MODELING AND EXPERIMENTAL VERIFICATION OF MULTIPHASE STEEL FOR COMPONENTS SUBJECTED TO FATIGUE LOADING

ROSLINDA BINTI IDRIS

UNIVERSITI TEKNOLOGI MALAYSIA

MODELING AND EXPERIMENTAL VERIFICATION OF MULTIPHASE STEEL FOR COMPONENTS SUBJECTED TO FATIGUE LOADING

ROSLINDA BINTI IDRIS

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Mechanical Engineering

Faculty of Mechanical Engineering Universiti Teknologi Malaysia

DECEMBER 2012

ACKNOWLEDGEMENT

I would like to thank and express my utmost sincere gratitude and appreciation to my supervisor Assoc. Prof. Dr. Yunan Prawoto for his invaluable guidance, significant comments and essential suggestions throughout the project. Not to forget my co-supervisors, Dr. Nazri Kamsah and Prof. Dr. Mohd Nasir Tamin for their generosity in providing me continuous support, advice, and encouragements had been a great motivation to me in completing the project.

Many kind of friends have contributed to my study in the subject attempted here. Among them are Mohammad Azfar Che Azmi, Computational and Solid Mechanics (CSM) - lab members and FKM technicians who were always generous enough to offer their guidance and assistance whenever I need them.

Last but not least, I would like to express a heartfelt "thank you" to my family for their overwhelming love, patience, and support throughout the project. To all my friends and course-mates, I am so grateful and sincerely appreciate them for being so willingly to share their precious knowledge and experience with me, supporting me always and being so helpful to me in times of need during the entire journey of completing this thesis.

ABSTRACT

This research is done to acquire microstructure combinations that resist fatigue loading more than typical conventional microstructure (tempered martensite) and to study the effects of microstructure on fatigue properties of multiphase steels. A multiphase (polygonal ferrite and martensite) microstructure is developed. 2D and 3D square models with variation of ferrite fraction are used as local models and placed in front of the CT specimen in a global model. The ferrite shapes are from actual microstructure of multiphase material. It is found that the plastic zone size changes, as the ferrite fraction varies, and saturated at approximately 65% and 60% for 2D and 3D modelling, respectively. The influence of a ferrite areal fraction within a martensite matrix on fatigue crack propagation is studied. The variation of the areal fraction is achieved by means of intercritical thermal treatment, which specifically aims at optimizing the resistance to fatigue loading. The steels are annealed at different temperatures followed by water quenching and tempering process. Within the intercritical annealing temperature range, the areal fraction of ferrite increases with decreasing soaking temperature. Fatigue crack propagation tests are conducted according to ASTM E647-00 to obtain fatigue crack growth, FCG behaviour. It is found that the highest fatigue strength is achieved when the ferrite areal fraction is approximately 65%, which in this particular test, corresponds to 748 ⁰C annealing temperature. It is concluded and is verified by computational modelling that appropriate thermal treatment can contribute to a significant improvement of fatigue properties and strength. The optimum ferrite fraction found from both computation and experiment is approximately 60% –65%.

ABSTRAK

Kajian ini dijalankan untuk memperoleh kombinasi mikrostruktur yang menentang kelesuan lebih daripada mikrostruktur tipikal konvensional (martensit terbaja) dan untuk mengkaji kesan mikrostruktur pada sifat lesu keluli berbilang. Oleh itu, mikrostruktur berbilang (poligon ferit dan martensit) telah dibangunkan. Model segiempat 2D dan 3D dengan variasi pecahan ferit telah digunakan sebagai model setempat dan diletakkan di hadapan spesimen CT dalam model global. Dalam hal ini, bentuk ferit terbentuk daripada mikrostruktur sebenar bahan berbilang. Didapati bahawa perubahan saiz zon plastik sebagai pecahan ferit berbeza, dan tepu pada anggaran 65% dan 60% masing-masing bagi model 2D dan 3D. Seterusnya pengaruh keluasan pecahan ferit dalam matriks martensit pada perambatan retak lesu telah juga dikaji. Perubahan keluasan pecahan dicapai dengan cara rawatan pengkhususan haba, yang bertujuan untuk mengoptimumkan rintangan beban kelesuan. Keluli disepuh lindap pada suhu yang berbeza diikuti oleh pelindapkejutan air dan proses pembajaan. Dalam julat suhu penyepuhlindapan kritikal, keluasan pecahan ferit meningkat dengan pengurangan suhu rendaman. Ujian kelesuan perambatan retak telah dijalankan mengikut ASTM E647-00 untuk mendapatkan sifat pertumbuhan retak lesu, FCG. Didapati bahawa kekuatan kelesuan tertinggi tercapai apabila keluasan pecahan ferit adalah dalam anggaran 65%, di mana dalam ujian tertentu, ia sepadan dengan suhu 748 ^oC. Dirumuskan dan disahkan oleh model pengiraan bahawa rawatan haba yang sesuai telah menyumbang kepada peningkatan ketara kepada sifat kelesuan dan kekuatan. Pecahan ferit yang optimum didapati dengan cara pengiraan dan eksperimen dianggarkan berada pada julat 60% -65%.

