the biomass yield was 
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higher than of pH 6.5. While for pH 5.5, the biomass yield obtained was only 0.059 g 

biomass / g sugar. Similar result was also reported by Mercier et al. (1992) stating 

that the effect of pH on bacterial yield was very significant on glucose fermentation 

by L. amylophilus. They obtained the maximum biomass yield of 0.347 g biomass / g 

sugar at pH 5.4. 

 

Table 5.6 shows that the values of saturation constant (Ks) are not affected by 

pH from 5.5 to 6.5. The similar result was obtained by Fu and Mathews (1999) 

which explained that Ks was almost similar when the pH was increased from 5.0 to 

7.0. When the pH was decreased from 5.0 to 4.0, Ks increased from 49 to 178 g/l. 

Gadgil and Venkatesh (1997) also reported that the values of Ks were not affected by 

pHs. They obtained the value of Ks at 1.8 g/l for pH 4.2-5.6 on lactic acid 

fermentation of lactose using L. bulgaricus. The experimental and model predicted 

data were shown in Figure 5.9. 
 

The effects of inoculum size on bacterial yield were also similar to the effect 

of pH. The maximum bacterial yield value was found to be 0.376 g cell / g substrate 

at inoculum size of 5 %. If the inoculum was increased, the biomass yield decreased 

and the Yx/s obtained for 10 and 15 % inoculum were 0.306 and 0.285 (g biomass / g 

sugar), respectively. (Ks) was not affected by inoculum sizes too. For 5 % inoculum 

size, Ks obtained was 10.93 g/l. If the inoculum size was increased, the values of Ks 

obtained were almost similar. For 10 and 15 % inoculum sizes, Ks obtained were 

12.26 and 12.62 g/l, respectively. The experimental and model predicted data was 

shown in Figure 5.10. 
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Figure 5.9: Time courses of the sugar utilisation in lactic acid fermentation of  

pineapple waste for experimental and model predicted data for different  

pHs. pH: 5.5 (       model, o-experiment), pH: 6.0 (       model,  

x-experiment) and pH: 6.5 (        model, o-experiment). 

Experimental conditions: Temperature, 40oC; stirring speed, 50 rpm and  

inoculum, 5%. 
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Figure 5.10: Time courses of the sugar utilisation in lactic acid fermentation of  

pineapple waste for experimental and model predicted data for 

different inoculum sizes. Inoculum size: 5 % (      model, o-experiment),  

inoculum size: 10 % (      model, x-experiment) and inoculum size:15 % 

(        model, +-experiment). Experimental conditions: Temperature, 

40oC; stirring speed, 50 rpm; and inoculum 5%. 

 

 

The effects of temperature on bacterial yield shows that at temperature 40 oC, 

the optimal value of Yx/s was 0.376 g biomass / g sugar (Table 5.6). If temperature 

was increased, the biomass yield decreased. The Yx/s obtained for 45 and 50 oC were 

0.277 and 0.157 g biomass / g sugar, respectively. This can be shown by the 

maximum specific growth rate or maximum dry cell weight concentration. The value 

of Yx/s obtained for 40 oC was higher than for 45 and 50 oC. The saturation constants 

(Ks) were affected by temperature from 40 to 50 oC. The value of Ks obtained for 40 
oC was 10.93 g/l. When the temperature was increased to 45 and 50 oC, Ks also 

increased to 16.62 and 19.81 g/l, respectively. The experimental and model predicted 

data was shown in Figure 5.11. 
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Figure 5.11: Time courses of the sugar utilisation in lactic acid fermentation of 

pineapple waste for experimental and model predicted data for  

different temperatures. T: 40 oC (      model, o-experiment), T:45oC  

(       model, x-experiment) and T: 50 oC (     model, +-experiment). 

Experimental conditions: pH, 6.0; stirring speed, 50 rpm; and inoculum, 

5%. 
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Table 5.6: Model estimated parameters expressing the kinetics of sugar 

utilisation in lactic acid fermentation of pineapple waste for different  

process variables.   
 

Parameters Values Yx/s (g biomass / g sugar) Ks (g/l) 

 5.5 0.059 12.26 

pH 6.0 0.376 10.93 

 6.5 0.101 11.41 

 5 0.376 10.93 

Inoculum (%) 10 0.306 12.26 

 15 0.285 12.62 

 40 0.376 10.93 

Temperature (o C) 45 0.277 16.62 

 50 0.157 19.81 

 

 
 
5.3.3 Lactic Acid Production 

 

 Fermentation kinetics describes growth and product formation by 

microorganism, not only active cell growth but also the activities of resting and 

dying cell, since many fermentation products of commercial interest are produced 

after growth has stopped. Metabolic product formation can be similarly related to 

nutrient consumption. Furthermore, product formation cannot occur without the 

presence of cell. Thus it is expected that growth and product formation are closely 

coupled to nutrient utilisation and product formation will be coupled to growth 

and/or cell mass concentration. Luedeking and Piret have studied about lactic acid 

fermentation of glucose by L. delbrueckii, which indicated that the product formation 

kinetics combined growth associated, and non growth-associated. The rate of lactic 

acid production was shown in equation (5.12), and two parameters can be obtained 

by integration of this equation.  
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5.3.3.1 Dependence Of The Model Parameters On Types Of Sugar 

  

The data obtained from the experiments and predicted model of the lactic 

acid production with glucose, fructose and sucrose as substrate are shown in Figure 

5.12. The experiment and predicted model on lactic acid production for mixed sugar 

are shown in Figure 5.13. The parameters of growth associated product formation 

constant (k1) and non growth associated product formation (k2) are found in Table 

5.7.  

 

The k1 values for mixed sugar and single sugars at concentration of 20 g/l are 

not constant, but the k2 values are relatively constant. This indicates that the types of 

sugar influence the growth associated product formation, but not for portion of non 

growth associated product formation. The highest k1 obtained was for glucose 

fermentation, followed by mixed sugar, fructose and sucrose. This might be due to 

lactic acid production for glucose was faster than mixed sugar; while for fructose and 

sucrose, their productions were slower than mixed sugar’s as shown in Figure 4.26. 

The k1 value for 50 g/l mixed sugar was higher than 20 g/l mixed sugar, and k1 for 

liquid pineapple waste was smaller than both mixed sugars. This indicates that the 

rate of lactic acid production for 50 g/l of mixed sugar was higher than 20 g/l of 

mixed sugar as shown in Figure 4.29.  
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Figure 5.12: Time courses of the lactic acid production in lactic acid fermentation of  

single sugar (20 g/l) for experimental and model predicted data. 

Glucose (      model, o-experiment), fructose (      model, x-experiment) 

and sucrose (       model, +-experiment).Experimental conditions: pH, 6.0; 

temperature, 40oC; stirring speed, 50 rpm; and inoculum, 5%. 
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Figure 5.13: Time courses of the lactic acid production in lactic acid fermentation of 

mixed sugar for experimental and model predicted data. Mixed sugar- 

20 g/l (       model, o-experiment) and mixed sugar-50 g/l (      model, 

x-experiment). Experimental conditions: pH, 6.0; temperature, 40oC; 

stirring speed, 50 rpm; and inoculum, 5%. 
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Table 5.7: Model estimated parameters expressing the kinetics of product formation  

on lactic acid fermentation of different types of sugar. 
 

Types of 

sugar  

Concentration  

(g/l) 

k1  

(g product / g cell) 

k2 

 (g product / h.g cell) 

 Glucose (20) 11.162 0.080 

Single sugar Fructose (20) 10.320 0.079 

 Sucrose (20) 9.460 0.061 

Glucose (7.25) + 

Fructose (7.25) + 

Sucrose (5.5) 

 

10.500 

 

0.073 

Mixed sugar 
Glucose (20) + 

Fructose (20)+ 

Sucrose (15) 

 

12.250 

 

0.019 

 

Pineapple 

waste 

Glucose (20) + 

Fructose (20) + 

Sucrose (15) 

 

8.300 

 

0.0009 

 

 

 

5.3.3.2 Dependence Of The Model Parameters On Variables Process  

 

The data obtained from the experiment and predicted model for lactic acid 

production from pineapple waste with pH, inoculum size and temperature as process 

variables are illustrated in Figures 5.14, 5.15 and 5.16.  
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Luedeking and Piret (1959) found that the constant k1 and k2 in the model 

were strongly dependence of pH. The ratio k1/k2 obtained was 4.0 in the lactic acid 

fermentation of glucose by L. delbrueckii. In this work at pH 6.00, the k1 and k2 

values obtained were 8.3 and 0.0009, respectively. This result differs with results 

obtained by Samuael and Lee (1980) which were 18.05 and 0.19, respectively but k2 

was smaller than k1 in both cases. This is probably because they used sorghum 

extract as substrate. Even though sorghum extract consists of glucose, fructose and 

sucrose, which is similar to liquid pineapple waste, it differs in terms of sugar and 

other nutrients concentration. 

   

  The k2 < k1 (k1/k2 > 1) indicates that the growth associated portion was higher 

than the non growth associated portion of lactic acid formation by L. delbrueckii. 

These bacteria produce lactic acid proportionally to the concentration, without 

influence of their growth phase. Similar results were also reported by Monteagudo et 

al. (1997) and Suscovic et al. (1992) where the ratio k1/k2 obtained were 2.70 and 

96.84, respectively. These results are different since they used beet molasses and 

high fructose syrup as a substrate in fermentation process. 

 

The k1 and k2 values are affected by variable pHs with the highest value at pH 

6.0. Table 5.8 shows that the growth associated portion of lactic acid formation by L. 

delbrueckii is favoured by fermentation at controlled pH in the range of 6.0-6.5.  

Effect of pHs on the values of growth associated product formation constant (k1) and 

non growth associated product formation (k2) obtained in this work as well as that 

given by Samual and Lee (1980) were also presented in Table 5.9. 

 

The effects of inoculum sizes and temperatures on the parameters estimated 

in expressing the kinetics of product formation in lactic acid fermentation on 

pineapple waste were shown in Table 5.8. 

 

Effect of inoculum sizes on the k1 and k2 values shows that when the 

inoculum size was increased from 5 to 15 %, the k1 and k2 decreased from 8.30 to 

5.70 and from 0.0009 to.0.0006, respectively. The effect of temperatures also gave 

the same result, where temperature increased from 40 to 50 oC, followed by decrease 
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of the k1 and k2 values from 8.30 to 5.39 and from 0.0009 to 0.0004, respectively. 

The values of growth associated product formation constant (k1) and non growth 

associated product formation are affected by the process variables understudied. The 

highest value obtained was at pH, 6.0; inoculum size, 5 % and temperature, 40 oC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.14: Time courses of the product formation in lactic acid fermentation of 

pineapple waste for experimental and model predicted data for different 

pHs. pH:5.5 (      model, +-experiment), pH:6.0 (     model, o-experiment) 

and pH:6.5 (      model, x-experiment).Experimental conditions: 

Temperature, 40oC; stirring speed, 50 rpm; and inoculum, 5%. 
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Figure 5.15: Time courses of the lactic acid production in lactic acid fermentation of 

pineapple waste for experimental and model predicted data for 

different inoculum sizes. Inoculum size:5 % (       model, o- 

experiment), inoculum size: 10 % (      model, x-experiment) and 

inoculum size:15 % (      model, +-experiment). Experimental 

conditions: pH, 6.0; T, 40oC; and stirring speed, 50 rpm. 
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Figure 5.16: Time courses of the lactic acid production in lactic acid fermentation of 

pineapple waste for experimental and model predicted data for  

different temperatures. T: 40 oC (      model, o-experiment), T: 45 oC 

(     model, x-experiment) and T:50 oC (      model, +-experiment). 

Experimental conditions: pH, 6.0; stirring speed, 50 rpm;and inoculum 

size, 5%. 
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Table 5.8: Model estimated parameters expressing the kinetics of product formation 

In lactic acid fermentation of pineapple waste for different process 

variables.  

 

Parameters Values 
k1 (g product / g 

cell) 

k2 (g product /h.g 

cell) 

 5.5 6.18 0.0002 

pH 6.0 8.30 0.0009 

 6.5 6.79 0.0004 

 5 8.30 0.0009 

Inoculum (%) 10 7.65 0.0007 

 15 5.70 0.0006 

 40 8.30 0.0009 

Temperature (oC) 45 6.75 0.0008 

 50 5.39 0.0004 

 

 

 

Table 5.9: The comparison of the values of k1 and k2 for different pHs. 

 

 

pH 

 

L. delbrueckii 

(This work) 

 

L. bulgaricus 

 Samuel and Lee. 

(1980) 

 

L. plantarum  

Samuel and Lee  

(1980) 

 k1 k2 k1 k2 k1 k2 

5.5 6.18 0.0002 16.21 0.35 15.36 0.22 

6.0 8.30 0.0009 18.05 0.19 15.46 0.44 

6.5 6.79 0.0004 17.67 0.28 17.67 0.31 
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5.4 Model Evaluation  

 

 On the assumption that the models are adequate, an estimation of standard 

error may be obtained by the root of dividing the residual sum square by its number 

of data used as given in equation 5.30 (Box et al., 1978). Standard error between the 

measured and calculated biomass as well as sugar and lactic acid concentration was 

used as a statistical criterion for testing the adequacy.  

 

( )
E

Y Y

n

i i
i

n

=
−

=
∑ *

1

2

       ….(5.30) 

 

where Yi and Yi* are the original and the predicted value, and n is the number of data 

used.  

  

 The validation of the models and the adequacy of the fitted model to 

experimental results were also tested by computing the R-square and using statistic 

F, respectively. The value of R2 and F can be calculated using equation given by Box 

et al. (1978) as follow: 

 

( )
( )pNSSE

pSSRF
−
−

=
/

1/        ..…(5.31) 

 

SST
SSRR =2         …..(5.32) 

 

where SSR is the sum of squares due to regression, SSE is the sum of squares error, 

SST is the sum square total, N is the sum of experiment data and p is the sum 

variables and response. The values of SSR, SSE and SST can be calculated using the 

following equation: 
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where avgY , oY and pY are the average, observed and predicted of biomass, sugar and 

lactic acid concentrations, respectively. 

 

The values of standard error, F and R2 for biomass, sugar and lactic acid 

concentrations are given in Table 5.10. An overall fit of the proposed model can be 

expressed by the average of standard error obtained for biomass, sugar and lactic 

acid concentrations which were 0.106, 1.36 and 0.75 g/l respectively. These values 

indicate the same order of magnitude as the analytical error in measurement of 

biomass, sugar and lactic acid concentrations. The average values of R-square 

obtained were 0.87, 0.88 and 0.87, respectively. This designates that only 13% of 

total variation cannot be explained by the models. The average values of F obtained 

were 117, 77 and 300, respectively.  

 

The adequacy of the fitted model can be tested using static F. The value of F 

is compared to the table value F(p-1,N-p,α), which is the upper 100 α percent point of 

the F distribution with p-1 and N-p degrees of freedom, respectively. From the table 

F(5,26,.01) obtained was 8.18. 

 

Since the F values exceed from table value of F= 8.18, this indicates that the 

fitting of the models to the experimental results is good. Thus, the models are able to 

reproduce the experimental results.  
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Table 5.10: Standard error, fisher value and r-square for biomass, sugar and lactic acid concentration. 

 

Biomass Sugar Lactic acid 
Substrate Item Conditions

Eb Fb Rb Es Fs Rs El Fl Rl 

Glucose 
Concentration 

(g/l) 
20 0.15 20.6 0.85 1.41 23.1 0.79 0.64 119 0.84 

Fructose 
Concentration 

(g/l) 
20 0.09 47.8 1.26 68.3 0.98 0.91 0.08 683 0.93 

Sucrose 
Concentration 

(g/l) 
20 0.07 93.5 0.94 0.97 92.5 0.94 0.07 447 0.86 

20 0.18 15.7 0.78 1.76 66.0 0.89 0.77 39.5 0.79 Mixed 

sugar 

Concentration 

(g/l) 55 0.16 32.5 0.86 1.51 56.7 0.83 1.08 94 0.80 

40 0.17 48.6 0.82 1.68 64.8 0.82 1.29 86 0.81 

45 0.08 65.9 0.89 0.72 83.9 0.91 1.17 103 0.83 
Pineapple 

waste 

 

Temperature 

(oC) 
50 0.01 436 0.92 1.67 36.6 0.96 0.52 940 0.98 
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Table 5.10: Standard error, fisher value and r-square for biomass, sugar and lactic acid concentration (Continued). 

 

Biomass Sugar Lactic acid 
Substrate Item Conditions

Eb Fb Rb Es Fs Rs El Fl Rl 

5.5 0.03 374 0.95 0.55 94.3 0.93 0.65 531 0.96 

6.0 0.17 48.6 0.82 1.68 45.6 0.82 1.29 86 0.81 

Pineapple 

 

pH 

6.5 0.08 73.4 0.90 0.98 36.1 0.85 0.46 479 0.94 

5 0.17 48.6 0.82 1.68 35.5 0.82 1.29 86 0.81 

10 0.09 96.5 0.91 1.75 25.9 0.76 0.54 336 0.92 

waste  

Inoculum 

(%) 
15 0.04 237 0.94 1.36 22.7 0.88 0.67 182 0.90 

 

Eb, Fb, Rb, Es, Fs, Rs, El, Fl and Rl are standard error, Fisher value and r-square for biomass, sugar and lactic acid concentration, respectively. 
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5.5 Sensitivity Analysis 

 

5.5.1 Introduction 

 

 Before a comparison can be made between the mathematical model and the 

experimental results, the right values of the different parameters in the model have to 

be known. Obtaining these parameters can be very time consuming, particularly in 

biotechnology where the systematic compilation of parameter values is still in its 

infancy. The influence of the various parameters on model behaviour can be very 

different. Parameters having a large influence should be known accurately, for others 

a span of an order of magnitude is often sufficient. Activities to obtain an insight into 

the influence of parameters are called parameters sensitivity analysis. The purpose 

of these analyses is to avoid unnecessary effort in obtaining accurate values of less 

relevant parameters. One of the simplest stages for this analysis is obtaining a first 

estimate of the values of the parameters involved, introduce these parameters values 

into the model, and vary the values of these parameters one by one then register their 

influences on the most important output variables of the model (Kossen and 

Oosterhuis, 1985).    

 

 

 

5.5.2 Model Parametric Sensitivity 

 

 Lactic acid production and bacterial growth are closely connected. Therefore, 

the effects of maximum specific growth rate (μ max), specific death rate (kd) and 

saturation constant (Ks) on growth kinetics have been first considered instead of the 

influence of the initial biomass concentrations, since (Xo) is measurable. 

 

In order to quantify these parameters, the sensitivity of Pi to variation on 

parameter y is defined as follows:  

 

P
Y
X

X
Yi

i= ( ).( )
Δ
Δ

       …..(5.36) 
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where Yi is the original value of the parameter, ΔYi is the variation of this parameter, 

X is the value of the important output variable at the original value of the parameter 

and Δ X is the variation of this variable due to the variation of the parameter. 

 

The concentration of biomass at resting state (Xm) depends on parameters 

μ max, kd and Ks to various extents. The sensitivity of X m to variations of parameter Y 

is defined as followed (Amrane and Prigent, 1994). 
 

XMPS
Y

X
X
Y

obs

m obs

m= ( ).( )
,

Δ
Δ

       …..(5.37) 

 

where XMPS is Xm parametric sensitivity (dimensionless), Yobs is the original value 

of the parameter, ΔY is the variation of this parameter, Xm,obs is the observed biomass 

concentration at resting state and at the original value of the parameter, ΔXm is the 

variation of this variable due to the variation of the parameter. 

 

 The limit of the lactic acid production P as a function of time tends to 

proceed towards infinity, for the maximum lactic acid concentration Pm, the 

parametric sensitivity is defined in the same manner as XMPS in equation (5.37), 

namely  

 

PMPS
Y
P

P
Y

obs

m obs

m= ( ).( )
,

Δ
Δ

      ….(5.38) 

 

where PMPS is Pm parametric sensitivity (dimensionless), Yobs is the original value 

of the parameter, ΔY is the variation of this parameter, Pm,obs is the observed lactic 

acid concentration at resting state and at the original value of the parameter, Δ Pm is 

the variation of this variable due to the variation of the parameter. 

 

 



 205

5.5.2.1 Parametric Sensitivity Analysis For L. Delbrueckii Growth  

 

 The relationship between biomass concentration and time as shown in 

equation (5.23) was influenced by the values of γ 2 and γ 3. The model parametric 

sensitivity for microbial growth in lactic acid fermentation of single sugar can be 

illustrated in Figures 5.17-5.22.  

 

Figures 5.17 and 5.18 show that the parameters of γ 2 and γ 3 have very little 

effect on biomass concentration during the fermentation time of 4 and 16 hours, 

respectively. The parametric sensitivities toward γ 2 and γ 3 for the growth kinetics in 

lactic acid fermentation of glucose as calculated were 3.37 and 1.24, respectively. 

Thus, the growth appears to be controlled mainly by the parameter γ 2. In lactic acid 

fermentation of fructose, the parameters of γ 2 and γ 3 have very little effect on 

biomass concentration during the fermentation time of 8 and 20 hours, respectively 

(Figures 5.19 and 5.20), but in sucrose fermentation, the parameters of 

γ 2 and γ 3 have very little effect during the fermentation time of 4 and 8 hours, 

respectively (Figures. 5.21 and 5.22). The parametric sensitivities toward γ 2 and γ 3 

for the growth kinetics in lactic acid fermentation of fructose and sucrose as 

calculated were 7.2 and 0.78, 5.86 and 2.16, respectively.  

 

 Figures 5.23 and 5.24 show that the γ 2 and γ 3 have very little effect on 

biomass concentration during 8 and 16 hours of fermentation on the mixed sugar 

fermentation (20g/l). The parametric sensitivities toward γ 2 and γ 3 for the growth 

kinetics in lactic acid fermentation of mixed sugar (20g/l) as calculated were 9.91 

and 0.09. Figures 5.25 and 5.26 indicate that when mixed sugar concentration was 

increased to 55 g/l, the parameters of γ 2 and γ 3 also have very little effect on 

biomass concentration during 4 and 12 hours of fermentation. The parametric 

sensitivities toward γ 2 and γ 3 as calculated were 14.21 and 1.43, respectively. Thus 

the growth kinetics for single sugar and mixed sugar appeared to be controlled 

mainly by maximum specific growth rate during the whole batch. 
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Figure 5.17: Growth model parametric analysis of glucose fermentation with 

constant level of γ 2 = 0.0599. A) γ 3 = 0.090; B) γ 3 = 0.095; C) γ 3 = 

0.1 and D) observed data. Experimental conditions: pH, 6.0; T, 40oC; 

stirring speed, 50 rpm; and inoculum, 5%. 

 

 

Figure 5.18: Growth model parametric analysis of glucose fermentation with 

constant level of γ 3 = 0.095. A) γ 2 = 0.0599; B) γ 2 = 0.0649; C) γ 2 = 

0.0549; and D) observed data. Experimental conditions: pH, 6.0; T, 

40oC; stirring speed, 50 rpm; and inoculum, 5%. 
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Figure 5.19: Growth model parametric analysis of fructose fermentation with 

constant level of γ 2 = 0.0251. A) γ 3 = 0.085; B) γ 3 = 0.10; C) γ 3 = 

0.0925 and D) observed data. Experimental conditions: pH, 6.0; T, 

40oC;stirring speed, 50 rpm; and inoculum, 5%. 

 

 

Figure 5.20: Growth model parametric analysis of fructose fermentation with 

constant level of γ 3 = 0.085. A) γ 2 = 0.0251; B) γ 2 = 0.0351; C) γ 2 = 

0.0301; and D) observed data. Experimental conditions: pH, 6.0; T, 

40oC; stirring speed, 50 rpm; and inoculum, 5%. 
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Figure 5.21: Growth model parametric analysis of sucrose fermentation with 

constant level of γ 2 = 0.0316. A) γ 3 =0.085; B) γ 3 = 0.10; C) γ 3 = 

0.0925 and D) observed data. Experimental conditions: pH, 6.0; T, 

40oC; stirring speed, 50 rpm; and inoculum, 5%. 

 

 

Figure 5.22: Growth model parametric analysis of sucrose fermentation with 

constant level of γ 3 = 0.085. A) γ 2 = 0.0316; B) γ 2 = 0.0351; C) γ 2 = 

0.0301; and D) observed data. Experimental conditions: pH, 6.0; T, 

40oC; stirring speed, 50 rpm; and inoculum, 5%. 
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Figure 5.23: Growth model parametric analysis of mixed sugar fermentation (20 g/l) 

with constant level of γ 2 = 0.0380. A) γ 3 =0.10; B) γ 3 = 0.12; C) γ 3 = 

0.11 and D) observed data. Experimental conditions: pH, 6.0; T, 40oC; 

stirring speed, 50 rpm; and inoculum, 5%. 

 

 

Figure 5.24: Growth model parametric analysis of mixed sugar fermentation (20 g/l) 

fermentation with constant level of γ 3 = 0.10. A) γ 2 = 0.038; B) γ 2 = 

0.041; C) γ 2 = 0.035; and D) observed data. Experimental conditions: 

pH, 6.0; T, 40oC; stirring speed, 50 rpm; and inoculum, 5%. 
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Figure 5.25: Growth model parametric analysis of mixed sugar fermentation (55 g/l) 

with constant level of γ 2 = 0.0678. A) γ 3 = 0.51; B) γ 3 = 0.55; C) γ 3 = 

0.53 and D) observed data. Experimental conditions: pH,6.0; T, 40oC; 

stirring speed, 50 rpm; and inoculum, 5%. 

 

 

Figure 5.26: Growth model parametric analysis of mixed sugar fermentation (55 g/l) 

with constant level of γ 3 = 0.51. A) γ 2 = 0.0678; B) γ 2 = 0.0728; C) γ 2 

= 0.0628; and D) observed data. Experimental conditions: pH, 6.0; T, 

40oC; stirring speed, 50 rpm; and inoculum, 5%. 
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5.5.2.2 Parametric Sensitivity Analysis For Lactic Acid Production  

 

 The relationship between lactic acid, biomass concentration and time is given 

by Luedeking and Piret (1959) as follows: 

 

P k X k X dt
t

= + ∫1 2
0

( ) .        …..(5.36) 

 

This equation shows that lactic acid production was affected by k1 and k2. As 

shown in Figures 5.27 and 5.28, the lactic acid production was slightly affected by k1 

and k2, and the variation of k1 and k2 have impact on lactic acid concentration after 

20 hours of fermentation (t ≥ 20 hours). The calculated parametric sensitivities 

towards k1 and k2 for the lactic acid production using glucose as medium were 1.2 

and 0.43, respectively. Thus the lactic acid production appeared to be controlled 

predominantly by k1.  

 

 Figures 5.29 and 5.30 illustrate that the variation of k1 and k2 affects lactic 

acid production for fructose after 20 hours of fermentation (t ≥ 20 h). When using 

sucrose as medium, the variation of k1 and k2 influences the  lactic acid production 

after 30 hours of fermentation (Figures 5.31 and 5.32). The parametric sensitivities 

toward k1 and k2 for the lactic acid production as calculated were respectively 1.68 

and 0.43 for fructose and 0.771 and 0.327 for sucrose. Thus the production of lactic 

acid from fructose or sucrose appeared to be controlled predominantly by k1.  

 

 The effect of k1 and k2 on the lactic acid fermentation using mixed sugar are 

shown in Figures. 5.33, 5.34, 5.35 and 5.36. These results demonstrate that the 

variation of k1 affects the lactic acid production after10 hours of fermentation, but in 

Figure 5.34, the variation of k2 has no effect to lactic acid production. The calculated 

parametric sensitivities toward k1 and k2 for 20 g/l and 55 g/l were 1.77 and 0.33, and 

2.55 and 0.498, respectively. Thus, the production of lactic acid from mixed sugar 

also appeared to be controlled predominantly by k1. 
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Figure 5.27: Lactic acid production model parametric analysis of glucose 

fermentation with constant level of k2 = 0.08. A) k1 = 8.5, B) k1 = 6.0, 

C) k1 = 11.0 and D) observed data. Experimental conditions: pH, 6.0; T, 

40oC; stirring speed, 50 rpm; and inoculum, 5%. 

 

 

Figure 5.28: Lactic acid production model parametric analysis of glucose 

fermentation with constant level of k1 = 8.5. A) k2 = 0.08, B) k2 = 

0.155, C) k2 = 0.005 and D) observed data. Experimental conditions: 

pH, 6.0; T, 40oC; stirring speed, 50 rpm; and inoculum, 5%. 
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Figure 5.29: Lactic acid production model parametric analysis of fructose 

fermentation with constant level of k2 = 0.079. A) k1 = 10.0, B) k1 =8.0, 

C) k1 =12.0 and D) observed data. Experimental conditions: pH, 6.0; T, 

40oC; stirring speed, 50 rpm, and inoculum, 5%. 

 

 

Figure 5.30: Lactic acid production model parametric analysis of fructose 

fermentation with constant level of k1 = 10.0. A) k2 = 0.08., B) k2 = 

0.12, C) k2 = 0.04 and D) observed data. Experimental conditions: pH, 

6.0; T, 40oC; stirring speed, 50 rpm; and inoculum, 5%. 
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Figure 5.31: Lactic acid production model parametric analysis of sucrose 

fermentation with constant level of k2 = 0.06. A) k1 = 9.5, B) k1 =7.5, 

C) k1 =11.5 and D) observed data. Experimental conditions: pH, 6.0; T, 

40oC; stirring speed, 50 rpm; and inoculum, 5%. 

 

 

Figure 5.32: Lactic acid production model parametric analysis of sucrose 

fermentation with constant level of k1 = 9.5. A) k2 = 0.08., B) k2 = 0.04, 

C) k2 = 0.06 and D) observed data. Experimental conditions: pH, 6.0; T, 

40oC; stirring speed, 50 rpm; and inoculum, 5%. 
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Figure 5.33: Production model parametric analysis on mixed sugar fermentation (20 

g) with constant level of k2 = 0.07. A) k1 = 10.5, B) k1 = 8.5, C) k1 = 

12.5 and D) observed data. Experimental conditions: pH, 6.0; T: 40oC; 

stirring speed, 50 rpm  and  inoculum, 5%. 

 

 

Figure 5.34: Production model parametric analysis on mixed sugar fermentation (20 

g) with constant level of k1 = 10.5. A) k2 = 0.07, B) k2 = 0.1, C) k2 = 

0.04 and D) observed data. Experimental conditions: pH, 6.0; T, 40oC; 

stirring speed, 50 rpm and inoculum, 5%. 
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Figure 5.35: Production model parametric analysis on mixed sugar fermentation (55 

g) with constant level of  k2 = 0.02. A) k1 =  8.5, B) k1 = 11.0, C) k1 = 

6.0 and D) observed data. Experimental conditions: pH, 6.0; T, 40oC; 

stirring speed, 50 rpm  and  inoculum, 5%. 

 

 

Figure 5.36: Production model parametric analysis on mixed sugar fermentation (55 

g) with constant level of k1 = 8.5. A) k2 = 0.02, B) k2 = 0.035, C) k2 = 

0.005 and D) observed data. Experimental conditions: pH, 6.0; T, 40oC; 

stirring speed, 50 rpm and inoculum, 5%. 
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CHAPTER VI 

 

 

 

OPTIMISATION OF LACTIC ACID FERMENTATION  

 

 

 

6.1 Introduction 

 

The experiment required to solve any fermentation problem is expensive and 

time consuming. Each experiment involves preparation and the fermentation process 

needs several weeks. Thus it is important to minimise the number of experimental 

conditions which have to be investigated. The lengthy time between starting and 

experiment can be reduced to become a few experiments as possible. In order to 

optimise the operating conditions in lactic acid fermentation of pineapple waste by L. 

delbrueckii, the experimental design and response surface method were used in this 

study.  

 

 

 

6.2 Experimental Design 

 

The experimental design has been used by chemists and chemical engineers 

to minimise the number of experimental conditions which have to be investigated. 

An experimental design consists a set of experimental runs, with each run defined by 

a combination of factor levels (Murphy, 1977). Many factors may affect the lactic 

acid fermentation process as discussed in Section 4.4, which are temperature, time, 

concentration of substrate, concentration of nitrogen source and stirring speed, along 
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with the lactic acid yield as response variables. In order to get the greatest amount of 

information, several design aspects are presented in the following sub-sections. 

 

 

 

6.2.1 25-1 Fractional Factorial Design 

  

The designs which are most used frequently for screening experiments are 

two level designs in which each factor is evaluated at a low setting and a high 

setting. In this experiment, two level factorial design were used because the ease of 

interpretation and effectiveness (Strange, 1990; Haaland, 1989). 

 

Two levels, full factorial designs are very powerful tool because they provide 

information about all main effects and two factors interaction. To reduce the sample 

size, two level fractional factorial designs were used because they are very efficient 

(Haaaland, 1989; Box et al., 1987; and Karthikeyan et al., 1996).  

 

There are several types of two level fractional factorial designs. In this study, 

one-half fraction was used because it is effective in searching the direction of the 

optimum domain (Carvalho et al., 1997; Karthikeyan, 1996; Liu and Tzeng, 1998). 

Therefore, the two factorial design used was 2(5-1) design. This means that fractional 

design accommodating five variables, each one at two levels (-1/+1) where only 2(5-1) 

=16 runs are employed as shown in Table 4.18 (Box et al., 1987; Haaland, 1989).  
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Table 6.1: 25-1 fractional factorial designs. 

 

Coded Variables 
No 

X1 X2 X3 X4 X5 

1 -1 -1 -1 -1 +1 

2 +1 -1 -1 -1 -1 

3 -1 +1 -1 -1 -1 

4 +1 +1 -1 -1 +1 

5 -1 -1 +1 -1 -1 

6 +1 -1 +1 -1 +1 

7 -1 +1 +1 -1 +1 

8 +1 +1 +1 -1 -1 

9 -1 -1 -1 +1 -1 

10 +1 -1 -1 +1 +1 

11 -1 +1 -1 +1 +1 

12 +1 +1 -1 +1 -1 

13 -1 -1 +1 +1 +1 

14 +1 -1 +1 +1 -1 

15 -1 +1 +1 +1 -1 

16 +1 +1 +1 +1 +1 

(- 1): Low level 

(+1):  High level 

(0)  : Centre point 
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6.2.2  Central Composite Design 

 

Many researchers have used a central composite design to analyse the 

influence of variables. The central composite design allows us: 1) to show which 

variables significantly affect each response and 2) to optimise the values of variables 

that are found significantly in stage 1 (Monteagudo et al., 1993; Sung and Huang, 

2000). 

 

For example, the central composite designs with five experimental factors 

employ 32 experiments. This experiment consists of 16 runs at two levels (-1/+1), 

ten star points (-2/+2) and six replicates at the centre points (0) to allow estimation of 

the error and provide a check on linearity (Strange, 1990; Murphy, 1977; 

Hakkarainen et al., 1984). The proposed fractional factorial central composite 

experimental design used in this study is shown in Table 6.2. 

 

Table 6.2: 25-1 fractional factorial central composite experimental designs. 

 

Coded Variables 
No 

X1 X2 X3 X4 X5 

1 -1 -1 -1 -1 +1 

2 +1 -1 -1 -1 -1 

3 -1 +1 -1 -1 -1 

4 +1 +1 -1 -1 +1 

5 -1 -1 +1 -1 -1 

6 +1 -1 +1 -1 +1 

7 -1 +1 +1 -1 +1 

8 +1 +1 +1 -1 -1 

9 -1 -1 -1 +1 -1 

10 +1 -1 -1 +1 +1 

11 -1 +1 -1 +1 +1 

12 +1 +1 -1 +1 -1 

13 -1 -1 +1 +1 +1 
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Table 6.2: 25-1 fractional factorial central composite experimental designs 

(Continued). 

 

Coded Variables 
No 

X1 X2 X3 X4 X5 

14 +1 -1 +1 +1 -1 

15 -1 +1 +1 +1 -1 

16 +1 +1 +1 +1 +1 

17 -2 0 0 0 0 

18 +2 0 0 0 0 

19 0 -2 0 0 0 

20 0 +2 0 0 0 

21 0 0 -2 0 0 

22 0 0 +2 0 0 

23 0 0 0 -2 0 

24 0 0 0 +2 0 

25 0 0 0 0 -2 

26 0 0 0 0 +2 

27 0 0 0 0 0 

28 0 0 0 0 0 

29 0 0 0 0 0 

30 0 0 0 0 0 

31 0 0 0 0 0 

32 0 0 0 0 0 

(- 1): Low level 

(+1): High level 

 (0): Centre point 

(- 2): Star point at low level 

(+2):  tar point at high level 
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The range and the levels of variables investigated in this study are given in 

Table 6.3. The central values (zero level) chosen for experimental design were: sugar 

concentration, 70 g/l; concentration of yeast extract, 15 g/l; fermentation time, 168 

hours; temperature, 40oC; and stirring speed, 150 rpm. The experimental design 

needed in this study is given in Table 6.4.  

 

Table 6.3: Experimental range and levels of independent variables. 

 

Variable Levels 
X, Variables 

-2 -1 0 +1 +2 

Step Change 
Value Δ X 

X1, Substrate (g/l) 40 55 70 85 100 15 

X2, Yeast Extract (g/l) 5 10 15 20 25 5 

X3, Time (h) 120 144 168 192 216 24 

X4, Temperature (oC) 30 35 40 45 50 5 

X5,  Rpm (1/min) 50 100 150 200 250 50 

 

 

Table 6.4: 25-1 fractional factorial central composite design five variables. 

  

Coded Variables Number of 

Experiments X1 X2 X3 X4 X5 

1 55 10 144 35 200 
2 85 10 144 35 100 
3 55 20 144 35 100 
4 85 20 144 35 200 
5 55 10 192 35 100 
6 85 10 192 35 200 
7 55 20 192 35 200 
8 85 20 192 35 100 
9 55 10 144 45 100 
10 85 10 144 45 200 
11 55 20 144 45 200 
12 85 20 144 45 100 
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Table 6.4: 25-1 fractional factorial central composite design five variables 

(Continued). 
 

Coded Variables Number of 

Experiments X1 X2 X3 X4 X5 

13 50 10 192 45 200 
14 85 10 192 45 100 
15 55 20 192 45 100 
16 85 20 192 45 200 
17 40 15 168 40 150 
18 100 15 168 40 150 
19 70 5 168 40 150 
20 70 25 168 40 150 
21 70 15 120 40 150 
22 70 15 216 40 150 
23 70 15 168 30 150 
24 70 15 168 50 150 
25 70 15 168 40 50 
26 70 15 168 40 250 
27 70 15 168 40 150 
28 70 15 168 40 150 
29 70 15 168 40 150 
30 70 15 168 40 150 
31 70 15 168 40 150 
32 70 15 168 40 150 

 
X1 = Sugar concentration (g/l) 
X2 = Yeast extract concentration (g/l) 
X3 = Fermentation time (hour) 
X4 = Temperature (oC) 
X5 = Stirring speed (rpm) 
 

 

 

6.3 Model Mathematics 

 

Since responses and factors are continuous in scale, it is useful to consider 

the factor response relationship in terms of a mathematical function or model. In 

order to interpret the experimental results effectively, it will be more economical by 

using mathematical model (Murphy, 1977).  
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6.3.1 Response Surface Models (RSM) 

 

The first step in the experimental study of RSM is to decide a model which 

expresses the response as a function of independent variable in the process. Different 

types of models have been used to predict the optimal response such as first and 

second degree polynomial. However many literatures have reported that by using the 

quadratic model, the optimal response can be obtained accurately (Murphy, 1977; 

Vazquez and Martin, 1998). The form of second order (quadratic) polynomial model 

for five factors is given in the following equation:  

 
 

Y = bo + b1X1 + b2X2 + b3 X3 + b4X4 + b5 X5 +  b12 X1X2 + 

b13 X1X3 + b14 X1X4 +   b15 X1X5 +  b23 X2X3 + b24 X2X4 + 

b25 X2X5 + b34 X3X4 +  b25X3X5+ b45 X4X5 +  b11 X1
2 +  

b22X2
2 +  b33  X3

2 + b44X4
2 + b55 X5

2     …..(6.1) 

 

 

 

`6.3.2 Model Development 

 

To facilitate the estimation of the coefficients in the model (Equation 6.1), the 

variables in the model are expressed as coded variables. In developing the regression 

equation, the test variables were coded according to the equation: 

 

x
X X

Xi
i i

i
=

− *

Δ       ……(6.2) 

 

where xi is the coded value of the ith independent variable, Xi is the uncoded value of 

the ith independent variable, Xi
* is the uncoded value of the ith independent variable 

at the centre point  and Δ Xi is the step change value. 

 

Substituting the tested variable of Xi (Equation 4.1) with coded variables of xi 

(Equation 6.2), gives  
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 Y = bo + b1x1 + b2x2 + b3 x3 + b4 x4 + b5 x5 + b12 x1x 2 +  

b13 x1 x3 + b14 x1 x4 + b15 x1 x5 + b23 x2  x3 +  

b24 x2 x4 + b25 x2 x5 + b34 x3 x4 + b25 x3 x5+  

b45 x4 x5 + b11 x1
2 + b22 x2

2 + b33 x3
2 + b44 x4

2 + b55 x5
2   ……(6.3) 

 

where Y is the dependent variable, x1 - x5 are the dimensionless normalised 

independent variables and b1 - b5 are the coefficients obtained by multiple regression 

of the experimental data.  

 

 

 

6.3.3 Evaluating The Model 

 

The parameters of the mathematical model were estimated based on the data 

obtained using second order regression analysis which was carried out using 

Statistical Analysis System (SAS) software (Vazquez and Martin, 1998; Lee and 

Chen, 1997). 

 

The statistical analysis began with the estimation of the effects of each 

experimental factor and their two factors interaction, and the estimation of the 

regression coefficient and standard error for each coefficient. The significance of 

each coefficient was determined using the student t-test and p-value. In the scientific 

literature, p values < 0.05 are generally considered to be significant, while p values < 

0.0001 is very significant. The R-squared value was also estimated by Analysis of 

Variance to measure how the variability in the observed response values can be 

explained by the experimental factors and their interactions. The value of the R-

squared is always between zero and one. A practical rule of thumb for evaluating the 

R-squared is that it should be at least 0.75 or greater. Values above 0.90 are 

considered to be very good (Haaland, 1989).  

 

The response error can be estimated directly by replicated runs of centre point 

replication or factorial point replication (Murphy, 1977). 
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s
Y Y
r
i avg=
−

−
∑ ( )2

1
       ……(6.4) 

 

where s is the standard deviation , Yi is the response value of run i from replicates r, 

Yavg is the average response (∑ Yi / r) and (r-1) is the number degrees of freedom of 

the error estimated. 

 

 

  

6.4 Optimisation Using Response Surface Methodology 

 

In this study, the response surface methodology was used as optimisation 

tool. It consists of a group of empirical techniques devoted to the evaluation of 

relations existing between a cluster of controlled experimental factors and are 

measured responses, according to one or more selected criteria. The maximum values 

were taken as the response of the design experiments. The optimal concentrations of 

the factors were obtained by solving the regression equation and also by analysing 

the response surface contour plots (Liu and Tzeng, 1998; Sen, 1997). 

 

 

 

6.4.1 Optimisation By Solving The Regression Equation 

 

The lactic acid yield obtained from the experiments carried out according to 

the experimental design is given in Table 6.5. The application of the response surface 

methodology yielded the following regression equation which is an empirical 

relationship between lactic acid yield and the test variable in coded unit given in 

Equation (6.5). 
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Y = 81.32 - 3.0301 x1 + 0.7395 x2 + 2.0587 x3 + 8.0013 x4  + 

       2.5327 x5 - 0.4293 x1x 2 + 1.9650 x1 x3 + 1.2536 x1 x4  -  

       2.4741 x1 x5  - 1.0548 x2x3 - 0.2575 x2 x4 + 2.2965 x2 x5 -  

       1.2460 x3 x4 + 1.8810 x3 x5 - 0.0268 x4 x5 - 2.9375 x1
2 -  

       0.3797 x2
2 - 2.6916 x3

2 - 11.5613 x4
2 - 6.0335 x5

2  ……(6.5) 

 

 

  The calculation of coefficient in second degree model using a central 

composite design according to Equation (6.5) were estimated using the formula 

given by Cornell (1991) and it can be found in Appendix E. 

 

Table 6.5: 25-1 fractional factorial central composite design five variables with the 

observed response. 

 

Run 
 

Sugar  
(g/l ) 

 Yeast extract
(g/l ) 

Time 
(hour)

Temperature 
(oC) 

Speed 
(rpm) 

 Yield 
(%) 

1 55 10 144 35 200 52.48 
2 85 10 144 35 100 42.72 
3 55 20 144 35 100 55.19 
4 85 20 144 35 200 37.90 
5 55 10 192 35 100 52.50 
6 85 10 192 35 200 43.14 
7 55 20 192 35 200 62.60 
8 85 20 192 35 100 42.29 
9 55 10 144 45 100 73.78 
10 85 10 144 45 200 53.94 
11 55 20 144 45 200 79.55 
12 85 20 144 45 100 64.02 
13 50 10 192 45 200 71.14 
14 85 10 192 45 100 66.84 
15 55 20 192 45 100 61.30 
16 85 20 192 45 200 64.30 
17 40 15 168 40 150 72.79 
18 100 15 168 40 150 65.83 
19 70 5 168 40 150 77.90 
20 70 25 168 40 150 81.47 
21 70 15 120 40 150 59.22 
22 70 15 216 40 150 81.66 
23 70 15 168 30 150 23.40 
24 70 15 168 50 150 46.52 
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Table 6.5: 25-1 fractional factorial central composite design five variables with the 

observed response (Continued). 