TABLE OF CONTENTS

CHAPTERS

TITLES

PAGES

DECLARATION	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ABSTRAK	v
TABLE OF CONTENTS	vi
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	xv
LIST OF PUBLICATIONS	xvi

1 INTRODUCTION

1.1	Introduction	1
1.2	Objective of the Research	4
1.3	Scope of the Research	4
1.4	Methodology of the Research	5
1.5	Significant of the Research	6
1.6	Thesis Structure	7

2 LITERATURE REVIEW

2.1	Introduction	9
2.2	Mechanisms of Fracture	9
	2.2.1 Cleavage Fracture	10
	2.2.2 Ductile Fracture	11
	2.2.3 Fracture Surface Measurements	13
2.3	Recent Developments of Research in Dual Phase Steel	14
	2.3.1 Through observation of chemical metallurgy	15
	2.3.2 Through observation of dislocation	15
	2.3.3 Through thermal treatment	15
	2.3.4 Through microstructure research with a focus on	
	morphology	16
2.4	The Relationship between Fatigue Crack Growth Rate	
	and Striation Spacing	16
2.5	Fatigue Cracking	17
	2.5.1 Fatigue Crack Initiation	18
	2.5.2 Fatigue Crack Propagation	19
2.6	The Effect of the Plastic Zone	20
2.7	The Shape of Plastic Zone	21
2.8	Stress Intensity Factor	22
2.9	Paris Law Theory	24
2.10	Finite Element Analysis	25
2.11	Plain Carbon Steel	27
	2.11.1 Low Carbon Steels	27
	2.11.2 Medium-carbon Steels	29
	2.11.3 High-carbon Steels	30
2.12	Dual Phase Steel	31

8

2.13	Intercritical Heat Treatment	33
2.14	Summary	34

3 RESEARCH METHODOLOGY

3.1	Introd	uction	35
3.2	Comp	utational Method	35
	3.2.1	Global Model	36
	3.2.2	Local Model	38
	3.2.3	Two-dimensional, 2D Method	39
		3.2.3.1 Developing FEA Model	40
		3.2.3.2 Estimation of the Plastic Zone Area	41
		3.2.3.3 FEA of Homogeneous and Multiphase	
		Material	42
	3.2.4	Three-dimensional, 3D Method	43
		3.2.4.1 Developing FEA Model	45
		3.2.4.2 Estimation of the Plastic Zone Volume	45
		3.2.4.3 FEA of Homogeneous and Multiphase	
		Material	46
3.3	Exper	imental Procedure	50
	3.3.1	Material Selection	51
	3.3.2	Determination of Chemical Composition	52
	3.3.3	Preliminary Heat Treatment	52
	3.3.4	Sample Preparation	53
	3.3.5	Heat Treatment Process	55
	3.3.6	Metallographic studies	56
	3.3.7	Fatigue Crack Propagation Test	58
	3.3.8	Fractography	60
3.4	Summ	nary	62