 

Run Sugar  
(g/l ) 

 Yeast extract
(g/l ) 

Time 
(hour)

Temperature 
(oC) 

Speed 
(rpm) 

 Yield 
(%) 

25 70 15 168 40 50 43.48 
26 70 15 168 40 250 70.66 
27 70 15 168 40 150 82.82 
28 70 15 168 40 150 80.41 
29 70 15 168 40 150 80.22 
30 70 15 168 40 150 81.98 
31 70 15 168 40 150 80.47 
32 70 15 168 40 150 82.28 

 

X1 = Sugar concentration (g/l) 

X2 = Yeast extract concentration (g/l) 

X3 = Fermentation time (hour) 

X4 = Temperature (oC) 

X5 = Stirring speed (rpm) 

 

 

The fitness of the model can be checked by several criteria. The analysis of 

variance (ANOVA) for testing the significance of the coefficient is given in Table 

6.6. The determination of coefficient R2 = 0.98 indicates that only 2% of total 

variation were not explained by the model. The values of F and R2 were obtained as 

follow, 

 

( )
( )

( )
( ) 39.19

26/42.1364
5/89.7943

/
1/Re

==
−
−

==
pNSSE

pSSR
MSRErrorMeanSquare

MSRgressionMeanSquareF  

 

( )
( ) 9844.0

60.8058
89.7943Re2 ===

SSTotalSumSquareT
SSRgressionSumSquareR  

 

The values of F and R2 were obtained by calculating the total sum square 

(SST), sum square regression (SSR) and sum square error or residual (SSR). These 

values are shown in Table 6.7.   
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To test the adequacy of the fitted model from Equation (6.5) using static F, 

the value of F is compared to the table value F(p-1,N-p,α) , which is the upper 100 α 

percent point of the F distribution with p-1 and N-p degrees of freedom, respectively. 

Since the value F = 19.39 exceeds the table value F(5,26,.01) = 3.8183, this indicates 

that the Fisher F test also demonstrates a high significance for the fitted regressions 

model.  

  

Table 6.6: Analysis of variance lactic acid yields values. 
 

Source df SS MS F R2 

Regression (p-1) 5 7945.28 1589.056 19.39 0.9844 

Residual (N-p) 26 1364.42 81.92   

Total (N-1) 31 8058.60    

 

 

Table 6.7: Calculation of the sum squares. 
 

Run Yo Yp (Yo -⎯Y)2 (Yp -⎯Y)2 (Yo-Yp)2

1 52.48 51.91 123.38 136.36 0.32 
2 42.72 40.83 435.45 517.90 3.57 
3 55.90 59.53 59.10 16.46 13.18 
4 37.19 35.46 696.83 791.16 2.99 
5 52.50 45.51 122.93 326.80 48.86 
6 43.14 54.82 418.10 76.87 136.42 
7 62.60 61.96 0.98 2.65 0.41 
8 42.29 49.25 453.58 205.56 48.44 
9 73.78 62.49 103.89 1.20 127.46 
10 53.94 69.22 93.07 31.73 233.48 
11 79.55 75.36 254.80 138.59 17.56 
12 64.02 61.28 0.19 5.32 7.51 
13 71.14 66.71 57.04 9.75 19.62 
14 66.84 71.26 10.58 58.87 19.54 
15 61.30 50.01 5.23 184.35 127.46 
16 64.30 78.15 0.51 212.07 191.82 
17 72.79 61.69 84.69 3.60 123.21 
18 65.83 74.94 5.03 128.88 82.99 
19 77.90 77.21 204.85 185.57 0.48 
20 81.47 82.46 319.78 356.17 0.98 
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21 59.22 65.31 19.08 2.97 37.09 
Table 6.7: Calculation of the sum squares (Continued). 
 

Run Yo Yp (Yo - ⎯Y)2 (Yp -⎯Y)2 (Yo-Yp)2 

22 81.66 73.56 326.62 99.45 65.61 
23 23.40 19.96 1615.04 1903.36 11.83 
24 46.52 51.96 291.30 135.20 29.59 
25 43.48 42.82 404.31 431.29 0.44 
26 70.66 73.34 50.02 95.11 7.18 
27 82.82 81.32 369.89 314.44 2.25 
28 80.41 81.32 283.00 314.44 0.83 
29 80.22 81.32 276.64 314.44 1.21 
30 81.98 81.32 338.28 314.44 0.44 
31 80.47 81.32 285.02 314.44 0.72 
32 82.28 81.32 349.41 314.44 0.92 

∑ oY  ⎯
−

Y  SST SSR SSE 
2032.80 63.525 8058.60 7943.89 1364.42 

 

 

Each of the observed values Yo is compared with predicted value Yp 

calculated from the model given in Table 6.8 The comparison of the residual with 

residual variance (MS=52.47) denotes that none of the individual residual exceeds 

twice the square root at the residual variance. All these considerations indicate a 

good adequacy of the regression model. 
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Table 6.8: Observed responses and predicted values. 
 

Run Yo Yp Residual (Yo -Yp) 

1 52.48 51.91 0.57 
2 42.72 40.83 1.89 
3 55.90 59.53 -3.63 
4 37.19 35.46 1.73 
5 52.50 45.51 6.99 
6 43.14 54.82 -11.68 
7 62.60 61.96 0.64 
8 42.29 49.25 -6.96 
9 73.78 62.49 11.29 
10 53.94 69.22 -15.28 
11 79.55 75.36 4.19 
12 64.02 61.28 2.74 
13 71.14 66.71 4.43 
14 66.84 71.26 -4.42 
15 61.30 50.01 11.29 
16 64.30 78.15 -13.85 
17 72.79 61.69 11.10 
18 65.83 74.94 -9.11 
19 77.90 77.21 0.69 
20 81.47 82.46 -0.99 
21 59.22 65.31 -6.09 
22 81.66 73.56 8.10 
23 23.40 19.96 3.44 
24 46.52 51.96 -5.44 
25 43.48 42.82 0.66 
26 70.66 73.34 -2.68 
27 82.82 81.32 1.50 
28 80.41 81.32 -0.91 
29 80.22 81.32 -1.10 
30 81.98 81.32 0.66 
31 80.47 81.32 -0.85 
32 82.28 81.32 0.96 

Yo: observed yield  
Yp: predicted yield 

 

 

The significance of each coefficient was determined using the student t-test 

and p- value as given in Table 6.9. The larger the magnitude of t- value is, the 

smaller the p value will be. This indicates a high significance of the corresponding 

coefficient. It can be seen that the variable with largest effect was squared term of 

temperature (X4). This is followed by stirring speed (X5) and concentration of sugar 
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(X1). The factor temperature in squared term has largest t-value (-7.26) and seems to 

be very significant (p = 0.0001). The stirring speed has smaller t-value (-3.8676) but 

is still significant (p = 0.0003). The fermentation time and sugar concentration have 

very low t-values which are-1.90 and 1.88, respectively, and are not significant (p = 

0.072 and p = 0.069). In linear term only temperature has largest t-value (5.128) and 

seems to be significant (p = 0.0003). The interaction affects all factors that have low 

t-values and seem to be insignificant (p > 0.1).  

 

Error estimation was made for six experiments in the centre points from 

Equation (4.4). With a confidence level of 99%, the “t” of Student for five (r-1) 

degrees of freedom is 4.032. The calculated standard deviation was 1.56. 

 

 

Table 6.9: Significance of regression coefficient. 

  

Variables Regression coefficient Computed  

t value 

Significance level, 

 p value 

Constant 81.3200 52.1282 - 

x1 -3.0300 -1.9423 0.0636 

x2 0.7395 0.4740 0.3522 

x3 2.0587 1.3192 0.1652 

x4 8.0113 5.1283 0.0003 

x5 2.5324 1.6234 0.0924 

x1*x1 -2.9375 -1.8830 0.0698 

x2*x2 -0.6560 -0.42051 0.3572 

x3*x3 -2.9680 -1.9025 0.0722 

x4*x4 -11.3380 -7.2679 0.0001 

x5*x5 -6.0335 -3.8676 0.0007 

x1*x2 -0.4293 -0.2751 0.3775 

x1*x3 1.9650 1.2596 0.1772 

x1*x4 1.2530 0.8032 0.2824 
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Table 6.9: Significance of regression coefficient (Continued). 
 

Variables Regression coefficient Computed  

t value 

Significance level, 

 p value 

x1*x5 -2.4740 -1.5858 0.1155 

x2*x3 -1.0540 -0.6739 0.3060 

x2*x4 -0.2293 -0.1475 0.3893 

x2*x5 2.2930 1.4699 0.1396 

x3*x4 -1.2460 -0.7987 0.2841 

x3*x5 1.8800 1.205 0.1944 

x4*x5 -0.0268 -0.017352 0.3920 
 

 

Analytical optimisation method was used to solve the regression equation of 

(6.3). The optimal values of the tested variables in coded unit are as follows:  

x1 = -0.2759, x2 =  0.1114, x 3 = 0.5935, x4 = 0.3405 and x5 = 0.06975.  

 

The optimal values of tested variables in uncoded unit can be obtained by 

Equation (6.2) and were found to be: sugar concentration (X1), 65.87 g/l; yeast 

extract concentration (X2), 15.35 g/l; fermentation time (X3), 182.4 hours; 

temperature (X4), 41.70; and stirring speed (X5), 153.58 rpm. The model can predict 

the maximum of lactic acid yield which was 83.79 %.   

 

 

 

6.4.2 Optimisation By Analysing The Response Surface Contour Plots 

 

Optimum yield can also be predicted from the respective contour plots. Each 

contour curve represents an infinite number of two test variables with the other three 

maintained at their respective zero levels. The maximum predicted yield is indicated 

by the surface confined in the smallest ellipse in the contour diagram (Box et al., 

1978; Cornell, 1990). 
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6.4.2.1 Effect Of Sugar And Yeast Extract Concentration On Yield 

  

The sugar and yeast extract concentrations were studied in the range of 40-

100 and 5-25 g/l, respectively. From the analysis of the response surface (Figure 

6.1a), it can be concluded that there is no obvious optimal value within the 

investigation of the experimental range. Figure 6.1b illustrates that there is no 

maximum point of response but minimum point (saddle point) is recorded. Therefore 

the optimal value was estimated using method described by Cornell (1990). The 

optimal conditions were achieved at sugar concentration (X1) of 50 g/l; and yeast 

extract concentration (X2) of 11.44 g/l. 

 

The prediction of factors and dependence variable can also be calculated by 

best explanatory equation: Y12 = 51.962 + 0.751 X1 - 0.649 X2 - 0.007 X1*X1 - 0.007 

X1*X2 + 0.04 3X2*X2. This equation shows that effects of yeast extract and substrate 

concentration in linear term are moderate but the squared term and the interaction 

between factors are found to be insignificant.  

 

By using analytical method, the optimal point was obtained at sugar 

concentration (X1) of 47.91 g/l, and yeast extract concentration (X2) of 11.44 g/l with 

maximum yield of 66.24 %. 
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Figure 6.1a: The predicted surface response as a function of sugar and yeast extract 

concentrations at constant levels of fermentation time,168 hours; 

temperature, 40 oC and stirring speed, 150 rpm. 
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Figure 6.1b: The contour plot of the effect of sugar and yeast extract concentrations 

on lactic acid yield at constant levels of fermentation time, 168 hours; 

temperature, 40 oC; and stirring speed, 150 rpm. 
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6.4.2.2 Effect Of Sugar Concentration And Fermentation Time On Yield 

 

 Effects of sugar concentration and fermentation time on yield as given in 

Figure 6.2a, point out that with increasing fermentation time and sugar concentration, 

the yield also increases. If the concentration of substrate is greater than 70 g/l, the 

yield will decrease, which might be due to substrate (sugar) inhibition. By analysing 

contour plot in Figure 6.2b, the optimal condition obtained was 50 g/l of substrate 

and fermentation time of 168 hours.  

 

The optimal yield were also calculated by best explanatory equation:Y13  = 

33.868- 0.208 X1 + 0.508 X3 - 0.008 X1*X1+ 0.006 X1*X3 - 0.002 X3*X3. This 

equation shows that effects of time and sugar concentration in linear term are 

moderate but the squared term and interaction between factors seem to be 

insignificant. 

 

By using analytical method, the optimal point was at sugar concentration (X1) 

of 79.14 g/l, and fermentation time (X3) of 245.76 hours with maximum yield of 

87.68 %. 
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Figure 6.2a: The predicted surface response as a function of sugar concentration and 

fermentation time at constant levels of temperature, 40 oC; yeast extract 

concentration, 5 g/l and stirring speed, 150 rpm. 
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Figure 6.2b: The contour plot of the effect of sugar concentration and fermentation 

time on lactic acid yield at constant level of temperature, 40 oC; yeast 

extract concentration, 5 g/l and stirring speed, 150 rpm. 
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6.4.2.3 Effect Of Sugar Concentration And Temperature On Yield 

 

 The temperature studied was in the range of 30-50oC, which was the optimal 

growth temperature for Lactobacillus delbrueckii. From the analysis of the response 

surface (Figure 6.3a), it can be seen that effects of temperature and substrate 

concentration on yield are significant. With increasing temperature and sugar 

concentration, the yield increases. However the yield decreases if temperature and 

substrate concentration are above 45 oC and 70 g/l, respectively. The optimal value 

obtained by analysing contour plot in Figure 6.3b was at sugar concentration (X1) of 

58 g/l; and temperature (X4) of 42 oC.  

 

The optimal yield was calculated by best explanatory equation: Y14 = -

668.391 + 0.492 X1+ 35.271 X4 - 0.01 X1*X1+0.08 X1*X4
 - 0.437 X4*X4. This 

equation shows that the effects of temperature are very significant but moderate for 

the substrate concentration, which are indicated by the values of regression 

coefficients at 35.27 and 0.491, respectively. The interactions between factors were 

found to be insignificant. By using analytical method, the optimal point was at sugar 

concentration (X1) of 58.86 g/l, and temperature (X4) of 41.56 oC with maximum 

yield of 77.31 %. 
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Figure 6.3a: The predicted surface response as a function of sugar concentration and 

temperature at constant levels of fermentation time, 168 hours; yeast 

extract concentration, 5 g/l; and stirring speed, 150 rpm. 
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Figure 6.3b: The contour plot of the effect of sugar concentration and temperature on 

lactic acid yield at constant levels of fermentation time, 168 hours; 

yeast extract concentration, 5 g/l and stirring speed, 150 rpm. 

 

 

 

6.4.2.4 Effect Of Sugar Concentration And Stirring Speed On Yield  

 

Lactobacillus delbrueckii is an anaerobic bacterium. Therefore in order to 

maintain the fermentation in anaerobic condition, the agitation process was 

performed relatively at low speed. The agitation speed studied was in the range of 

50-250 rpm. Effects of sugar concentration and stirring speed on the lactic acid yield 

are illustrated in Figure 6.4a. The yield increases with increasing sugar concentration 

and stirring speed. The yield decreases if sugar concentration and stirring speed are 

above 70 g/l and 200 rpm, respectively. Analysis of response surface (Figure 6.4.b) 

showed that effects of both factors are significant, and it gives maximum yield at 

operation conditions with sugar concentration of 48 g/l and stirring speed of 180 

rpm.  

 

The optimal yield was calculated by best explanatory equation: Y13  = -

39.091+ 1.394 X1 + 0.879 X5 - 0.009 X1*X1+ 0.003 X1*X5 - 0.002 X5*X5. This 
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equation denotes that the effects of sugar concentration and stirring speed in linear 

term are moderate but in square term and interaction between factors, the effects 

were trivial. Effects of substrate concentration on yield in contour plots (Figures 6.1b 

– 6.4b) show that the optimal sugar concentration is around 48 - 58 g/l.  

 
 

 
 

Figure 6. 4a: The predicted surface response as a function of sugar concentration and 

stirring speed at constant levels of yeast extract concentration, 5 g/l; 

fermentation time, 168 hours; and temperature, 40 oC.  
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Figure 6. 4b: The contour plot of the effect of sugar concentration and stirring speed 

on lactic acid yield at constant levels of yeast extract concentration, 5 

g/l; fermentation time, 168 hours; and temperature, 40 o C.  

 

 

 

6.4.2.5 Effect Of Yeast Extract Concentration And Fermentation Time On Yield  

 

 Effects of yeast extract concentration and fermentation time on the lactic acid 

yield are demonstrated in Figure 6.5a. From the response surface analysis, it was 

found that there was no maximum response obtained, similar with the effect of yeast 

extract and sugar concentrations. The optimal values were estimated by analysing the 

contour plot as shown in Figure 6.5b. The yeast extract concentration and 

fermentation time obtained were 15 g/l and 190 hours, respectively.  

 

The prediction of dependence variable was also calculated by best 

explanatory equation:Y23 = -25.263 + 0.319 X2 + 0.931X3 + 0.043 X2*X2 - 0.009 

X2*X3 - 0.002 X3*X3. This equation designates that effects of yeast extract and 

fermentation time in linear term were moderate but insignificant in squared term. The 

interaction between factors was also found to have insignificant impact. 
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By using analytical method, the optimal point obtained was found to be yeast 

extract concentration and fermentation time of 16.70 g/l and 195.18 hours, 

respectively with the optimal yield of 68.14 %.  

 

 

 

Figure 6.5a: The predicted surface response as a function of yeast extract 

concentration and fermentation time at constant levels of sugar 

concentration 70 g/l; temperature, 40 oC; and stirring speed, 150 rpm. 
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Figure 6. 5b: The contour plot of the effect of yeast extract concentration and 

fermentation time on lactic acid yield at constant levels of sugar 

concentration, 70 g/l; temperature, 40 oC; and stirring speed, 150 rpm. 
 

 

 

6.4.2.6 Effect Of Yeast Extract Concentration And Temperature On Yield 

 

Effects of yeast extract concentration and temperature on the yield are shown 

in Figure 6.6a. Effect of temperature on the yield is significant, contrary to the effect 

on yeast extract concentration. It was apparent that increase in yeast extract 

concentration (5 to 25 g/l) would not significantly increase the yield. No clear 

optimal value was found within experimental range under investigation (Figure 

6.6b). Similar effect was also acquired for yeast extract concentration and substrate 

concentration, as well as yeast extract concentration and fermentation time.  

 

The prediction of independence variable can be calculated by best 

explanatory equation:Y24 = -682,997 - 0.03 X2 + 36.068 X4 + 0.043 X2*X2 - 0.009 

X2*X4 - 0.002 X4*X4. This clearly shows that the effect of temperature is significant 

but the effect of yeast extract concentration and the interaction between factors were 
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insignificant. Figure 6.6b shows that the maximum yield is at operational conditions 

of temperature, 42 oC and yeast extract concentration, 15 g/l. 

 

 

. 

 
 

Figure 6.6a: The predicted surface response as a function of yeast extract 

concentration and temperature at constant levels of sugar concentration, 

70 g/l; fermentation time, 168 hours; and stirring speed, 150 rpm. 
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Figure 6.6b: The contour plot of the effect of yeast extract concentration and 

temperature on lactic acid yield at constant levels of sugar 

concentration, 70 g/l; fermentation time, 168 hours; and stirring speed, 

150 rpm. 

  

 

 

6.4.2.7 Effect Of Yeast Extract Concentration And Stirring Speed On Yield 

 

Effects of yeast extract concentration and stirring speed on yield are given in 

Figure 6.7a. Effects of yeast extract concentration and stirring speed on yield are 

considerable. From the analysis of the response surface, it can be seen that there is no 

maximum point of response within the experimental range investigation. Therefore 

the optimal values were estimated by using analysing contour plot (Figure 6.7b). The 

optimum conditions obtained were at yeast extract concentration of 13 g/l and 

stirring speed of 164 rpm, respectively.   
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This is analogous with the effects of substrate concentration and yeast extract, 

fermentation time and yeast extract, along with temperature and yeast extract on 

yield which indicate that no maximum point or yield is obtained within experimental 

range under investigation.  

 

The prediction of dependence variable was also calculated using best 

explanatory equation: Y25 = 41.149 - 2.193 X2 + 0.494 X5 + 0.034 X2*X2+ 0.009 

X2*X5 - 0.002 X5*X5. Effects of both factors in linear term were found to be 

significant, contrary to square term and interaction between factors, giving optimal 

yield of 65.028 % at yeast extract concentration and stirring speed at 12.25 g/l and 

151.09 rpm, respectively.  

 

 
 

Figure 6.7a: The predicted surface response as a function of yeast extract 

concentration and stirring speed at constant levels of sugar 

concentration, 70 g/l; fermentation time, 168 hours; and temperature, 40 
oC. 
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Figure 6.7b: The contour plot of the effect of yeast extract concentration and stirring 

speed on lactic acid yield at constant levels of sugar concentration, 70 

g/l; fermentation time, 168 hours; and temperature, 40o C. 

 

 

 

6.4.2.8 Effect Of Fermentation Time And Temperature On Yield  

 

 Figure 6.8a illustrates the effects of fermentation time and temperature on 

yield. It can be observed that the effects of temperature and time are noteworthy. The 

yield increases with increasing temperature but above 45 oC the yield decreases, 

which is alike with fermentation time but above certain time the yield becomes 

constant.  

 

The maximum response was obtained by analysing contour plot in Figure 

6.8b. Optimal conditions were achieved at fermentation time and temperature of 178 

hours and 42 oC, respectively.  

 

The prediction of dependence variables were also calculated by best 

explanatory equation: Y34 = -871.282 + 1.681 X3 + 38.204 X4 - 0.004 X3*X3 - 0.01 

X3*X4 - 0.436 X4*X4. Herein the effect of temperature is more significant than that 
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of fermentation time but effects of both variables in square term and interaction 

between factors were minor. Using this equation, the optimal yield was achieved at 

63.564 %, with operational conditions at fermentation time of 157 hours and 

temperature of 42 oC, respectively. By analysing the contour plots in Figures 6.2b, 

6.5b, 6.8b and 6.9b, the optimal fermentation time in this experiment is around 178 - 

190 hours.  

 

 
 

Figure 6.8a: The predicted surface response as a function fermentation time and 

temperature at constant levels of sugar concentration, 70 g/l; yeast 

extract concentration, 5 g/l; and stirring speed, 150 rpm. 
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Figure 6.8b: The contour plot of the effect of fermentation time and temperature on 

lactic acid yield at constant levels of sugar concentration, 70 g/l; yeast 

extract concentration, 5 g/l; and stirring speed, 150 rpm. 

 

 

 

6.4.2.9 Effect Of Fermentation Time And Stirring Speed On Yield  

 

 The fermentation time was studied at range 120 to 216 hours. Assumption 

was made that the time of fermentation is enough to produce maximum lactic acid 

production. The response surface was obtained (Figure 6.9a) showing that the lactic 

acid yield increases with increasing fermentation time, but after certain time, the 

yield becomes constant. The yield also increases with escalating stirring speed, but at 

170 rpm, the yield declines. From the counter plot (Figure 6.9b), it can be seen that 

the maximum lactic acid yield was obtained at stirring speed of 164 rpm and 

fermentation time of 186 hours.  

 

Effects of fermentation time and speed on the yield can be predicted by best 

explanatory equation: Y35 = -36.425 + 0.789 X3 + 0.370 X5 - 0.003 X3*X3 + 0.002 

X3*X5 - 0.004 X5*X5. The linear main effects of factors studied are moderate but the 
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interaction between factors was found to be negligible, so was the quadratic main 

effect of factors that was indicated by low the regression coefficient.  
 

The calculated conditions for fermentation time and the stirring speed were 

found to be 194 hours and 189.86 rpm, respectively, with the optimal yield at 75.55 

%. By analysing the contour plots (Figures 6.2b, 6.6b, 6.9b and 6.10b), the optimal 

fermentation time is found to be around 164 -190 hours.  

 

 

 
 

Figure 6.9a: The predicted surface response as a function of fermentation time and 

stirring speed at constant levels of sugar concentration,70 g/l; yeast 

extract concentration, 5 g/l; and temperature, 40 oC. 
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Figure 6.9b: The contour plot of the effect of fermentation time and stirring speed on 

lactic acid yield at constant levels of sugar concentration, 70 g/l; yeast 

extract concentration, 5 g/l; and temperature, 40o C. 

 

 

 

6.4.2.10 Effect Of Temperature And Stirring Speed On Yield 

 

 Figure 6.10a demonstrates the effects of temperature and stirring speed on 

yield. The yield increases with increasing temperature and stirring speed, but at 

particular conditions, the yield decreases. The maximum response can be obtained 

from Figure 6.10b. The optimal value was obtained at temperature, 42 oC and stirring 

speed, 168 rpm.  

 

The maximum response was also predicted by the best explanatory equation: 

Y45 = -756.756 + 37.185 X4 + 0.712 X5 - 0.445 X4*X4 - 0.00 X4*X5 - 0.002 X5*X5. 

The optimal condition was achieved at temperature of 42 oC and stirring speed of 

178 rpm with the maximum yield at 83.43%. The effect of temperature was more 

significant than stirring speed in both square and linear term which was denoted by 

the values of regression coefficient, but there was no interaction between factors 

(regression coefficient = 0). The quadratic main effect for temperature was 
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significant but opposite for the stirring speed, indicated by the low value of 

coefficient (0.002).  

 

By analysing the contour plots (Figures 6.3b, 6.5b, 6.8b, 6.10b and 6.4b, 

6.7b, 6. 9b, 6.10b), optimal temperature is found at 42 oC, and stirring speed at 

around 164-180 rpm. 

 

 
 

Figure 6.10a: The predicted surface response as a function of temperature and 

stirring speed at constant levels of sugar concentration, 70 g/l; yeast 

extract concentration, 5 g/l; and fermentation time, 168 hours.  
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Figure 6.10b: The contour plot of the effect of temperature and stirring speed on 

lactic acid yield at constant levels of sugar concentration, 70 g/l; yeast 

extract concentration, 5 g/l; and fermentation time, 168 hours.  
 
 
 
 
6.5 Effect Of Different Sizes And Types Of Fermentor 

 

6.5.1 Introduction 

 

As reported in the literatures, improvements in fermentation performance 

may be achieved by a better understanding of fluid dynamics in the fermentor. To 

obtain enhanced productivity and product quality, fermentation processes can be 

carried out by changing the geometric of the fermentor and impeller such as tank 

diameter (T), impeller diameter (D), impeller clearance and the liquid height (H) 

(Amanullah et al., 1998). 

 

 In the commercial size, the configurations are often altered. For example, the 

ratio of the liquid height to tank diameter (H/T) may increase from 0.5 to 2.0 

whereas the ratio of the impeller diameter to the tank diameter (D/T) may decrease 

from 0.5 to 0.3 for process and economic reasons (Von Essen, 1987).  
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  In order to increase the productivity in lactic acid fermentation of 

pineapple waste by L. delbrueckii, effects of different sizes and types of fermentor 

were studied. The lactic acid fermentation was carried out in shake flask (100 ml) 

and culture vessel (1 and 5 litre) using stirrer shaft with two 6-bladed disc impellers 

(Figure 3.2). The fermentor and impeller geometric are shown in Table.6.10 
 

 

Table 6.10: The fermentor and impeller geometric with different sizes of fermentor. 
 

Culture Vessel (BIOSTAT B) 
Conditions 

Type B2 (3 litres) Type B5 (6.6 litres) 

Working volume (ml) 1,000 5,000 

Liquid height (cm) (H) 24.60 10.60 

Tank diameter (cm) (T) 19.70 16.30 

Impeller diameter (cm) (D) 6.40 5.30 

Impeller clearance (cm) (C) 4.40 3.60 

 

 

 

6.5.2 Shake Flask  (100 ml) 

 

Shake flask fermentation was carried out under optimal conditions of tested 

variables affecting shake flask fermentation for lactic acid production in optimisation 

process. The optimal conditions are: sugar concentration, 65.0 g/l; yeast extract 

concentration, 15.0 g/l; fermentation time, 192 hours; temperature, 42.0 oC and 

stirring speed, 150 rpm. With the above conditions, shake flask experiment produced 

lactic acid yield of 83.07%. The result was almost similar with the predicted lactic 

acid yield which was 83.79 %. Therefore it can be concluded that the model is valid 

to predict the lactic acid production of pineapple waste fermentation at the range of 

the experimental conditions understudied.  
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6.5.3 Culture Vessel (1 and 5 litres)  

 

The fermentation was carried out in 3-litre fermentor (Biostat B Model) with 

working volume of 1 litre. The pH, temperature and stirring speed were manipulated 

at 6.0, 42 oC and 75 rpm. The concentrations of sugar and yeast extract are 65 g/l and 

15 g/l respectively. The fermentor containing 950 ml substrate was first sterilised at 

121oC for 15 minutes. 50 ml of inocolum was sterilised separately and added 

aseptically to the fermentor. Anaerobic conditions were created by sparging the 

fermentor using nitrogen at flow rate of 6.5 ml/minute. The fermentation was also 

carried out in 6.6-litre fermentor with working volume of 5 litres using the same 

conditions. 

 

The growths of L. delbrueckii in the stirring batch reactor with different 

working volumes are shown in Figure 6.11. The growth curve represented by dry cell 

weight (biomass) is to follow the same pattern. Growth was started with a short lag 

phase at 4 hours, followed by the exponential growth at 28 hours and finally the 

bacteria entered a slow growth phase at 44 until 50 hours. The short stationary phase 

which occurred between 56 to 80 hours of incubation and then followed by 

decreasing dry cell weight was caused by cell lysis. 

 

During the lag phase (4 hours), the concentrations of glucose and fructose 

increased while the concentration of sucrose decreased (Figure 6.12). Hydrolysis of 

sucrose to glucose and fructose made their concentrations grow. During the 

exponential growth, the concentrations of glucose and fructose accumulated in the 

fermentation medium until 28 and 32 hours, with the maximum concentrations of 30 

and 29 g/l, respectively. Although the growth associated with lactic acid production, 

the concentrations of glucose and fructose continued to increase. This might be due 

to sucrose hydrolysis was faster than conversion of both sugars to lactic acid. 
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Figure 6.11: Effect of different sizes and types of fermentor on L. delbrueckii growth  

of lactic acid  fermentation of pineapple waste: A) working volume, 5 

litres and B) working volume, 1 litre. Experimental conditions: pH, 6.0;  

temperature, 42 oC; inoculum, 5%; and stirring speed, 75 rpm.  

 

 

Figure 6.12 shows that the substrate utilisations on different working volumes 

follow an identical pattern. The sucrose was completely utilised at 24 hours, 

followed by glucose at 144 hours whereas fructose was not totally consumed even 

after 240 hours. By examining individual sugar concentrations during fermentation, 

it was obvious that sucrose was hydrolysed to glucose and fructose, and the rate of 

hydrolysis was faster than the conversion of these substrates to lactic acid. Therefore 

the concentrations of glucose and fructose increased after 4 hours of fermentation 

contrary to sucrose concentration. 
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Figure 6.12: 1) Glucose, 2) fructose and 3) sucrose consumption on effect of  

different sizes and types of fermentor of lactic acid  fermentation of 

pineapple waste: A) working volume, 5 litres and B) working volume, 1 

litre. Experimental conditions: pH, 6.0; temperature, 40o C; inoculum, 

5% and stirring speed, 75 rpm.  
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The lactic acid production on different working volumes is given in Figure 

6.13. According to the bacterial growth, the lactic acid productions in large (5 litres) 

and small volumes (1 litre) at similar fermentation conditions is almost parallel, 

which were 56.73 and 54.68 g/l, respectively. The minor discrepancy was possibly 

caused by the fermentation process that was directly influenced by fluid dynamics of 

the system. The fluid or shear rate affects the heat and mass transfer processes in the 

fermentation system. Therefore the results were slightly different on the bacterial 

growth and lactic acid production. 

 

The lactic acid production in shake flask experiment (83 %) is lower than 

larger scale (86 %). This indicates that the mixing process carried out in incubator 

shaker and fermentor system is different in which mass transfer and heat transfer in 

the fermentation medium were affected.  

 

The effect of different sizes and types of fermentor on the performance of 

lactic acid fermentation using pineapple waste by L. delbrueckii is summarised in 

Table 6.11. 
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Figure 6.13: The effect of different sizes and types of fermentor on lactic acid  

production of lactic acid  fermentation of pineapple:  

A) working volume, 5 litres and B) working volume, 1 litre. 

Experimental conditions: pH, 6.0; temperature, 42 oC; inoculum, 5% 

; and stirring speed, 75 rpm.  

 

 

 

Table 6.11: The summary of fermentation results for effect of different sizes and 

types of fermentor. 

 

Size/Type of Fermentor D/T C/T H/T Xm Pm 
Yield 

(%) 

Productivity 

(g/l.h) 

Shake Flask (100ml) - -  - 53.9 83.0 0.321 

Culture Vessel (1,000ml) 0.32 0.22 0.65 2.87 54.4 83.7 0.324 

Culture Vessel (5,000ml) 0.32 0.22 1.24 3.02 56.8 87.0 0.364 
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CHAPTER VII 

 

 

 

A TECHNO-ECONOMIC EVALUATION 

 

 

 

7.1 Introduction 

 

Lactic acid was first produced commercially by Charles E. Avery at Littleton, 

Massachusetts, USA in 1881. The first successful use of lactic acid in the leather and 

textile industries began in 1894 and the production levels were about 5.0 tonnes per 

year. In 1942, about half of 2,700 tonnes of lactic acid produced per year in the US 

was used by leather industry, and an emerging use is in food production. During the 

World War II, US production peaked at 4,100 tonnes per year (Vickroy, 1983). In 

1982 world wide production of lactic acid was 26 tonnes per year. More than 50 % 

of lactic acid produced are used in food as an acidulant and a preservative. 

Fermentation is presently used to make about half of the world’s total production of 

lactic acid (Vickroy, 1983; Blanch and Clark, 1997). 

 

The annual world production of lactic acid has a total volume of nearly 

30,000 ton and about half of this production use synthetic chemical as raw material, 

and it is rapidly becoming regarded as a commodity chemical. With increasing price 

of petroleum, production of lactic acid by fermentation becomes popular because the 

process is cheap. This has created an increasing interest of study to improve 

fermentation and recovery processes (Van Ness, 1991; Blanch and Clark, 1997). In 

economic terms primary parameters to consider for production are cost and 

production volume. The world production of lactic acid is relatively small compare 

to other biotechnological products. However in terms of price per tones, it is 

relatively high-priced (Hacking et al., 1987). 
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 Lactic acid is a colourless, sour taste, odourless, highly hygroscopes and 

syrup liquid which is commercially available at different grades (qualities) (Paturau, 

1982). There are four grades of lactic acid where their applications and prices are 

given in Table 7.1. 

 

 

Table 7.1: Prices and applications of various grades of lactic acid (Paturau, 1982). 

 

Lactic Acid 

Grades 

Concentration 

(%) 

Price / Kg 

($) 
Application 

50  0.99 Textiles, solvents and plasticizer 
Technical  

80  1.69 Polymer, varnish impregnating agent 

50 1.01 Beverages, essence and syrups 
Food  

88 1.75 Pharmaceutical industry 

 

 

The production of lactic acid has attracted a great deal of interest due to its 

potential use as a raw material in the production of biodegradable polymer such as 

poly lactic acid. The world production of lactic acid is approximately 50.000 tonnes 

per year and the commercial price of lactic acid ranges from US$1.40 /kg for 50% to 

US$ 1.90/kg for 88% of food grade lactic acid (Akerberg and Zacchi, 2000) 

 

 

 

7.2 Lactic Acid Process  

 

The choice of the medium in lactic acid fermentation has great effect on the 

process as a whole. It is known that the recovery process of lactic acid from the 

fermentation broth is more difficult than the fermentation itself. The more complex 

the medium is, the more difficult a pure product is produced. Thus the cheapest raw 

material such as beet molasses can cause the most problem in recovery while the 

most expensive (such as sucrose) give the least problem (Milson, 1987).  
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7.2.1 Lactic Acid Industry 

 

Industrial lactic acid is prepared by the fermentation of glucose, maltose, 

lactose and sucrose. In the US, corn sugar, glucose, enzyme hydrolysed starch, 

molasses and whey are the main raw materials commonly used as substrates. In 

Europe, potato starch, beet molasses and sucrose have been employed. Other 

suggested substrates are sorghum and cellulose (Paturau, 1982). 

 

Nowadays lactic acid is mainly produced technically by fermentation. 

Homolactic acid bacteria such as L. delbrueckii, L. bulgaricus and L. leichmanii are 

used. The requirement of vitamins and growth factors can be supplied by yeast 

extract. Large amount of bacteria have to be added to the fermentation solution in 

order to carry out the fermentation safely and rapidly on a technical scale. These are 

made by propagation of pure culture and procedure as given in Figure 7.1. (Holten, 

1971; Buchta, 1983). 

 

Batch fermentation of starch or glucose was carried out in close metal tanks 

with a capacity of 20.000-100.000 litres. 1000 litres of inoculum was added to the 

fermentation broth (inoculum size of 5%). The fermentation completed after 2-8 

days, depending on the substrate used. During this time the pH and the sugar 

concentration were controlled continuously. Calcium carbonate was added to 

maintain the pH of 6.0 (Holten, 1971; Atkinson and Mavituna, 1991). 

 

Recovery of lactic acid from the fermentation broth requires consideration of 

the corrosive nature of lactic acid. Usually 316 stainless steel vessels are employed 

(Blanch and Clark, 1997). The fermentation liquid is heated to 80-100 oC to kill the 

bacteria and to dissolve all the calcium lactate. The fermentation broth is then 

filtered and the crude lactic acid is treated by sulphuric acid. The calcium lactate 

precipitated is removed by filtration and the lactic acid solution is bleached with 

activated carbon and evaporated to a particular concentration depending on the final 

use (Blanch and Clark, 1997; Kascak, 1996). 
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In continuous fermentation process, considerably higher productivity can be 

achieved. Therefore continuous fermentation processes have been performed in 

various forms by many researchers. The earliest report of continuous lactic acid 

fermentation was presented by Childs and Welsby (1966) using cell suspension 

where they achieved lactic acid productivity of 3.7g litre-1 h-1. Vickroy (1983) also 

reported that with cell recycle the productivity was much higher, which was 76 g 

litre-1 h-1. Major and Bull (1985) also studied a process without cell recycle and the 

maximum productivity obtained was 8.93 g litre-1 h-1. A number of investigations 

have been made into the possibility for lactic acid production using immobilised cell. 

As far as it is known, no immobilised system or continuous process have yet been 

operated commercially (Kascak et al. 1996). 

 

Earlier economical studies of the fermentative lactic acid production have 

resulted in a range of production cost of the final product (Paturau, 1982). Akerberg 

and Zacchi (2000) also studied the production cost of 70% lactic acid from whole 

white flour. They only focused on the optimisation of the process to reduce the total 

lactic acid production cost while the details of economic evaluation have not been 

investigated. 

  

 

 

7.2.2 Lactic Acid Fermentation From Pineapple Waste 

 

Liquid pineapple waste contains mainly fructose, glucose and sucrose, which 

is made up of 20, 20 and 15 g/l each of the sugars in general. Batch fermentations 

were studied in 3-litre stirred fermentor (Biostat B Model) with working volume of1 

litre. Effects of some parameters such as temperature, pH, inoculum size, sugar 

concentration and nitrogen source were studied. The highest yield was achieved at 

temperature: 40oC, pH: 6.0, inoculum size: 5 %, sugar concentration: 70 g/l, and 

yeast extract as nitrogen source with the maximum lactic acid production and yield 

obtained at 54.97 g/l and 79 %, respectively (Moch-Busairi and Mat, 2000).  
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Optimisation studies were also carried out for selected parameters in the 

Erlenmeyer flask containing 100 ml of production medium. The maximum yield of 

lactic acid was obtained by the response surface methodology. The optimal values 

were found to be: sugar concentration, 65.87 g/l; yeast extract concentration, 15.35 

g/l; fermentation time, 182.4 hours; temperature, 41.70oC and stirring speed, 153.58 

rpm with the lactic acid yield of 83.79 %. Scale up fermentation was also studied on 

working volume of 5 litres with the lactic acid yield of 86.15% (Moch-Busairi and 

Mat, 2001). 

.  
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Figure 7.1: Schematic flow sheet of lactic acid production 
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7.3 Method Evaluation 

 

7.3.1 Model Of Lactic Acid Plant 

 

The economic analysis of lactic acid production using pineapple waste was 

evaluated. The lactic acid production capacity at 20.000 tonnes/year and operating 

time at 8000 hrs/year were assumed. The batch process was used to produce 50% of 

lactic acid (technical grade) and the biological information was given as follows: 

 

Batch fermentation time  : 160 hours (including turnaround) 

Initial sugar concentration  : 70 g/l 

Lactic acid yield   : 0.8 g lactic acid/ g sugar 

Temperature    : 42oC 

pH     : 6.0 

Inoculum ratio    : 5 % 

  

Based on desired annual production capacity and stream plant operating time 

with the basis of production of 1000 ton/yr, material and energy requirements for the 

process were calculated in order to obtain the equipment size. 

 

Broth volume per year = (0.5) × (1.000 tonnes × 106 g/tonnes):(0.8 g/g × 70 g/l) 

    = 8,928,571 litres 

Total number of batch  = (8000 hrs/yr) : 160 hrs/batch 

    = 50 batch/yr 

Total volume of batch  = (8,928,571) : 50 = 178,571 litres 

Number of fermentors  = 4 (arbitrary) 

Liquid volume each  = 44,642 litres 

 

The process steps (Figure 7.1) and assumptions made to obtain the equipment 

size are presented in the following sections. 
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7.3.1.1 Raw Material 

 

The liquid pineapple waste consisting 70 g/l of total sugar was mixed in 

blending tank with calcium carbonate (3% w/v) to control the pH at 6.0. Yeast 

extract (0.05 %) was also added as a nitrogen source (Moch-Busairi and Mat, 2001). 

 

 

 

7.3.1.2 Fermentor 

 

In developing the process flow sheet, holding tanks were required to be 

considered. For the size of fermentation equipment such as fermentor and tanks, a 

working volume of 80% of the total tank capacity was assumed (Akerberg and 

Zacchi, 2000).  

 

From the material balance, the volume of each fermentor is found to be 

44,642 litres and thus the actual volume = 44,642 litres : 0.8 (working/actual 

volume) = 55,803 litres. 

With 5 % of inoculum ratio, the estimation of the inoculum media for three 

fermentors which are: 

a) The seed fermentor volume = 55,803 litres × 0.05 volume ratio = 2,790 litres, and 

the actual volume = 3,487 litres 

b) The pre seed fermentor volume = 2,790 litres × 0.05 volume ratio = 139 litres, and 

the actual volume = 173 litres 

c) The inoculum development fermentor = 139 litres × 0.05 volume ratio = 7 litres, 

and 

the actual volume = 9 litres 

 

 

 

7.3.1.3 Rotary Filter I 
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The fermentation broth is then filtered to separate the calcium carbonate and 

protein sediment using Rotary Drum Vacuum Filter I. The filtrate was assumed 

consisting of 1% of protein and 3% of calcium carbonate. The area of drum vacuum 

was assumed to be 350 litres/m2 hr (Blanch and Clark, 1997). If the filtration was 

completed in 4 hours, the filter area required = (44,462 litres : 4 hr) : 350 litres/m2 hr 

= 31.75m2 = 310 ft2. 

 

 

 

7.3.1.4 Acidifier Tank 

 

The crude product was then reacted using 78% of sulphuric acid resulted in 

lactic acid and calcium sulphates (Kascak, 1996). Recovery of lactic acid from the 

fermentation broth required consideration of the corrosive nature of lactic acid and 

usually 316 stainless steel vessels were employed. Based on stoichiometry, each 

batch needed 1,750 kg of sulphuric acid (78%). The working volume of acidifier 

tank = 44,642 + 1,750 = 46,212 litres. The actual volume of acidifier tank = 46,212 

litres : 0.8 = 57,765 litres.= 15,281gal. 

 

 

 

7.3.1.5 Rotary Filter II 

 

The resultant calcium sulphate precipitate is filtered by Rotary Drum Vacuum 

Filter II. The suspension contains 4% of calcium sulphate (stoichiometric). The area 

of drum vacuum was assumed to be 350 litres/m2 hr (Blanch and Clark, 1997). If the 

filtration was completed in 4 hours, the filter area required = (44,462 litres : 4 hr) : 

350 litres/m2 hr = 31.75m2 = 310 ft2. 

 

 

 

7.3.1.6 Evaporator 
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The bleached lactic acid is then concentrated by vacuum evaporator to give a 

food grade material containing about 50% of lactic acid. Multi-effect evaporators 

were used to minimise the energy utilisation. The heat transfer coefficient assumed 

for the three evaporators were 4,800, 3,000 and 900 kcal / m2 oC.h, respectively 

(Brocklebank, 1990; Akerberg and Zacchi, 2000). The evaporation was assumed to 

perform co-currently in three steps below atmospheric pressure due to the 

polymerisation property of lactic acid. The evaporator temperatures for three steps 

were assumed to be 90, 75 and 55 oC, respectively and the increase of water boiling 

point due to the presence of lactic acid could be calculated using Equation (7.1) 

(Akerberg and Zacchi, 2000). 

 

wT 32.5=Δ                         …..(7.1) 

 

where TΔ is the increase of boiling point (K) and w is the mass fraction of lactic acid 

(g lactic acid/g solution). 

 

 

 

7.3.1.7 Bleaching Tank 

 

After the calcium sulphate was filtered, the free lactic acid is bleached by 

activated carbon. The addition of carbon active to the solution was assumed of 

0.05% w/v (Paturau, 1982) and therefore the requirement of activated carbon = 0.001 

× 44,462 = 22.23 kg. The working volume of bleaching tank = 44,462 + 0.4 (44,462) 

+ 22.23 = 42,705 litres = 11,291 gal. The actual volume of bleaching tank = 11,291 : 

0.8 = 14,114 gal. 

 

 

 

7.3.1.8 Filter Press  

 

After bleaching, the solution is then filtered to remove the activated carbon 

using Plate and Frame Filter Press. Two filters were used with the volume of filtrate 
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per batch 750 ft3. The operating time and pressure drop were assumed at 4 hours and 

40 psi, respectively (Peters and Timmerhaus, 1981). The total area of filtering 

surface required was approximately 180 ft2. 

 

 

 

7.3.1.9 Sulphuric Acid Tank 

 

The sulphuric acid was presumed to be supplied for 2 months and hence, 

therefore the requirement of sulphuric acid tank = 1.75 tonnes/batch × 4 × 50 batch : 

6 = 58.333 litres = 15.430 gal. The actual volume of sulphuric acid tank = 15.430 : 

0.8 = 20.000 gal. 

 

 

 

7.3.1.10 Lactic Acid Tank 

 

The product was assumed to be stored in the plant for two months. If the 

lactic acid production/year was 1.000 tonnes, the requirement of lactic acid tank = 

166 tonnes = 43,915 gal. The actual volume of lactic acid tank = 43, 915 : 0.8 = 

54,890 gal. 

 

 

 

7.3.2 Process Economic Evaluation 

 

7.3.2.1 Components Of The Cost Estimation 

 

a) The Capital Investment 

 

The categories for capital investment include the costs for the installed 

purchased equipment, land, building construction and engineering design; start-up 

costs, reflecting modification that may be required when the plant is commissioned; 
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and the working capital used to provide the inventory of raw materials, supplies and 

cash to pay salaries and vendors. The sum of the fixed and working capital is the 

total capital investment. In this problem, the capital investment will be determined by 

method describe by Petter and Timmerhaus (1981) and the elements cost are 

summarised in Table 7.3. 

 

 

b) Total Production Cost 

 

The total production cost is divided into manufacturing cost and general 

expenses. The manufacturing cost includes elements that contribute directly to the 

cost of production such as operating cost, fixed cost and plant overhead cost. The 

direct operating cost includes the raw materials, utilities and supplies; these costs 

will generally scale with the plant size. The fixed cost is related to the physical plant 

and does not change with productivity level. The plant overhead cost includes 

charges for services that are not directly attributed to the cost of production. 

Meanwhile general expenses include those charges for marketing, research and 

development. Total production cost can be broken into components as listed in Table 

3.5 that are described by Blance and Clark (1997), Peters and Timmerhaus (1981) 

and Swartz (1986). 

 

 

 

7.3.2.2 Cost Estimation For Future Year 

 

The value of money will change because of inflation and deflation. Hence 

cost data is accurate only at the time when they are obtained and soon it will go out 

of date. Data from cost records of equipment and projects purchased in the past may 

be converted to present day values by means of cost index (Perry, 1984). If the 

equipment cost and cost index at present time were Cp and Ip, the original cost and 

the index cost at time of original cost obtained would be Co and Io, respectively and 

thus the equivalent cost at the present time (Cp) can be determined by 
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)(
Io
IpCC OP =                           ….(7.2) 

 

The cost indices are obtained from The Chemical Engineering Plant Cost 

Index and Marshall and Swift equipment cost index are given in each issue of the 

publication of Chemical Engineering. For examples, the plant cost indices for 1980 

and 1997 were found to be 660 and 1480, respectively. 

 

 

 

7.3.2.3 Cost Estimation By Scaling 

 

 If the cost date of a piece of equipment are unavailable for the particular size 

of operational capacity involved, it can be estimated by using capacity ratio exponent 

based on existing data of a company or drawn from published correlations (Perry, 

1984). If the cost of equipment with capacity q1 is C1, then the cost of similar 

equipment with capacity q2 can be calculated from  

 

n

q
qCC )(

1

2
12 =                          …..(7.3) 

where the value of the exponent n is depended on the type of the equipment  

 

 
 
 
7.3.3 Profitability Analysis 

 

There are number of methods which are used to determine whether the 

proposed process will be profitable. One common approach is to calculate the rate of 

return on investment (ROR) determined before or after taxes. The rate of return is 

ordinarily on an annual percentage basis and obtained by dividing the annual profit 

with the total investment. 
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investment capital Total
)safter taxe and before(profit  Annual(%)ROR =                .…(7.4) 

 

The second method is payout time or payout period which is the minimum 

length of time theoretically necessary to recover the original capital investment in the 

form of cash flow of the project based on the total income minus all cost except 

depreciation (Peters and Timmerhouse, 1981). 

 

ondepreciati ar profit /ye
investment capital fixed edepreciabl)year( POT

+
=          ….(7.5) 

 

Other methods include the cash flow analysis which relates the net cash in 

(profits plus depreciation) to the cash out (initial investment), net present worth, 

internal rate of return, discounted cash flow and capitalised cost (Blanch and Clark, 

1997; Peters and Timmerhaus, 1981). 

 

 

 

7.4 Results 

 

7.4.1 Cost Estimation 

 

Based on the flow sheet in Figure 7.1, the complete equipment list for lactic 

acid production plant is summarised in Table 7.2. The cost of equipment was 

obtained from Plant Design and Economics for Chemical Engineers (Peters and 

Timmerhaus, 1981). The cost of the equipment at 1999 was estimated using Equation 

(7.2) by using The Chemical Engineering Plant Cost Index 

 

 



 275

Table 7.2: The summary of equipment list for lactic acid production. 

 

Equipment (specification) Size Unit Quantity Cost ($1,000) 
(1979) 

Cost ($1,000) 
(1999) 

Blending tank (agitated, 
stainless steel) 

 14,743.00  gal 1 30.00 67.20 

Development inoculum 
(jacketed, agitated, 
stainless steel) 

       2.50 gal 2 0.95 2.13 

Pre-seed fermenters 
(jacketed, agitated, 
stainless steel) 

      46.00 gal 2 4.00 8.96 

Seed fermenters (jacketed, 
agitated, stainless steel) 

     921.00 gal 2 18.00 40.32 

Production fermenters 
(jacketed, agitated, 
stainless steel) 

14,743.00 gal 4 30.00 67.20 

Rotary drum filters 
(continuous, stainless steel)

        325.00 ft2 2 56.00 125.44 

Acidifier tanks (agitated, 
stainless steel) 

   15,281.00 gal 2 30.00 67.20 

Evaporator (triple effect, 
vacuum) 

        225.00 ft2 1 110.00 246.40 

Bleaching tanks (agitated, 
stainless steel) 

 14,446.00 gal 2 30.00 67.20 

Filter press (plate and 
frame, stainless steel) 

      180.00 ft2 2 22.00 49.28 

Sulphuric acid storage tank 
(stainless steel) 

20,000.00 gal 1 23.00 51.52 

Lactic acid storage tank 
(stainless steel) 

27,000.00 gal 2 27.00 60.48 

 

 

For scale-up equipment cost, Equation (7.3) was used. Based on the 

descriptions above, the list of equipment cost in the plant is given in Table 7.3 
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Table 7.3: The list of equipment cost for lactic acid production plant. 
 

Equipment Cost of 

small size

Exponent 

(n) 

Cost of 

large size 
Quantity 

 

Total cost 

($1,000) 

 Blending tank 67.20 0.50 300.53  1 300.53 

 Development inoculum  2.13 0.57   11.74  2   23.47 

 Pre-seed fermenters  8.96 0.57   49.42  2   98.84 

 Seed fermenters 40.32 0.57 222.39  2 444.77 

 Production fermenters  67.20 0.57 370.64  4  1,482.57 

 Rotary drum filters   125.44 0.48 528.36  2  1,056.72 

Acidifier tanks 67.20 0.50 300.53  2    601.06 

Evaporator   246.40 0.48  1,037.85  1 1,037.85 

Bleaching tanks 67.20 0.50 300.53  2    601.06 

Filter press     49.28 0.57      271.80 2    543.61 

Sulphuric acid tank 51.52 0.30 126.56  1    126.56 

Lactic acid tank 60.48 0.30 148.57  2     297.13

Purchase equipment      6,614.61

 

 

For preliminary study estimates, the estimation of fixed capital investment by 

percentage of delivered equipment cost was employed (Peters and Timmerhaus, 

1981). The fixed capital investment was broken into the components listed in Table 

7.4  
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Table 7.4: The fixed capital investment estimation by percentage of delivered 

equipment cost (Peters and Timmerhaus, 1981). 

 

Components % PE  Cost ($) 

Purchased equipment (delivered), (PE) 100      6,614,600.00  

Purchased equipment (installation) 39      2,579,694.00  

Instrumentation (installed) 28      1,852,088.00  

Piping (installed) 31      2,050,526.00  

Electrical (installed) 10         661,460.00  

Buildings (including service) 22      1,455,212.00  

Yard improvement 10         661,460.00  

Service facilities 55      3,638,030.00  

Land 6         396,876.00  

Total direct plant cost (D)      19,909,964.00 

Engineering and supervision 32      2,116,672.00  

Construction expenses 34      2,248,964.00  

Total direct and indirect cost (D+I)           24,275,582.00  

Contractor fee, 5% (D+I)             1,213,779.10  

Contingency, 10% (D+I)             2,427,558.20  

Fixed capital investment           27,916,919.30  

Working capital (10% FCI)             2,791,691.93  

Total capital Investment           30,708,611.23  

 

 

The raw material is the element of the total production cost. The cost of the 

raw materials was found in Malaysia Imports (Statistics Department of Malaysia, 
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1995). The raw material requirements and their cost for production process are 

shown in Table 7.5. 

 

Table 7.5: The raw material requirements and their cost. 

 

Raw Material Quantity Units Cost/unit ($)  Annual Cost ($)  

Liquid pineapple waste   178,500.00 tonnes 0.00 0.00 

Calcium carbonate       5,500.00 tonnes 110.00          605,000.00  

Sulphuric acid (78%)       6,900.00 tonnes 124.00           855,600.00  

Yeast extract          900.00 tonnes     2,688.00        2,419,200.00  

Activated carbon            90.00 tonnes        676.00             60,840.00  

            Total        5,007,040.00  

 

 

The estimation of direct production cost, fixed cost, plant overhead cost and 

general expenses were adapted from Peter and Timmerhause (1981), Blanch and 

Clark (1997), and Swartz (1986). The total production cost was summarised in Table 

7.6 

 

 

 

7.4.2 Economic Analysis 

 

7.4.2.1 The Break Even Point (BEP) 

 

BEP is the point of production rate (capacity) where the total production cost 

equals the total income. The determination of BEP recommends the production rate 

and operating schedules that will give the best economic results (Peter and 

Timmerhause, 1981). If the production rate is n tonnes/year, the direct production 

cost is $366.79/tonnes and the sum of fixed cost, overhead cost and general expenses 
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is $7,062,981/year while the product sells at $1,400/tonnes, the break even point in 

ton/year will be: 

 

n 400,17,062,981 n  366.79 =+  

  ton/year 6,836 n    7,062,981 n  1033.20 =→=  

or 
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Table 7.6: Total production cost. 

 

Components Annual cost ($) Annual cost ($) 

I. Direct Operating Cost (DOC)  

A. Raw materials and supplies  

1.Raw materials 5,007,040.00 5,007,040.00 

2.Supplies (2% DOC) 0.0198 X-141,259   146,776.92 

B. Labor and supervision (10% MC) 0.10 X 1,454,726.90 

C. Utilities (5% MC) 0.05 X    727,363.45 

Total 4,865,780+0.169 X 7,335,905.26 

II. Fixed cost   

A. Depreciation (10% FCI) 3,070,861          3,070,861.00 

B. Interest (10% FCI) 3,070,861          3,070,861.00 

C. Taxes (2% FCI) 614,172             614,172.00 

D. Insurance (1% FCI) 307,086             307,086.00 

Total 7,062,981          7,062,981.00 

III. Plant overhead (10% labor) 0.01 X     145,472.69 

IV. Manufacturing cost X 14,547,269.51 

V.  General Expenses   

A. Administration  (2% TPC) 0.02 Y     316,244.98 

B. Distribution and selling (3% TPC) 0.03 Y              474,367.47 

C. Research and development (3% TPC) 0.03 Y              474,367.47 

Total 0.08Y   1,265,699.92 

VI. Total Product Cost = IV + V Y 15,812,249.47 

 

X = 4,865,780 + 0.1698 X + 7,062,981 + 0.01 X = $14,547,269.51 

Y = 0.08 Y + X = 0.08 Y + $14,547,269.51 = $15,812,249.47 
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  capacity) (full % 34.18  % 100  
20,000
6,836

=×  

 

 

It was observed that the BEP was achieved at 34.18% of the present plant 

operating capacity. Figure 7.2 shows a graphical analysis of the effect on costs and 

profits when the rate of production varies. This figure also indicates that the fixed 

cost remains constant and the total production cost increases if the rate of production 

is increased. The plant has to be operated above the minimum economic capacity 

(the production rate at break even point) which are 6,800 ton/year Under this 

condition, an ideal production rate for this lactic acid industry would be 

approximately 18.000 tonnes/year or 90% of maximum capacity.  

 

 

Figure 7.2: Break even chart for lactic acid processing plant. 
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7.4.2.2 Annual Profit Before And After Income Taxes  

 

a) Annual profit before income taxes  = total annual sell - total annual product 

cost 

         = $1,400 × 20,000 - $15,812,249 

         = $12,187,751 

 

b) Annual profit after income taxes 

 

The income taxes amount is assumed as 35% of all pre taxes profit. 

Therefore, 

Annual profit after income taxes = $12,187,751 × 0.65 = $7,922,038 

 

 

 

7.4.3 Process Profitability  

 

7.4.3.1 Rate Of Return On Investment (ROR) 

 

The rates of return before and after taxes were determined by Equation (7.4). 

 

a)  %39.68 100 
611,708,30
751,187,12 taxesbefore.(%).ROR =×=  

 

b) %25.79 100
611,708,30

038,922,7safter taxe (%) ROR =×=  

 

According to the literature, a 20% ROR before income taxes would be the 

minimum acceptable return for any types of business proposition (Peters and 

Timmerhouse, 1981). Therefore, in economic term, the utilisation of liquid pineapple 

waste is feasible for lactic acid production using L. delbrueckii. 
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7.4.3.2 Payout Time (POT) 

 

The payout time or payout period was determined by Equation (7.5). 

 

years 2.01 
3,070,861 751,187,12
611,708,30years)( POT =

+
=  

 

This result indicates that the fixed capital investment is recovered only after 2 

years. In general, a 5-year recover before income taxes would be the maximum 

acceptable recover for chemical industry. 

 

 

 

7.5 Comparison To Other Substrates 

 

 The comparisons of economic evaluations on different substrates used in 

lactic acid fermentation plant are given in Table 7.6. The ROR value of Plant C was 

higher than both other plants which denotes that the return on investment on Plant C 

was higher than Plant B and A with ROR of 76.80, 51.12 and 39.68 % for before 

taxes and 49.92, 32.71 and 25.97 % for after taxes, respectively. The highest ROR 

value indicates that Plant C was most profitable than others. This also indicates that 

the capital recovery of Plant C was faster than Plant B and A with the values of 

payout time for each plant which are 1.15, 1.6 and 2 years, respectively.  

  

 However the cost of substrate at Plant A was nil but it was observed that the 

raw material cost of Plant A contributed about 31.10 % to the total product cost, 

followed by Plant B and C which were 27.61 and 18.42 %, respectively. The high 

production cost affects the annual profit and thus decreases the return on investment 

or increases the recovery of the capital.  
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Table 7.7: The comparison of profitability on lactic acid plant with different 

substrates. 

 

Plant A Plant B Plant C 
Conditions 

This Work, 2002 Akerberg, 2000 Paturau, 1982 

Substrate Pineapple waste Wheat flour Molasses 

Technical grade 50 % 70% 80% 

Capacity (tonnes/year) 20.000 30.000 1000 

Substrate cost ($ / ton) 0.00 91.50 80.00 

Lactic acid price ($ / kg) 1.40 1.66 1.69 

Total production cost ($/kg) 0.79 0.83 0.76 

Ratio of raw material and 

total production cost (%) 
31.10 27.61 18.42 

ROR before taxes (%) 39.68 51.12 76.80 

ROR after taxes (%) 25.79 32.71 49.92 

POT (years) 2.00 1.60 1.15 

 

 

 

7.6 Conclusion 

 

The feasibility study of lactic acid production from liquid pineapple waste 

using L. delbrueckii was investigated. The estimation of total capital investment and 

production cost was evaluated. The profits before and after taxes were calculated and 

the profitability was also evaluated. These results can be concluded as follow: 

 

1. The raw material cost contributed to 30% of total production cost, which resulted 

in a production cost of 0.79 US$/kg product. It was lower than those reported by 



 285

Akerberg and Zacchi (2000) which were 0.833 US$/kg product. It was likely due 

to the difference of substrate used and the purity of lactic acid produced. 

2. The minimum economic capacity on lactic acid plant was achieved at production 

rate of 6,800 tonnes per year (break even point). Under this condition, this lactic 

acid plant has to be operated at production rate above 7,000 tonnes per year and 

ideal production rate would be approximately 18,000 tonnes per year or 90% of 

full capacity to obtain the maximum profit. 

 

3. The returns on investment before and after taxes obtained were 39.68 and 25.79%, 

respectively. According to the literature, a 20% ROR before income taxes would 

be the minimum acceptable return for any types of business proposition. 

Therefore, in economic term, the utilisation of liquid pineapple waste is feasible 

for lactic acid production using L. delbrueckii. 

 

4. The profitability was also evaluated using payout time and result obtained was 2.0 

years which indicates that the fixed capital investment is recovered after 2 years. 

In general, a 5-year recover before income taxes would be the maximum 

acceptable recover for chemical industry. 

 

5. However the profitability of lactic acid plant using pineapple waste as substrate 

was lower than the utilisation of molasses and wheat flour, but it is still potential 

to be produced at industrial scale. 
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CHAPTER VIII 

 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

This final chapter will summarise all the results and discussions of the data 

presented in Chapters IV, V, VI and VII, as well as recommend for further study in 

order to obtain a better understanding on lactic acid fermentation using pineapple 

waste, and subsequently to improve the lactic acid productivity.  

 

 

 

8.1 Summary 

 

8.1.1 The Chemical And Physical Properties Of Pineapple Waste 

  

The liquid pineapple waste contains sugar mainly fructose, glucose and 

sucrose along with little protein, which vary depending on area, season and process 

used in canning industry. The solid waste contains 20 % (w/w) of fructose and 

glucose. Both solid and liquid wastes contain minerals and other nutrients such as 

citric acid, which are needed for growth of Lactobaciilae. The solid and liquid 

wastes appear to be potential substrates for lactic acid fermentation. Fermentation of 

solid waste gives the highest yield compared with liquid waste or liquid waste 

extract. 
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8.1.2 Parameters Influencing In Lactic Acid Fermentation 

 

The batch fermentations were carried out under anaerobic condition with 

flushing to the fermentor using nitrogen gas. Effects of various parameters such as 

temperature, pH, inoculum size, initial substrate concentration and nitrogen source 

were studied. Effect of controlled pH has advantages in term of higher yield and rate 

of production compared with uncontrolled pH. If the fermentation process were 

carried out in shake flask, the addition of calcium carbonate (3 % w/v) in the 

fermentation medium would be very effective in controlling pH value at about 6.0. 

Effects of various parameters on the yield show that the maximum lactic acid 

production and yield obtained were 54.97 g/l and 79 %, respectively. The optimal 

conditions achieved were at pH: 6.0; temperature: 40 oC; inoculum size: 5 %; yeast 

extract as nitrogen source: 0.5 %; and initial sugar concentration of 70 g/l. Effect of 

initial sugar concentration was also carried out in shake flask fermentation by 

diluting the pineapple waste, and the optimal yield was found to be 52.50 g/l.  

 

The effects of types and concentrations of sugar on lactic acid fermentation 

were also studied. Glucose, fructose and sucrose were used, and the yields were 

found to be 93% for all types of sugar at concentration of 20 g/l. By using mixed 

sugar at same concentration, the yield was found to be 93%. If the concentration was 

increased similar to that of sugar in pineapple waste (55 g/l), only 87 % of yield was 

obtained. The sugar utilisation on lactic acid fermentation for pure sugar or mixed 

sugar at concentration of 20 g/l shows that all sugars are completely utilised, with 

sucrose as the first sugar to be utilised followed by glucose and fructose. If the sugar 

concentration was increased to 55 g/l, only fructose was not completely utilised. This 

is different with the case where fermentation was carried out using pineapple waste 

in which only sucrose was completely utilised. It was found that fed batch 

fermentation was more efficient since it produced higher lactic acid concentration or 

lactic acid yield, and the productivity of 2.5 fold of batch fermentation was obtained. 
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8.1.3 Modelling And Kinetics Parameters Estimation In Lactic Acid 

Fermentation 

 

A simplified unstructured kinetic model for lactic acid fermentation of liquid 

pineapple was developed. The model development was based on assumption that the 

rate of increase in biomass was a function of biomass concentration and one 

substrate (limiting substrate) only. The model took account of three responses, which 

were cell growth, total sugar utilisation and lactic acid production. 

 

It was found that maximum specific growth rate (μmax) in the lactic acid 

fermentation was affected by the types of substrates used. In batch fermentation of 

20 g/l of various types of sugar such as: glucose, fructose, sucrose and mixed sugar, 

it can be found that the glucose medium gave the highest of maximum specific 

growth rate. When the concentration of the sugar was increased to 55 g/l, the value 

of μmax increased as well. This indicates that the growth rate for 55 g/l was faster 

than for 20 g/l. The μmax for 55 g/l was higher for lactic acid fermentation of liquid 

pineapple waste at all variables understudied. Other kinetic parameters such as 

saturation constant (Ks) were not significantly affected by the types of sugar used 

and process variables such as pH, temperature and inoculum size. Using sensitivity 

analysis, the growth kinetics of lactic acid fermentation appeared to be controlled 

mainly by maximum specific growth rate during the whole batch. The values of 

growth associated product formation constant (k1) did not affected by process 

variables understudied, but the non growth associated product formation constant 

(k2) was significantly affected by the pH. The lactic acid production by L. 

delbrueckii is favoured by fermentation at controlled pH of 6.0. The variation of k1 is 

very sensitive to lactic acid production than k2. Thus the lactic acid production is 

controlled by parameter of k1 which is almost totally dependent of the growth rate.  

 

The models were found to be in good agreement with the fermentation data. 

The kinetic model of the microbial growth, sugar utilisation and lactic acid 

production from pure sugar, mixed sugar (glucose, fructose and sucrose) and 

pineapple waste are similar and can be expressed by same type of mathematical 

model. 
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The simple unstructured model for growth in fed-batch fermentation was also 

developed. The model development was based on several assumptions, which are the 

growth rate is a function of concentrations of biomass and limiting nutrient only; 

single stage chemostat and no recycle. It was found that the kinetic parameters such 

as specific growth rate (μ) and biomass yield (Yx/s), k1 and k2 were affected by sugar 

feeding concentration. The highest μ and Yx/s were obtained at 90 g/l sugar feeding 

concentration. The values of k1 were higher than k2. This indicates that the lactic acid 

production is to be controlled by parameter k1. 

 

 

 

8.1.4 Optimisation Of Conditions In Lactic Acid Fermentation 

 

Many variables may affect the lactic acid fermentation process. The 

screening of these variables identified five variables such as sugar concentration, 

yeast extract concentration, fermentation time, temperature and stirring speed which 

have significant effect on fermentation system. 2 5-1fractional factorial central 

composite design (FFCCD) was used to determine the optimal values of the process 

variables. Response surface methodology (RSM) permitted in formulating two 

second-order polynomial empirical models relating to the responses and the 

significant variables. From these models it was possible to determine the values of 

the variables giving the maximum yield of lactic acid production. The optimal values 

of tested variables were found to be: sugar concentration, 65.87 g/l; yeast extract 

concentration, 15.35 g/l; fermentation time, 182.4 hours; temperature, 41.70oC and 

stirring speed, 153.58 rpm. The maximum of lactic acid yield predicted by the model 

was 83.79 %. Based on optimum conditions obtained, shake flask fermentation (100 

ml) was carried out. The lactic acid yield obtained was 83.07 %, while in scale up 

fermentation (5 litres) the lactic acid yield obtained was 86.15 %.  
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8.1.5 A Techno-Economic Evaluation Of Lactic Acid Production 

 

The raw material cost contributed to 30% of total production cost, which 

resulted in a production cost of 0.79 US$/kg product. It was lower than those 

reported by Akerberg and Zacchi (2000) which was 0.833 US$/kg product. It might 

be due to the different substrates used and different purity of lactic acid produced. 

The minimum economic capacity on lactic acid plant was achieved at production rate 

of 6,800 tonnes per year (break even point). Under this condition, this lactic acid 

plant has to be operated at production rate above 7,000 tonnes per year and ideal 

production rate would be approximately 18,000 tonnes per year or 90% of full 

capacity to obtain the maximum profit. 

 

The returns on investment before and after taxes obtained were 39.68 and 

25.79%, respectively. According to the literature, a 20% ROR before income taxes 

would be the minimum acceptable return for any types of business proposition. 

Therefore, in economic term, the utilisation of liquid pineapple waste is feasible for 

lactic acid production using L. delbrueckii. The profitability was also evaluated using 

payout time and result obtained was 2.0 years. This shows that the fixed capital 

investment is recovered after 2 years. In general, a-5 year recover before income 

taxes would be the maximum acceptable recover for chemical industry. However the 

profitability of lactic acid plant using pineapple waste as substrate was lower than 

using molasses and wheat flour. However it is still prospective to be produced at 

industrial scale. 

 

 

 

8.2 Recommendations For Future Study 

  

The lactic acid production depends on the growth of the lactic acid bacteria in 

the medium like liquid pineapple waste. Growth of L. delbrueckii requires a wide 

range of growth factors including amino acids, vitamins, organic acids and minerals. 

Therefore the characterisation study of pineapple waste should not focus only on 
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elements like sugar, mineral and organic acid but further study is needed to 

determine vitamins especially B complex and amino acids in the pineapple waste.  

Batch fermentation is used industrially in lactic acid production by L. 

delbrueckii. The substrate used was glucose (15 %) with the maximal yield and 

productivity of 93 % and 2 g l-1 h-1, respectively. In continuous stirred tank reactor, 

the productivity increased to 76 g l-1 h-1 with initial sugar concentration of 7 %. By 

immobilised L. delbrueckii in calcium alginate beads, the productivity increased to 

100 g l-1 h-1 with the maximum yield of 97 % and initial sugar concentration of 5 %. 

Therefore in order to increase the lactic acid productivity, further study is desired to 

include immobilised cell as well as the use of continuous bioreactors. In addition, up 

to now, studies on lactic acid production by immobilised cell have been mainly 

focused on using whey, starch, molasses, and synthetic medium containing glucose 

and lactose. Study on the use of complex substrate like pineapple waste by 

immobilised cell is yet to be reported in literatures. 

 

In this work, for fed-batch fermentation, the productivity obtained was only 

0.441 g l-1 h-1. Further study is needed to increase the productivity by application of 

cell recycle using cross flow filtration. Further more, study on extractive 

fermentation system in which lactic acid can be extracted using Alamine 336 should 

be carried out to obtain higher productivity. 

 

Among the various complex nitrogen sources, yeast extract is the best choice 

for lactobacillus growth and lactic acid production. However, the high cost of yeast 

extract has a negative impact on the techno-economics of the process. In the 

economic analysis for lactic acid production, as reported in the literature, material 

cost of yeast extract was estimated to contribute over 30 % to the total production 

cost. Therefore, in order to reduce the cost, cheaper nitrogen sources must be 

searched to replace the yeast extract. 

 

In kinetic study the unstructured model was developed by assuming that the 

biomass composition was constant during all operation conditions. Even though this 

model is sufficient to simulate the current experimental results obtained, more 

generalised model for lactic acid fermentation which can be simulated at widely 
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different operating conditions is needed. Therefore it is very important to further 

study the structure model of lactic acid fermentation. This model is expected to give 

better description on transient operating conditions and it contains a small number of 

parameters which can easily be estimated on the basis of steady state experiments. 

Furthermore, optimisation study of batch and fed-batch lactic acid fermentation is 

also requisite to obtain the optimal productivity using development model. 

 

Initial study indicated that solid pineapple waste is also potential to be used 

as substrate for lactic acid production carried out by submerged and semi-solid 

fermentation. Further study on solid state fermentation of solid pineapple waste is 

very encouraging by utilising the existing cheap raw materials as well as to obtain 

higher yield at lower cost.  
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APPENDIX A 

 

 

 

DATA 0F LACTIC ACID FERMENTATION USING PINEAPPLE WASTES 

 

 

 

Table A1: Time dependence of biomass, glucose, fructose and lactic acid 
concentration during fermentation of solid pineapple waste. Experimental  
 conditions, T: 40oC, pH: 6.0, inoculum: 5% and stirring speed: 50 rpm.  
 

Time (h) Glucose (g/l) Fructose (g/l) Lactic acid (g/l) 
0 6.83 8.89 0.00 
24 7.49 10.75 1.24 
48 5.21 8.85 5.35 
72 3.90 5.77 10.85 
96 1.12 4.34 14.77 
120 0.56 3.91 16.18 
144 0.00 2.82 17.25 
168 0.00 0.05 19.71 
192 0.00 0.18 22.51 
216 0.00 0.00 22.37 
240 0.00 0.00 22.14 
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Table A2: Time dependence of biomass, glucose, fructose and lactic acid 
concentration during fermentation of liquid pineapple waste extract. Experimental  
conditions, T: 40oC, pH: 6.0, inoculum: 5% and stirring speed: 50 rpm.  
 

Time (h) Biomass (g/l) Glucose (g/l) Fructose (g/l) Lactic acid (g/l) 
0 0.000 10.260 12.840 0.000 
4 0.003 10.140 12.680 0.000 
8 0.020 10.050 12.560 0.000 
12 0.138 9.810 12.390 0.070 
16 0.375 9.700 12.240 0.133 
20 0.531 9.632 12.130 0.355 
24 0.914 9.510 12.050 0.682 
28 1.279 9.430 11.920 0.971 
32 1.321 9.140 11.760 1.200 
36 1.329 8.870 11.530 1.740 
40 1.327 8.010 11.280 2.070 
44 1.322 7.860 11.010 2.370 
48 1.294 7.790 10.960 2.580 
56 1.278 7.060 10.830 2.940 
68 1.245 6.940 10.640 3.200 
80 1.167 6.510 10.360 3.520 
92 1.076 5.850 10.120 4.360 
104 0.650 4.050 9.330 6.730 
116 0.319 3.190 7.260 8.650 
128 0.296 2.380 6.540 10.360 
144 0.281 1.240 4.450 13.108 
168 0.246 1.220 4.310 13.376 
192 0.237 1.130 4.230 13.054 
216 0.220 1.100 3.990 12.960 
240 0.181 1.030 3.960 12.830 
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Table A3: Time dependence biomass concentration during fermentation of  
                   pineapple waste with controlled and uncontrolled pH. Experimental  
                   conditions,T : 40oC, inoculum: 5% and stirring speed: 50 rpm.  
 

Time Biomass (g/l) 
(h) Controlled pH Uncontrolled pH 
0 0.000 0.000 
4 0.013 0.003 
8 0.126 0.007 
12 0.215 0.112 
16 0.463 0.241 
20 0.857 0.334 
24 0.965 0.337 
28 1.004 0.359 
32 1.103 0.407 
36 1.218 0.440 
40 1.346 0.493 
44 1.543 0.577 
48 1.616 0.654 
52 1.602 0.793 
56 1.484 0.817 
64 1.412 0.615 
72 1.384 0.437 
80 0.997 0.330 
92 0.790 0.322 
104 0.643 0.319 
116 0.585 0.332 
128 0.463 0.334 
144 0.444 0.341 
168 0.355 0.333 
192 0.280 0.331 
216 0.124 0.329 
240 0.096 0.327 
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Table A4: Time dependence of glucose concentration during fermentation of  
                  pineapple waste with controlled and uncontrolled pH. Experimental   
                  conditions, T: 40 oC, inoculum: 5% and stirring speed: 50 rpm.  
 

Time Glucose concentration (g/l) 
(h) Controlled pH Uncontrolled pH 
0 19.560 19.840 
4 21.290 21.770 
8 22.690 22.510 
12 23.900 23.160 
16 24.880 24.270 
20 25.610 25.420 
24 26.240 25.850 
28 26.870 26.240 
32 27.540 26.760 
36 28.360 27.100 
40 28.900 27.820 
44 29.170 28.160 
48 30.960 29.270 
52 29.480 29.830 
56 28.130 30.420 
64 27.280 31.850 
72 26.180 30.060 
80 24.540 29.100 
92 23.080 28.650 
104 20.260 28.530 
116 16.160 27.860 
128 11.320 27.600 
144 7.440 26.330 
168 3.250 26.310 
192 3.070 25.780 
216 2.920 25.610 
240 2.570 25.450 
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Table A5: Time dependence of fructose concentration during fermentation of  
                 pineapple waste with controlled and uncontrolled pH. Experimental  
                 conditions, T: 40 oC, inoculum: 5% and stirring speed: 50 rpm.  
 

Time Fructose concentration (g/l) 
(h) Controlled pH Uncontrolled pH 
0 20.270 20.240 
4 20.430 20.770 
8 22.360 21.640 
12 23.940 22.680 
16 24.510 23.710 
20 26.580 24.070 
24 27.030 24.610 
28 29.620 24.840 
32 30.140 25.190 
36 29.320 25.460 
40 29.040 25.870 
44 28.910 26.760 
48 28.480 27.830 
52 28.320 28.760 
56 28.150 28.990 
64 27.830 29.140 
72 27.623 30.810 
80 27.440 30.440 
92 26.540 30.010 
104 22.450 29.260 
116 18.290 29.420 
128 15.580 28.980 
144 13.700 28.850 
168 9.880 28.660 
192 9.420 28.330 
216 9.230 28.560 
240 9.110 28.190 

 
 

 

 

 

 

 

 

 

 



 311

 

Table A6: Time dependence of sucrose concentration during fermentation of  
pineapple waste with controlled and uncontrolled pH. Experimental 
conditions, T: 40oC, inoculum: 5% and stirring speed: 50 rpm.  

 

Time Sucrose concentration (g/l) 
(h) Controlled pH Uncontrolled pH 
0 15.530 14.960 
4 13.840 13.480 
8 11.450 11.290 
12 9.340 9.050 
16 7.590 8.160 
20 6.420 6.240 
24 5.150 5.770 
28 4.360 4.960 
32 3.120 4.180 
36 2.280 3.620 
40 1.050 2.880 
44 0.460 1.750 
48 0.000 0.840 
56 0.000 0.000 
64 0.000 0.000 
72 0.000 0.000 
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Table A7: Time dependence lactic concentration during fermentation of  
                  pineapple waste with controlled and uncontrolled pH. Experimental  
                  conditions, T: 40oC, inoculum: 5% and stirring speed: 50 rpm. 
 

Time Uncontrolled pH Controlled pH (6.0) 
(h) Lactic acid (g/l) pH Lactic acid (g/l) 
0 0.000 6.00 0.000 
4 0.000 6.00 0.000 
8 0.000 6.00 0.220 
12 0.480 5.95 0.760 
16 0.820 5.90 0.950 
20 1.110 5.85 1.680 
24 1.470 5.80 2.390 
28 1.730 5.75 3.150 
32 2.220 5.70 3.820 
36 2.980 5.65 4.380 
40 3.160 5.60 5.410 
44 3.720 5.60 6.700 
48 4.220 5.50 7.950 
52 4.520 5.50 9.240 
56 5.850 5.50 10.410 
64 6.480 5.45 13.060 
72 7.260 5.40 13.920 
80 7.920 5.40 15.240 
92 8.760 5.40 17.860 
104 10.110 5.30 22.970 
116 10.710 5.30 29.630 
128 11.630 5.30 36.280 
144 12.930 5.25 47.790 
168 13.870 5.20 54.970 
192 13.520 5.10 54.610 
216 13.270 5.10 54.130 
240 13.250 5.10 53.680 
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Table A8: Time dependence of biomass concentration during fermentation of  
                  pineapple waste with different pH. Experimental conditions, T: 40oC,  
                  inoculum: 5% and stirring speed: 50 rpm.  
 

Time  Biomass concentration (g/l) 
(h) pH=6 pH=6.5 pH=5.5 
0 0.000 0.000 0.000 
4 0.013 0.000 0.000 
8 0.026 0.000 0.000 
12 0.215 0.000 0.000 
16 0.463 0.000 0.000 
20 0.857 0.000 0.000 
24 0.965 0.000 0.000 
28 1.004 0.070 0.090 
32 1.103 0.120 0.100 
36 1.218 0.140 0.110 
40 1.346 0.386 0.112 
44 1.543 0.605 0.113 
48 1.616 0.705 0.125 
52 1.602 0.718 0.132 
56 1.484 0.730 0.137 
64 1.412 0.765 0.149 
72 1.384 0.810 0.164 
80 1.198 0.708 0.187 
92 0.997 0.493 0.206 
104 0.790 0.477 0.329 
116 0.643 0.466 0.446 
128 0.585 0.482 0.474 
144 0.463 0.403 0.526 
168 0.444 0.384 0.491 
192 0.355 0.323 0.366 
216 0.124 0.301 0.343 
240 0.096 0.288 0.326 
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Table A9: Time dependence of glucose concentration during fermentation of  
                   pineapple waste with different pH. Experimental conditions, T: 40oC,  
                   inoculum: 5% and stirring speed: 50 rpm.  
 

Glucose concentration (g/l) Time  
(h) pH = 6.0 pH = 6.5 pH = 5.5 
0 19.560 19.840 19.600 
4 21.290 20.480 20.420 
8 22.690 21.860 21.340 
12 23.900 23.270 21.650 
16 24.880 24.080 22.080 
20 25.610 25.100 22.780 
24 26.240 25.850 23.140 
28 26.870 26.760 23.650 
32 27.540 27.580 24.320 
36 28.360 29.410 24.930 
40 28.900 31.850 25.310 
44 29.170 32.330 25.960 
48 30.960 32.470 26.520 
52 29.480 32.290 26.864 
56 28.130 31.960 27.360 
64 27.280 29.730 28.580 
72 26.180 29.326 29.640 
80 24.540 28.890 30.480 
92 23.080 27.580 31.140 
104 20.260 25.100 32.660 
116 16.160 24.730 31.850 
128 11.320 23.660 31.370 
144 7.440 22.720 30.980 
168 3.250 21.180 27.600 
192 3.070 19.760 26.280 
216 2.920 19.460 25.390 
240 2.570 19.110 25.750 
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Table A10: Time dependence of fructose concentration during fermentation of  
                   pineapple waste with different pH. Experimental conditions, T: 40oC,  
                   inoculum: 5% and stirring speed: 50 rpm.  
 

Fructose concentration (g/l) Time  
(h) pH = 6.0 pH = 6.5 pH = 5.5 
0 20.270 20.340 20.140 
4 20.430 20.560 20.880 
8 22.360 20.910 21.090 
12 23.940 21.730 21.610 
16 24.510 22.120 21.980 
20 26.580 22.570 22.180 
24 27.030 23.580 22.470 
28 29.620 24.100 22.850 
32 30.140 25.390 23.280 
36 29.320 26.240 23.710 
40 29.040 28.070 24.080 
44 28.910 29.260 24.760 
48 28.480 30.810 25.490 
52 28.320 30.740 26.150 
56 28.150 30.620 26.880 
64 27.830 29.490 27.630 
72 27.623 29.320 28.700 
80 27.440 29.250 30.510 
92 26.540 28.220 31.540 
104 22.450 27.840 32.830 
116 18.290 27.560 32.210 
128 15.580 27.170 31.940 
144 13.700 26.830 31.760 
168 9.880 25.670 31.550 
192 9.420 25.780 31.270 
216 9.230 25.560 30.930 
240 9.110 25.540 30.770 
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Table A11: Time dependence of sucrose concentration during fermentation of  
                   pineapple waste with different pH. Experimental conditions, T: 40oC,  
                   inoculum: 5% and stirring  speed: 50 rpm.  
 

Sucrose concentration (g/l) Time  
(h) pH = 6.0 pH = 6.5 pH = 5.5 
0 15.53 15.16 15.39 
4 13.84 14.87 15.02 
8 11.45 13.53 14.79 
12 9.34 12.61 14.25 
16 7.59 11.28 13.94 
20 6.42 10.47 13.63 
24 5.15 8.94 12.86 
28 4.36 7.60 12.07 
32 3.12 4.75 11.01 
36 2.28 3.45 10.74 
40 1.05 1.18 9.96 
44 0.46 0.78 9.30 
48 0.00 0.42 8.86 
52 0.00 0.18 8.59 
56 0.00 0.00 8.34 
64 0.00 0.00 7.72 
72 0.00 0.00 7.04 
80 0.00 0.00 6.65 
92 0.00 0.00 5.19 
104 0.00 0.00 3.57 
116 0.00 0.00 2.24 
128 0.00 0.00 0.86 
144 0.00 0.00 0.00 
168 0.00 0.00 0.00 
192 0.00 0.00 0.00 
216 0.00 0.00 0.00 
240 0.00 0.00 0.00 
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Table A12: Time dependence of lactic acid concentration during fermentation of  
                    pineapple waste with different pH. Experimental conditions, T: 40oC,  
                    inoculum: 5% and stirring speed: 50 rpm.  
 

Lactic acid concentration (g/l) Time  
(h) pH = 6.0 pH = 6.5 pH = 5.5 
0 0.000 0.000 0.000 
4 0.000 0.000 0.000 
8 0.220 0.000 0.000 
12 0.760 0.000 0.000 
16 0.950 0.000 0.000 
20 1.680 0.000 0.000 
24 2.390 0.370 0.000 
28 3.150 0.560 0.000 
32 3.820 0.830 0.000 
36 4.380 1.290 0.000 
40 5.410 2.930 0.000 
44 6.700 3.740 0.000 
48 7.950 4.260 0.180 
52 9.120 4.590 0.397 
56 10.410 5.230 0.630 
64 12.260 6.110 1.170 
72 13.920 8.290 1.640 
80 15.240 9.360 2.030 
92 17.860 10.790 2.570 
104 22.970 12.170 3.210 
116 29.630 13.780 4.470 
128 36.280 14.610 5.150 
144 47.790 16.950 6.520 
168 54.970 19.820 9.040 
192 54.610 20.740 10.220 
216 54.130 21.880 11.590 
240 53.680 21.390 11.180 

 
 
 
 
 
 
 

 

 

 

 



 318

Table A13: Time dependence of biomass concentration during fermentation of  
                    pineapple waste with different temperature. Experimental conditions, T:  
                    40oC, inoculum: 5% and stirring speed: 50 rpm.  
 

Time Biomass concentration (g/l) 
(h) T= 50 oC T= 45 oC T= 40 oC 
0 0.000 0.000 0.000 
4 0.000 0.011 0.013 
8 0.010 0.020 0.126 
12 0.020 0.137 0.215 
16 0.030 0.259 0.463 
20 0.050 0.316 0.857 
24 0.173 0.361 0.965 
28 0.326 0.458 1.004 
32 0.377 0.567 1.103 
36 0.413 0.654 1.218 
40 0.452 0.766 1.346 
44 0.495 0.832 1.543 
48 0.513 0.926 1.616 
52 0.522 1.012 1.602 
56 0.536 1.085 1.484 
64 0.648 1.136 1.412 
72 0.814 1.227 1.337 
80 0.992 1.227 1.198 
92 1.208 1.380 0.997 
104 1.314 1.394 0.790 
116 1.297 1.199 0.643 
128 1.251 0.973 0.585 
144 0.983 0.836 0.463 
168 0.711 0.548 0.355 
192 0.441 0.317 0.280 
216 0.345 0.228 0.124 
240 0.142 0.130 0.096 
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Table A14: Time dependence of glucose concentration during fermentation of  
                    pineapple waste with different temperature. Experimental conditions, T:  
                    40oC, inoculum: 5% and stirring speed: 50 rpm.  
 

Time Glucose concentration (g/l) 
(h) T= 50 oC T= 45 oC T= 40 oC 
0 20.080 20.130 19.560 
4 20.360 20.310 21.290 
8 20.930 21.680 22.690 
12 22.050 23.750 23.900 
16 23.760 24.560 24.880 
20 24.510 26.740 25.610 
24 26.140 28.540 26.240 
28 28.780 29.080 26.870 
32 30.970 30.740 27.540 
36 32.330 31.430 28.360 
40 33.510 31.020 28.900 
44 32.140 30.640 29.170 
48 31.830 29.930 30.960 
52 31.180 29.670 29.480 
56 30.480 29.440 28.130 
64 29.970 27.720 27.280 
72 28.740 25.850 26.180 
80 26.900 24.190 24.540 
92 25.620 23.640 23.080 
104 25.180 22.980 20.260 
116 23.780 20.520 16.160 
128 22.280 15.680 11.320 
144 20.250 8.080 7.440 
168 19.440 7.530 3.250 
192 15.390 4.140 3.070 
216 15.080 3.980 2.920 
240 14.960 3.670 2.570 
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Table A15: Time dependence of fructose concentration during fermentation of  
pineapple waste with different temperature. Experimental  
conditions: pH: 6.0, inoculum: 5% and stirring speed: 50 rpm.  
 

Time Fructose concentration (g/l) 
(h) T= 50 oC T= 45 oC T= 40 oC 
0 19.860 20.060 20.270 
4 20.410 20.470 20.430 
8 20.840 21.130 22.360 
12 21.620 22.430 23.940 
16 22.480 23.290 24.510 
20 23.620 25.970 26.580 
24 25.310 26.580 27.030 
28 27.890 27.930 29.620 
32 28.330 28.560 30.140 
36 30.710 29.910 29.320 
40 32.860 30.110 29.040 
44 32.450 29.530 28.910 
48 32.420 29.360 28.480 
52 32.260 29.190 28.320 
56 32.060 29.040 28.150 
64 31.830 28.210 27.830 
72 31.641 27.726 27.623 
80 31.510 27.390 27.440 
92 31.080 26.480 26.540 
104 30.570 26.150 22.450 
116 30.260 25.960 18.290 
128 30.030 24.180 15.580 
144 29.900 20.960 13.700 
168 29.300 16.710 9.880 
192 27.340 13.260 9.420 
216 27.260 12.780 9.230 
240 26.840 12.510 9.110 
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Table A16: Time dependence of sucrose concentration during fermentation of  
                   pineapple waste with different temperature. Experimental  
                   conditions, pH: 6.0, inoculum: 5% and stirring speed: 50 rpm.  
 

Time Sucrose concentration (g/l) 
(h) T= 50 oC T= 45 oC T= 40 oC 
0 14.970 15.260 15.530 
4 14.020 13.220 12.230 
8 13.260 10.380 9.280 
12 11.190 8.510 7.370 
16 10.320 7.440 5.900 
20 9.070 6.250 5.110 
24 8.760 5.270 4.720 
28 7.890 4.130 3.460 
32 5.260 2.830 1.710 
36 4.190 1.200 0.750 
40 2.620 0.640 0.000 
44 1.380 0.000 0.000 
48 0.530 0.000 0.000 
52 0.000 0.000 0.000 
56 0.000 0.000 0.000 
64 0.000 0.000 0.000 
72 0.000 0.000 0.000 
80 0.000 0.000 0.000 
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Table A17: Time dependence of lactic acid concentration during fermentation of  
                    pineapple waste with different temperature. Experimental conditions,  
                    pH: 6.0, inoculum: 5% and stirring speed: 50 rpm.  
 

Time Lactic acid concentration (g/l) 
(h) T= 50 oC T= 45 oC T= 40 oC 
0 0.000 0.000 0.000 
4 0.000 0.000 0.000 
8 0.000 0.000 0.220 
12 0.000 0.280 0.760 
16 0.000 0.560 0.950 
20 0.120 0.740 1.680 
24 0.520 1.050 2.390 
28 1.030 1.750 3.150 
32 1.450 2.160 3.820 
36 2.170 2.890 4.380 
40 2.830 3.210 5.410 
44 3.190 4.160 6.700 
48 3.860 5.320 7.950 
52 4.160 6.570 9.120 
56 4.450 7.650 10.410 
64 5.390 10.280 12.260 
72 5.980 11.860 13.920 
80 6.610 13.310 15.240 
92 8.300 15.110 17.860 
104 9.430 16.890 22.970 
116 10.160 18.650 29.630 
128 11.350 21.930 36.280 
144 13.790 30.560 47.790 
168 17.240 43.220 54.970 
192 24.710 53.610 54.610 
216 25.140 53.130 54.130 
240 24.560 53.680 54.530 
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Table A18: Time dependence of biomass concentration during fermentation of  
                   pineapple waste with different nitrogen source. Experimental  
                   conditions, T: 40oC, pH: 6.0, inoculum: 5% and stirring speed: 50 rpm.  
 
Time Biomass concentration (g/l) 

(h) Yeast extract Urea Corn steep 
liquor 

Malt sprout Ammonium sulphates

0 0.000 0.000 0.000 0.000 0.000 
4 0.013 0.000 0.000 0.000 0.000 
8 0.126 0.000 0.000 0.000 0.000 
12 0.215 0.000 0.000 0.036 0.052 
16 0.463 0.000 0.000 0.076 0.071 
20 0.857 0.000 0.000 0.094 0.095 
24 0.965 0.033 0.036 0.126 0.109 
28 1.004 0.086 0.098 0.168 0.147 
32 1.103 0.104 0.113 0.204 0.184 
36 1.218 0.138 0.155 0.249 0.216 
40 1.346 0.186 0.238 0.301 0.259 
44 1.543 0.226 0.292 0.372 0.285 
48 1.616 0.261 0.349 0.416 0.317 
52 1.602 0.386 0.415 0.446 0.346 
56 1.484 0.496 0.471 0.482 0.381 
64 1.412 0.678 0.654 0.594 0.460 
72 1.384 0.706 0.698 0.572 0.458 
80 1.198 0.763 0.732 0.551 0.458 
92 0.997 0.889 0.825 0.463 0.449 
104 0.790 0.731 0.893 0.46 0.331 
116 0.643 0.576 0.753 0.456 0.288 
128 0.585 0.473 0.624 0.452 0.263 
144 0.463 0.392 0.512 0.450 0.249 
168 0.444 0.252 0.411 0.436 0.225 
192 0.355 0.145 0.358 0.386 0.198 
216 0.124 0.044 0.310 0.253 0.186 
240 0.096 0.009 0.065 0.076 0.021 
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Table A19: Time dependence of glucose concentration during fermentation of  
                   pineapple waste with  different nitrogen source. Experimental  
                   conditions, T: 40oC, pH: 6.0, inoculum: 5% and stirring speed: 50 rpm. 
 

Time Glucose concentration (g/l) 

(h) Yeast extract Urea Corn steep 
liquor 

Malt sprout Ammonium sulphates 

0 19.560 19.450 20.130 19.790 19.560 
4 21.290 20.180 20.480 20.060 19.940 
8 22.690 21.440 21.650 21.160 20.350 
12 23.900 22.370 22.190 21.730 20.820 
16 24.880 23.240 22.720 22.240 22.200 
20 25.610 24.890 23.370 22.900 22.590 
24 26.240 26.120 23.800 23.210 22.910 
28 26.870 27.280 24.150 23.940 23.880 
32 27.540 28.490 26.410 24.830 25.260 
36 28.360 29.200 28.250 26.610 26.750 
40 28.900 30.120 29.220 28.170 27.620 
44 29.170 30.580 31.650 29.630 28.950 
48 30.960 31.660 32.640 30.910 29.740 
52 29.480 31.972 33.020 31.620 30.240 
56 28.130 32.350 33.260 32.150 30.880 
64 27.280 32.720 33.940 32.850 31.240 
72 26.180 33.170 34.580 33.120 31.730 
80 24.540 32.610 34.790 33.340 32.060 
92 23.080 32.240 34.910 32.910 32.480 
104 20.260 31.900 33.520 32.520 32.910 
116 16.160 31.240 33.240 31.250 31.850 
128 11.320 31.020 32.020 30.660 31.340 
144 7.440 30.820 31.650 29.780 30.810 
168 3.250 29.990 31.180 27.120 29.890 
192 3.070 27.940 30.390 27.050 28.740 
216 2.920 27.360 28.700 26.850 28.590 
240 2.570 22.490 25.660 26.850 28.320 
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Table A20: Time dependence of fructose concentration during fermentation of  
                   pineapple waste with different nitrogen source. Experimental  
                   conditions, T: 40oC, pH: 6.0, inoculum: 5% and stirring speed: 50 rpm. 
 
Time Fructose concentration (g/l) 

(h) Yeast extract Urea Corn steep 
liquor 

Malt sprout Ammonium sulphates

0 20.270 20.480 20.180 20.120 20.650 
4 20.430 20.970 20.370 20.350 20.870 
8 22.360 21.300 20.810 20.550 20.980 
12 23.940 21.680 20.980 20.670 21.360 
16 24.510 22.800 21.260 20.890 21.660 
20 26.580 24.120 21.650 21.050 21.760 
24 27.030 25.540 21.960 21.330 22.180 
28 29.620 25.920 22.260 21.520 22.320 
32 30.140 26.680 22.770 21.890 22.550 
36 29.320 27.490 24.280 22.920 22.830 
40 29.040 28.250 25.540 23.480 23.250 
44 28.910 29.630 27.320 25.420 24.320 
48 28.480 30.180 28.210 26.940 26.040 
52 28.260 30.370 28.940 27.280 26.530 
56 28.150 30.670 29.350 27.680 27.120 
64 27.830 31.680 31.940 29.260 28.360 
72 27.440 31.900 31.650 29.870 28.550 
80 26.540 31.620 31.480 30.130 29.870 
92 22.450 30.240 31.260 31.260 30.640 
104 18.290 30.070 31.020 31.400 31.440 
116 15.580 29.850 30.960 31.310 31.280 
128 13.700 29.420 30.730 31.180 31.120 
144 11.460 29.220 30.180 30.020 30.960 
168 9.880 28.870 29.850 30.250 30.730 
192 9.420 27.930 28.910 29.940 30.260 
216 9.230 27.110 28.660 29.340 30.140 
240 9.110 27.340 27.790 30.540 30.350 
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Table A21: Time dependence of sucrose concentration during fermentation of  
                   pineapple waste with different nitrogen source. Experimental  
                   conditions, T: 40oC, pH: 6.0, inoculum: 5% and stirring speed: 50 rpm. 
 
Time Sucrose concentration (g/l) 

(h) Yeast extract Urea Corn steep 
liquor 

Malt sprout Ammonium sulphates

0 15.530 15.360 15.150 15.160 15.480 
4 13.840 14.580 14.550 14.620 15.240 
8 11.450 13.420 14.270 14.310 14.920 
12 9.340 12.150 14.080 13.610 14.680 
16 7.590 10.960 13.890 13.420 14.120 
20 6.420 9.360 13.420 13.330 13.760 
24 5.150 8.280 13.330 13.070 13.160 
28 4.360 7.050 13.070 11.150 12.380 
32 3.120 6.310 11.150 10.140 10.960 
36 2.280 5.920 9.220 8.300 9.280 
40 1.050 5.240 7.300 7.540 8.520 
44 0.460 4.700 6.390 5.580 6.640 
48 0.000 3.440 4.520 4.080 4.950 
52 0.000 2.290 3.790 3.160 4.250 
56 0.000 1.280 3.180 2.230 3.120 
64 0.000 0.000 1.030 1.210 2.040 
72 0.000 0.000 0.000 0.850 1.260 
80 0.000 0.000 0.000 0.000 0.790 
92 0.000 0.000 0.000 0.000 0.000 
104 0.000 0.000 0.000 0.000 0.000 
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Table A22: Time dependence of lactic acid concentration during fermentation of  
                   pineapple waste with different nitrogen source. Experimental  
                   conditions, T: 40oC, pH: 6.0, inoculum: 5% and stirring speed: 50 rpm.  
 
Time Lactic acid concentration (g/l) 

(h) Yeast extract Urea Corn steep 
liquor 

Malt sprout Ammonium sulphates 

0 0.000 0.000 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 
8 0.220 0.000 0.000 0.000 0.000 
12 0.760 0.000 0.000 0.000 0.000 
16 0.950 0.040 0.000 0.050 0.000 
20 1.680 0.150 0.240 0.270 0.030 
24 2.390 0.320 0.780 0.680 0.510 
28 3.150 0.470 0.930 1.050 0.790 
32 3.820 0.680 1.120 1.390 0.940 
36 4.380 0.790 1.380 1.800 1.250 
40 5.410 0.850 1.540 2.110 1.470 
44 6.700 0.920 1.690 2.540 1.650 
48 7.950 1.180 1.800 2.990 1.890 
52 9.120 1.540 1.920 3.320 1.960 
56 10.410 1.760 2.060 3.740 2.050 
64 12.260 2.490 2.120 4.510 2.170 
72 13.920 3.120 2.280 4.960 2.380 
80 15.240 3.770 2.460 5.220 2.640 
92 17.860 4.370 2.840 5.670 2.970 
104 22.970 5.020 3.370 6.140 3.290 
116 29.630 6.320 3.980 6.650 3.310 
128 36.280 7.800 4.420 7.260 3.440 
144 47.790 8.150 4.870 8.050 3.720 
168 54.970 8.430 5.260 8.770 3.980 
192 54.610 10.240 6.290 9.870 3.720 
216 54.130 14.450 9.970 9.630 3.650 
240 53.680 18.340 13.250 9.320 3.590 
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Table A23: Time dependence of biomass concentration during fermentation of  
                   pineapple waste with different inoculum size. Experimental conditions,  
                  T: 40oC, pH: 6.0 and stirring speed: 50 rpm.  
 

Time  Biomass concentration (g/l) 
(h) Inoculum= 5% Inoculum= 10% Inoculum= 15% 
0 0.000 0.000 0.000 
4 0.013 0.000 0.000 
8 0.126 0.000 0.000 
12 0.215 0.123 0.000 
16 0.463 0.346 0.000 
20 0.857 0.403 0.146 
24 0.965 0.528 0.378 
28 1.004 0.600 0.528 
32 1.103 0.781 0.624 
36 1.218 0.806 0.79 
40 1.346 0.905 0.825 
44 1.543 1.004 0.936 
48 1.616 1.202 1.065 
52 1.602 1.339 1.061 
56 1.484 1.476 1.053 
64 1.412 1.617 1.04 
72 1.337 1.597 0.962 
80 1.198 1.325 0.902 
92 0.997 1.124 0.826 
104 0.790 0.923 0.715 
116 0.643 0.748 0.643 
128 0.585 0.591 0.512 
144 0.463 0.424 0.469 
168 0.444 0.375 0.359 
192 0.355 0.282 0.276 
216 0.124 0.158 0.148 
240 0.096 0.148 0.121 
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Table A24: Time dependence of glucose concentration during fermentation of  
                   pineapple waste with different inoculum size. Experimental conditions,  
                  T: 40oC, pH: 6.0 and stirring speed: 50 rpm.  
 

Time  Glucose concentration (g/l) 
(h) Inoculum= 5% Inoculum= 10% Inoculum =15% 
0 19.560 19.350 19.240 
4 21.290 20.650 20.370 
8 22.690 21.750 21.180 
12 23.900 22.140 21.720 
16 24.880 22.860 22.580 
20 25.610 23.300 23.150 
24 26.240 24.380 23.860 
28 26.870 24.920 24.280 
32 27.540 25.160 24.730 
36 28.360 25.870 25.160 
40 28.900 26.350 25.750 
44 29.170 27.220 26.050 
48 30.960 28.350 26.440 
52 29.43 28.740 27.110 
56 28.130 29.210 27.790 
64 27.280 30.560 29.420 
72 26.180 31.370 30.380 
80 24.540 29.640 31.580 
92 23.080 27.920 29.870 
104 20.260 26.480 27.190 
116 16.160 22.650 26.620 
128 11.320 19.260 23.440 
144 7.440 12.290 17.380 
168 3.250 5.650 11.940 
192 3.070 4.780 6.380 
216 2.920 4.510 6.200 
240 2.570 4.940 5.930 
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Table A25: Time dependence of fructose concentration during fermentation of  
                   pineapple waste with different inoculum size. Experimental conditions,  
                  T: 40oC, pH: 6.0 and stirring speed: 50 rpm.  
 

Time  Fructose concentration (g/l) 
(h) Inoculum= 5% Inoculum= 10% Inoculum= 15% 
0 20.970 20.370 20.480 
4 21.830 20.580 20.820 
8 22.510 21.200 21.360 
12 23.480 21.750 21.450 
16 24.560 22.200 22.110 
20 24.930 23.610 22.950 
24 25.160 24.170 23.180 
28 25.420 24.570 23.560 
32 25.890 24.340 24.280 
36 26.150 25.760 24.530 
40 26.860 26.880 24.970 
44 27.290 26.510 25.320 
48 28.380 27.410 26.360 
52 27.790 27.120 26.980 
56 27.420 26.740 27.580 
64 26.240 26.150 28.640 
72 25.680 25.590 27.190 
80 24.290 24.820 26.530 
92 23.380 23.350 25.840 
104 22.880 22.500 24.350 
116 20.200 20.280 23.260 
128 16.640 17.360 21.620 
144 11.150 13.480 20.780 
168 9.650 10.660 18.050 
192 9.420 10.380 17.520 
216 9.220 10.720 17.610 
240 8.790 10.390 16.140 
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Table A26: Time dependence of sucrose concentration during fermentation of  
                   pineapple waste with different inoculum size. Experimental conditions, 
                  T: 40oC, pH: 6.0 and stirring speed: 50 rpm.  
 

Time  Sucrose concentration (g/l) 
(h) Inoculum= 5% Inoculum= 10% Inoculum =15% 
0 15.530 15.030 14.960 
4 13.840 13.920 14.650 
8 11.450 11.730 12.430 
12 9.340 10.540 11.430 
16 7.590 9.160 9.860 
20 6.420 7.140 7.240 
24 5.150 5.420 5.690 
28 4.360 4.800 5.150 
32 3.120 3.590 4.820 
36 2.280 2.920 3.260 
40 1.050 1.460 2.180 
44 0.460 0.890 1.370 
48 0.000 0.260 0.820 
52 0.000 0.120 0.450 
56 0.000 0.000 0.240 
64 0.000 0.000 0.000 
72 0.000 0.000 0.000 
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Table A27: Time dependence of lactic acid concentration during fermentation of    
                   pineapple waste with different inoculum size. Experimental conditions,  
                  T: 40oC, pH: 6.0 and stirring speed: 50 rpm.  
 

Time  Lactic acid concentration (g/l) 
(h) Inoculum= 5% Inoculum= 10% Inoculum= 15% 
0 0.000 0.000 0.000 
4 0.000 0.000 0.000 
8 0.220 0.000 0.000 
12 0.760 0.120 0.000 
16 0.950 0.550 0.000 
20 1.680 0.960 0.000 
24 2.390 1.530 0.350 
28 3.150 2.360 0.720 
32 3.820 2.710 1.360 
36 4.380 4.000 1.480 
40 5.410 4.320 1.940 
44 6.700 5.290 2.060 
48 7.950 6.060 2.680 
52 9.120 7.260 3.690 
56 10.410 8.320 4.800 
64 12.260 10.650 6.820 
72 13.920 11.430 8.410 
80 15.240 13.720 10.530 
92 17.860 15.460 12.040 
104 22.970 18.110 16.160 
116 29.630 24.350 20.770 
128 36.280 30.110 25.960 
144 47.790 42.580 32.580 
168 54.970 51.800 39.380 
192 54.610 51.670 44.840 
216 54.130 51.360 44.560 
240 53.680 51.240 44.750 
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Table A28: Time dependence of biomass concentration during fermentation of  
    pineapple waste with different initial sugar concentration. 
    Experimental conditions, T: 40oC, pH: 6.0, inoculum: 5% and stirring 
    speed: 50 rpm.  
 

Time 
 (h) 

Pineapple waste (g/l) Pineapple waste + 25 g 
sugar (g/l)  

Pineapple waste + 65 g 
sugar (g/l) 

0 0.000 0.000 0.000 
4 0.013 0.007 0.017 
8 0.126 0.020 0.050 
12 0.215 0.037 0.103 
16 0.463 0.126 0.223 
20 0.857 0.239 0.331 
24 0.965 0.405 0.478 
28 1.004 0.532 0.707 
32 1.103 0.635 0.768 
36 1.218 0.779 0.813 
40 1.346 0.805 0.886 
44 1.543 0.808 0.978 
48 1.616 0.814 1.021 
52 1.602 0.880 1.076 
56 1.484 0.980 1.131 
64 1.412 1.114 1.179 
72 1.337 1.228 1.284 
80 1.198 1.343 1.389 
92 0.997 1.924 2.014 
104 0.790 2.064 2.286 
116 0.643 2.103 2.502 
128 0.585 2.147 2.435 
144 0.463 2.216 2.416 
168 0.444 2.336 2.373 
192 0.355 2.273 2.355 
216 0.124 2.254 2.356 
240 0.096 2.246 2.349 
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Table A29: Time dependence of glucose concentration during fermentation of  

    pineapple waste with different initial sugar concentration.  
    Experimental conditions, T: 40oC, pH: 6.0, inoculum: 5% and   
    Stirring speed: 50 rpm.  
 

Time 
(h) 

Pineapple waste (g/l) Pineapple waste + 25g 
sugar (g/l)  

Pineapple waste + 65g 
sugar (g/l) 

0 19.560 30.980 43.020 
4 21.290 34.750 43.890 
8 22.690 35.800 52.540 
12 23.900 37.340 55.620 
16 24.880 38.110 58.590 
20 25.610 39.250 66.270 
24 26.240 43.370 67.830 
28 26.870 44.260 67.940 
32 27.540 44.420 67.220 
36 28.360 44.130 64.180 
40 28.900 43.790 62.570 
44 29.170 43.080 61.480 
48 30.960 42.640 60.390 
52 29.430 41.930 59.420 
56 28.130 41.220 58.790 
64 27.280 39.500 58.145 
72 26.180 37.210 57.562 
80 24.540 34.340 56.830 
92 23.080 31.170 49.250 
104 20.260 29.530 48.630 
116 16.160 27.930 48.410 
128 11.320 26.270 47.860 
144 7.440 24.510 47.580 
168 3.250 16.930 47.380 
192 3.070 11.800 46.870 
216 2.920 10.630 47.340 
240 2.570 10.510 46.390 
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Table A30: Time dependence of fructose concentration during fermentation of  
     pineapple waste with different initial sugar concentration.  
     Experimental conditions, T: 40oC, pH: 6.0, inoculum: 5% and  
     stirring speed: 50 rpm.  
 

Time 
(h) 

Pineapple waste (g/l) Pineapple waste + 25g 
sugar (g/l)  

Pineapple waste + 65g 
sugar (g/l) 

0 20.970 31.240 43.930 
4 21.830 34.750 43.760 
8 22.510 35.350 46.880 
12 23.480 37.110 50.730 
16 24.560 38.270 52.680 
20 24.930 39.530 53.410 
24 25.160 39.190 53.050 
28 25.420 38.640 52.780 
32 25.890 38.420 52.970 
36 26.150 38.350 52.810 
40 26.860 37.910 52.530 
44 27.290 37.190 52.640 
48 28.380 36.210 52.680 
52 27.790 35.310 52.610 
56 27.420 34.260 52.570 
64 26.240 33.250 52.490 
72 25.680 32.640 52.630 
80 24.290 32.090 52.340 
92 23.380 31.820 52.710 
104 22.880 30.370 51.430 
116 20.200 27.370 51.210 
128 16.640 28.140 50.820 
144 11.150 25.390 50.460 
168 9.650 24.870 49.720 
192 9.420 22.870 50.640 
216 9.220 22.350 50.330 
240 8.790 22.060 49.880 
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Table A31: Time dependence of sucrose concentration during fermentation of  
     pineapple waste with different initial sugar concentration.  
     Experimental conditions, T: 40oC, pH: 6.0, inoculum: 5% and  
     stirring speed: 50 rpm.  
 

Time 
(h) 

Pineapple waste (g/l) Pineapple waste + 25g 
sugar (g/l)  

Pineapple waste + 65g 
sugar (g/l) 

0 15.530 21.700 33.310 
4 13.840 18.460 31.090 
8 11.450 16.790 29.670 
12 9.340 15.230 28.650 
16 7.590 14.180 26.950 
20 6.420 13.260 25.210 
24 5.150 11.380 24.470 
28 4.360 9.720 23.310 
32 3.120 6.890 21.680 
36 2.280 5.470 19.420 
40 1.050 3.530 15.060 
44 0.460 1.690 13.620 
48 0.000 1.450 12.320 
52 0.000 1.130 12.040 
56 0.000 0.980 11.910 
64 0.000 0.000 11.740 
72 0.000 0.000 11.320 
80 0.000 0.000 11.210 
92 0.000 0.000 11.020 
104 0.000 0.000 10.500 
116 0.000 0.000 10.290 
128 0.000 0.000 10.380 
144 0.000 0.000 10.660 
168 0.000 0.000 10.460 
192 0.000 0.000 10.550 
216 0.000 0.000 10.610 
240 0.000 0.000 10.340 
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Table A32: Time dependence of lactic acid concentration during fermentation of  
     pineapple waste with different initial sugar  concentration.  
     Experimental conditions, T: 40oC, pH: 6.0, inoculum: 5% and  
     stirring speed: 50 rpm.  
 

 
Time 
(h) 

Pineapple waste (g/l) Pineapple waste + 25g 
sugar (g/l)  

Pineapple waste + 65g 
sugar (g/l) 

0 0.000 0.000 0.000 
4 0.000 0.000 0.000 
8 0.220 0.000 0.860 
12 0.760 0.586 1.430 
16 0.950 1.235 2.200 
20 1.680 1.411 2.970 
24 2.390 1.823 4.040 
28 3.150 2.040 4.970 
32 3.820 3.260 5.160 
36 4.380 4.780 5.340 
40 5.410 5.950 6.650 
44 6.700 6.150 7.480 
48 7.950 7.240 8.850 
52 9.120 8.780 9.520 
56 10.410 10.560 11.600 
64 12.260 11.230 12.690 
72 13.920 12.040 14.360 
80 15.240 15.120 18.520 
92 17.860 17.240 23.460 
104 22.970 18.100 26.650 
116 29.630 18.560 29.850 
128 36.280 18.880 31.810 
144 47.790 19.760 35.100 
168 54.970 19.470 42.230 
192 54.610 18.870 48.890 
216 54.130 18.660 51.530 
240 53.680 18.420 50.870 
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APPENDIX B 

 

 

 

DATA 0F LACTIC ACID FERMENTATION USING PURE SUGAR 

 

 

 

Table B1: Time dependence of biomass, glucose and lactic acid concentration 
                 during fermentation of glucose. Experimental conditions, T: 40oC, pH:  
                 6.0, inoculum: 5% and stirring speed: 50 rpm.  
 

Time (h) Biomass (g/l) Glucose (g/l) Lactic acid (g/l) 
0 0.000 19.750 0.000 
2 0.000 19.460 0.000 
4 0.060 19.030 0.430 
8 0.150 18.860 0.940 
12 0.220 17.640 1.740 
16 0.390 17.280 2.590 
20 0.520 15.730 3.820 
24 0.690 13.950 4.920 
28 0.785 11.740 6.510 
32 0.821 9.660 8.290 
36 0.920 8.860 9.720 
40 0.989 7.290 10.840 
44 1.060 6.380 11.650 
48 1.120 5.620 12.480 
52 1.270 4.480 13.750 
56 1.490 3.640 14.320 
60 1.860 2.960 15.890 
64 2.190 1.330 17.590 
68 2.280 0.000 18.160 
72 2.260 0.000 18.380 
80 2.220 0.000 18.200 
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Table B2: Time dependence of biomass, fructose and lactic acid concentration 
                 during fermentation of fructose. Experimental conditions, 40oC,  
                  pH: 6.0, inoculum: 5% and stirring speed: 50 rpm.  
 

Time (h) Biomass (g/l) Fructose (g/l) Lactic acid (g/l) 
0 0.000 19.640 0.000 
2 0.000 19.020 0.000 
4 0.050 18.850 0.058 
8 0.069 18.560 0.670 
12 0.095 18.120 0.970 
16 0.121 17.970 1.180 
20 0.176 16.860 2.270 
24 0.221 15.140 3.960 
28 0.292 14.730 4.870 
32 0.373 13.160 5.450 
36 0.412 12.350 6.180 
40 0.499 11.440 7.630 
44 0.571 10.910 8.340 
48 0.698 9.390 9.150 
52 0.726 8.160 10.420 
56 0.846 7.720 10.760 
60 0.884 7.240 11.160 
64 0.937 6.720 11.540 
68 0.978 5.880 12.330 
72 1.026 4.520 13.850 
80 1.083 2.860 15.470 
92 1.145 0.940 17.360 
104 1.205 0.460 18.320 
116 1.228 0.000 18.250 
128 1.267 0.000 18.240 
144 1.237 0.000 18.020 
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Table B3: Time dependence of biomass, glucose, fructose, sucrose and lactic acid  
                concentration during fermentation of sucrose. Experimental conditions,  
                T: 40oC, pH: 6.0, inoculum: 5% and stirring speed: 50 rpm.  
 

Time  
(h) 

Biomass  
(g/l) 

Glucose 
(g/l) 

Fructose  
(g/l) 

Sucrose 
(g/l) 

Lactic Acid  
(g/l) 

0 0.000 0.530 0.000 19.440 0.000 
2 0.000 0.780 0.160 19.060 0.000 
4 0.016 1.120 0.950 17.240 0.000 
8 0.028 2.180 1.560 15.350 0.360 
12 0.030 2.720 1.870 14.560 0.540 
16 0.033 3.210 2.280 13.490 0.790 
20 0.052 3.960 2.470 11.050 1.160 
24 0.069 4.480 2.880 9.250 1.920 
28 0.118 4.610 3.640 7.110 2.560 
32 0.194 4.840 4.330 6.380 3.610 
36 0.237 5.050 4.640 5.310 4.420 
40 0.275 5.820 4.750 3.320 5.230 
44 0.280 5.540 4.920 2.680 6.450 
48 0.339 5.380 5.070 1.250 7.060 
52 0.387 5.320 5.280 0.280 7.890 
56 0.459 4.960 4.920 0.000 8.960 
60 0.592 4.550 4.580 0.000 9.580 
64 0.728 3.970 4.220 0.000 10.220 
68 0.876 3.140 3.860 0.000 11.560 
72 1.054 2.180 3.330 0.000 12.880 
80 1.253 0.580 2.970 0.000 14.890 
92 1.297 0.000 1.240 0.000 16.460 
104 1.357 0.000 0.360 0.000 18.020 
116 1.409 0.000 0.000 0.000 18.310 
128 1.432 0.000 0.000 0.000 18.410 
144 1.467 0.000 0.000 0.000 17.860 
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Table B4: Time dependence of biomass, glucose, fructose, sucrose and lactic acid  
                 concentration during fermentation of mixed sugar (20g/l). Experimental  
                 conditions, T: 40oC, pH: 6.0, inoculum: 5% and stirring speed: 50 rpm. 
 

Time  
(h) 

Biomass  
(g/l) 

Glucose 
(g/l) 

Fructose  
(g/l) 

Sucrose 
(g/l) 

Lactic Acid 
(g/l) 

0 0.000 7.560 7.280 5.360 0.000 
2 0.000 7.750 7.410 4.860 0.000 
4 0.090 8.250 7.620 3.590 0.430 
8 0.132 8.480 7.841 2.860 0.940 
12 0.162 8.180 7.520 2.240 1.740 
16 0.320 7.920 7.330 1.730 2.590 
20 0.470 7.720 7.160 0.860 3.820 
24 0.620 7.540 6.860 0.000 4.920 
28 0.744 6.090 6.750 0.000 6.510 
32 0.816 5.150 6.410 0.000 8.290 
36 0.886 3.620 5.860 0.000 9.720 
40 0.905 2.770 5.620  10.840 
44 1.065 2.510 5.350  11.650 
48 1.142 1.490 5.160  12.480 
52 1.236 0.380 4.980  13.750 
56 1.428 0.000 4.580  14.320 
60 1.657 0.000 3.280  15.890 
64 1.814 0.000 1.140  17.590 
68 1.960 0.000 0.370  18.160 
72 2.150 0.000 0.000  18.380 
80 2.180 0.000 0.000  18.200 
104 2.160 0.000 0.000  18.200 
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Table B5: Time dependence of biomass, glucose, fructose, sucrose and lactic acid  
                concentration during fermentation of mixed sugar (55 g/l). Experimental  
                conditions, T: 40oC,  pH: 6.0, inoculum: 5% and stirring speed: 50 rpm. 
 

Time  
(h) 

Biomass 
(g/l) 

Glucose 
(g/l) 

Fructose 
(g/l) 

Sucrose 
(g/l) 

Lactic Acid 
(g/l) 

0 0.000 19.870 19.360 14.880 0.000 
4 0.054 20.280 19.720 14.370 0.000 
8 0.088 20.410 20.370 14.260 0.760 
12 0.285 22.370 21.730 10.410 1.560 
16 0.592 24.360 23.140 5.560 2.210 
20 0.974 23.570 23.780 3.420 5.680 
24 1.145 20.650 23.460 1.540 9.240 
28 1.257 18.680 22.930 0.000 13.090 
32 1.394 17.640 22.210 0.000 14.230 
36 1.456 16.960 21.330 0.000 15.170 
40 1.512 15.100 20.250 0.000 16.930 
44 1.685 14.430 19.360 0.000 18.550 
48 1.826 13.790 18.770 0.000 19.220 
52 1.849 13.480 18.560 0.000 19.690 
56 1.736 13.200 18.340 0.000 20.170 
60 1.708 13.060 18.164 0.000 21.453 
64 1.693 12.880 18.060 0.000 22.770 
72 1.656 11.670 17.620 0.000 24.080 
80 1.611 11.240 17.130 0.000 25.510 
92 1.584 10.700 16.580 0.000 27.980 
104 1.482 7.280 15.260 0.000 31.090 
116 1.423 4.130 14.050 0.000 36.100 
128 1.322 0.000 12.810 0.000 38.450 
144 1.315 0.000 11.500 0.000 40.620 
168 1.302 0.000 5.810 0.000 47.560 
192 1.289 0.000 4.870 0.000 47.720 
216 1.268 0.000 4.860 0.000 48.110 
240 1.265 0.000 4.170 0.000 47.860 
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APPENDIX C 

 

 

DATA 0F FED-BATCH FERMENTATION 

 

Table C1: Time dependence of biomass concentration during fed-batch fermentation                        
of pineapple waste. Experimental conditions, T: 40oC, pH: 6.0, inoculum: 
5% and stirring speed: 50 rpm. 
 

Time Biomass concentration (g/l) 
(h) 65 g/l  90 g/l 115 g/l  
0 0.000 0.000 0.000 
4 0.008 0.007 0.005 
8 0.010 0.009 0.008 
12 0.083 0.041 0.044 
16 0.153 0.145 0.147 
20 0.337 0.379 0.398 
24 0.604 0.568 0.497 
28 0.649 0.708 0.524 
32 0.797 0.950 0.609 
36 1.031 1.287 0.698 
40 1.282 1.649 0.835 
44 1.516 1.949 0.965 
48 1.629 2.339 1.106 
52 1.736 2.462 1.274 
56 1.894 2.550 1.482 
64 1.883 2.588 1.698 
72 1.837 2.504 2.100 
80 1.531 2.418 2.237 
92 1.289 2.373 2.448 
104 0.960 2.346 2.522 
116 0.809 2.331 2.513 
128 0.790 2.310 2.498 
144 0.780 2.256 2.462 
168 0.710 2.238 2.424 
192 0.654 2.226 2.410 
216 0.613 2.215 2.380 
240 0.586 2.203 2.310 
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Table C2: Time dependence of sugar concentration during fed batch fermentation of  
pineapple waste. Experimental conditions, T: 40oC, pH: 6.0, inoculum: 
5% and stirring speed: 50 rpm.  

 
Time Sugar (g/l) 

(h) 65 g/l 90 g/l  115 g/l 
0 65.480 65.230 65.780 
4 64.510 64.290 64.600 
8 64.120 64.020 63.920 
12 63.090 63.180 63.050 
16 62.450 62.250 62.370 
20 61.380 61.420 61.240 
24 59.540 59.380 59.170 
28 57.080 57.920 58.940 
32 53.740 54.650 59.290 
36 50.560 52.480 58.930 
40 49.530 50.640 58.780 
44 48.420 49.280 58.150 
48 47.360 48.610 58.150 
52 46.180 48.050 58.220 
56 45.240 47.750 58.340 
64 42.510 46.160 58.690 
72 40.550 45.730 58.800  
80 37.920 45.190 58.560 
92 35.310 43.870 57.520 
104 32.470 38.320 56.270 
116 28.850 37.330 54.150 
128 25.590 34.540 51.790 
144 19.940 32.210 49.280 
168 13.310 27.59 47.520 
192 11.910 23.190 43.180 
216 12.560 24.260 39.360 
240 13.230 23.950 41.770 
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Table C3: Time dependence of lactic acid concentration during fed batch 
fermentation of pineapple waste. Experimental conditions, T: 40oC, pH: 
6.0, inoculum: 5% and stirring speed: 50 rpm.  

 
Time Lactic acid concentration (g/l) 

(h) 65 g/l 90 g/l 115 g/l 
0 0.000 0.000 0.000 
4 0.080 0.160 0.210 
8 0.480 0.570 0.640 
12 1.240 1.750 1.590 
16 2.010 2.380 2.440 
20 3.080 3.860 4.250 
24 6.870 6.330 6.400 
28 7.060 8.10 7.980 
32 9.570 10.940 8.670 
36 12.260 13.20 10.500 
40 14.08 15.440 12.210 
44 15.560 18.690 14.760 
48 16.790 21.230 17.440 
52 17.510 22.390 18.560 
56 18.340 23.410 19.770 
64 20.490 26.020 22.140 
72 22.950 28.520 24.510 
80 25.080 29.410 26.290 
92 27.690 32.430 28.830 
104 30.530 37.210 32.980 
116 33.150  39.540 36.870 
128 36.410 42.160 40.360 
144 41.520 44.370 43.710 
168 47.690 50.980 47.320 
192 51.240 57.760 53.190 
216 47.720 53.590 54.750 
240 43.340 49.680 49.84 
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Table C4: Time dependence of productivity during fed batch fermentation of  
pineapple waste. Experimental conditions, T: 40oC, pH: 6.0, inoculum: 
5% and stirring speed: 50 rpm.  

 
Time Productivity (g / l.h) 

(h) 65 g/l 90 g/l 115 g/l 
0 0.000 0.000 0.000 
4 0.020 0.040 0.053 
8 0.060 0.070 0.080 
12 0.103 0.150 0.133 
16 0.126 0.150 0.153 
20 0.154 0.190 0.213 
24 0.286 0.260 0.267 
28 0.252 0.290 0.285 
32 0.299 0.340 0.271 
36 0.341 0.370 0.292 
40 0.352 0.390 0.305 
44 0.354 0.420 0.335 
48 0.350 0.440 0.363 
52 0.336 0.430 0.356 
56 0.328 0.420 0.353 
64 0.320 0.410 0.346 
72 0.319 0.400 0.340 
80 0.314 0.370 0.329 
92 0.301 0.350 0.313 
104 0.294 0.360 0.317 
116 0.286 0.340 0.318 
128 0.284 0.330 0.315 
144 0.288 0.310 0.304 
168 0.284 0.303 0.282 
192 0.267 0.300 0.277 
216 0.221 0.250 0.276 
240 0.181 0.210 0.228 
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APPENDIX D 

 

 

 

DATA 0F LACTIC ACID FERMENTATION WITH DIFFERENT SIZE OF 

FERMENTOR 

 

 

 

Table D1: Time dependence of biomass, sugar and lactic acid concentration during  
                  fermentation scale-up of  pineapple waste (5 l). Experimental  
                  conditions, T: 42oC, pH: 6.0, inoculum: 5% and stirring speed: 75 
                  rpm. 
 

Time  
(h) 

Biomass  
(g/l) 

Glucose 
 (g/l) 

Fructose 
 (g/l) 

Sucrose  
(g/l) 

Lactic acid 
(g/l)  

0 0.000 20.650 21.510 14.369 0.000 
4 0.007 21.220 21.860 13.270 0.000 
8 0.012 23.450 22.940 10.150 0.000 
12 0.054 25.380 24.190 7.180 0.280 
16 0.132 27.450 26.310 3.970 0.670 
20 0.215 28.780 27.550 1.160 1.190 
24 0.509 29.340 28.010 0.840 1.650 
28 0.701 30.170 28.760 0.000 2.340 
32 1.497 29.200 29.200 0.000 3.960 
36 2.175 28.560 28.450 0.000 5.220 
40 2.614 27.100 27.360 0.000 7.410 
44 2.817 26.420 26.030 0.000 9.680 
48 2.852 25.390 25.790 0.000 11.390 
52 2.904 24.520 25.1800 0.000 13.220  
56 2.975 23.910 24.230 0.000 15.450  
64 2.997 21.120 23.180 0.000 18.120 
72 3.002 17.950 22.50 0.000 23.040 
80 2.918 14.560 20.490 0.000 28.370 
92 2.822 11.120 18.160 0.000 33.690 
104 2.773 9.650 17.20 0.000 36.420 
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Table D1: Time dependence of biomass, sugar and lactic acid concentration during  
                  fermentation scale-up of  pineapple waste (5 l). Experimental  
                  conditions, T: 42oC, pH: 6.0, inoculum: 5% and stirring speed: 75 
                  rpm (Continued). 
 

Time  
(h) 

Biomass  
(g/l) 

Glucose 
 (g/l) 

Fructose 
 (g/l) 

Sucrose  
(g/l) 

Lactic acid 
(g/l)  

116 2.750 7.840 16.150 0.000 39.550 
128 2.742 5.210 12.900 0.000 45.130 
144 2.594 2.490 8.150 0.000 52.320 
168 2.367 0.000 6.740 0.000 56.890 
192 2.348 0.000 6.670 0.000 56.730 
216 2.175 0.000 6.540 0.000 56.40 
240 2.078 0.000 6.330 0.000 56.250 
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Table D2: Time dependence of biomass, sugar and lactic acid concentration during  
                  fermentation scale-up of  pineapple waste(1 l). Experimental  
                  conditions, T: 42oC, pH: 6.0,  inoculum: 5% and stirring  speed: 75 
                  rpm.  
 

Time 
(h) 

Biomass 
 (g/l) 

Glucose 
(g/l) 

Fructose  
g/l) 

Sucrose  
(g/l) 

Lactic acid 
(g/l)  

0 0.000 20.730 21.850 14.472 0.000 
4 0.041 20.960 21.940 13.590 0.000 
8 0.088 23.710 22.850 10.680 0.000 
12 0.147 25.360 24.040 7.620 0.000 
16 0.214 27.430 25.960 4.220 0.480 
20 0.306 28.180 26.840 1.510 0.870 
24 0.535 29.530 27.250 1.170 1.395 
28 0.723 30.500 28.120 0.380 2.062 
32 1.435 29.480 29.550 0.000 3.480 
36 1.921 28.590 28.380 0.000 4.930 
40 2.436 27.630 27.130 0.000 7.520 
44 2.697 26.170 26.380 0.000 9.360 
48 2.712 25.210 25.260 0.000 10.940 
52 2.752 24.320 24.810 0.000 12.660 
56 2.874 23.450 24.440 0.000 14.420 
64 2.866 21.320 23.350 0.000 17.590 
72 2.852 17.280 22.420 0.000 21.580 
80 2.802 14.630 20.280 0.000 27.140 
92 2.752 11.570 19.060 0.000 32.172 
104 2.729 9.100 18.420 0.000 35.460 
116 2.654 7.520 16.940 0.000 38.800 
128 2.588 5.970 12.880 0.000 44.690 
144 2.463 2.680 9.040 0.000 50.520 
168 2.304 0.000 7.110 0.000 54.440 
192 2.273 0.000 6.930 0.000 54.210 
216 2.108 0.000 6.840 0.000 54.120 
240 2.062 0.000 6.390 0.000 54.080 
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APPENDIX E 

 

 

 

FORMULAS FOR CALCULATING THE COEFFICIENT IN A SECOND 

DEGREE MODEL 

 

 

 

 The second-degree model in k variables fitted to data collected at the points 

of a central composite design is 
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In order to estimate the values of bo, bi, bii and bij of the coefficients βo, βi, βii, 

and βij , by the following equation (Cornell, 1991). 
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 where, ( )D N k M= + − +( )2 2
2

 and  

( )H N k M= + − +( )2 2
2

 

M r k= 2 and N M k n o= + +2 , M is  number of observation at the 

factorial, 2k is the star points, no is total of center points, N is total number of 

observation and r is replicate observation.  
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