4 **RESULTS AND DISCUSSION**

4.1	Introd	uction	63
4.2	Analy	sis Results for 2D Modeling	63
	4.2.1	Strain Components at Integration Points of Global	
		Model	64
	4.2.2	Plastic Zone Sizes and Shape	65
	4.2.3	FEA of Multiphase material	65
4.3	Analy	sis Results for 3D Modeling	76
	4.3.1	Strain Components at Integration Points of Global	
		Model	77
	4.3.2	Plastic Zone Sizes and Shape	79
	4.3.3	FEA of Multiphase material	80
4.4	Comp	osition Test Analysis	85
4.5	Interc	ritical Annealing Temperature Determination	85
4.6	Micro	structure Study	86
4.7	Fatigu	e Crack Propagation Test Results	90
4.8	Fracto	ography	95
4.9	Comp	arison Between Experimental and Computation	102
4.10	Summ	nary	102

5 CONCLUSIONS

5.1	Introduction	103
5.2	Conclusions	104
5.3	Suggestions for Future Work	106

107

LIST OF TABLES

IADLE NU.	TA	BL	ε	Ν	0	•
-----------	----	----	---	---	---	---

TITLE

PAGE

2.1	Classification of Plain Carbon Steels	27
3.1	Material Property of Elastic-Plastic	37
3.2	Material Property of Microstructure for 2D and 3D model	39
3.3	The element pictures with various percentage of ferrite for	
	2D model	42
3.4	Various shape of ferrite	48
4.1	Results of the plain strain and plastic zone of different	
	percentage of ferrite	66
4.2	The results of the von Mises stress and strain components	72
4.3	Chemical composition of the steel, wt%	85
4.4	Ferrite areal fraction	85
4.5	Conditions of all samples at all stages and their ranks	93
4.6	Variation of threshold stress intensity factor range, ΔK_{TH}	
	and Paris coefficient, m	94
4.7	Variation of fatigue striation spacing constant	100

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	Example of car parts needs to improve the fatigue life	2
1.2	Schematic plot of the area grouping and their mechanisms	3
2.1	Brittle-ductile transition of steel	11
2.2	The steps in ductile fracture (in pure tension)	12
2.3	Wood's model for fatigue crack initiation	18
2.4	Possible model for fatigue crack growth	19
2.5	Plastic zone shapes according to Von Mises criteria	21
2.6	The Paris law for fatigue crack growth rates	24
2.7	Microstructure of low carbon steel	28
2.8	Microstructure of medium-carbon steel	29
2.9	Microstructure of high-carbon steel	30
2.10	Dual phase microstructure	31
2.11	Formation of austenite, ferrite and martensite during heating	
	and cooling	33
3.1	Global model with load and boundary condition :	
	(a) 2D model (b) 3D model	37
3.2	Concept of the modeling used to compute and compare the	
	morphology and the plastic zone size in front of the crack tip	40
3.3	Finite element modeling of the ASTM 647 sample. The	
	multiphase microstructure (local model) is embedded to	

	the sample (global model)	41
3.4	The modeling concept used to compute and compare the	
	morphology and the plastic zone size in front of the crack tip	44
3.5	Basic creation of the polygonal ferrite	47
3.6	Examples of the multiphase material model for different level	
	of ferrite. The ferrite colonies are embedded inside the	
	martensite matrix	49
3.7	Summary of the experiment procedure	50
3.8	Iron carbon phase diagram (the red circle shows the area of	
	interested)	51
3.9	Compact tension, CT specimen (dimensions in mm)	54
3.10	Schematic heat treatment diagrams	55
3.11	Performing area counts	57
3.12	Fatigue test machine (INSTRON 8801)	58
3.13	Example of fractured specimen	59
3.14	Areal of observation for striation	61
4.1	Strain Components at Integration Points of Global Model for	
	2D model	64
4.2	Plastic zone size and shape of global model for 2D model	65
4.3	Relation between ferrite fraction and plastic zone sizes	76
4.4	Strain Components at Integration Points of Global Model for	
	3D model	78
4.5	Plastic zone size and shape of global model for 3D model	79
4.6	Example of Von-Mises stress distribution of the local model	
	at two different ferrite fractions	81
4.7	Summary of the plastic zone size computation results. It is	
	comparable with that of 2D and closer to the actual	82
4.8	Simplified explanation of dispersed and independently	
	distributed ferrite results in larger PZ than ferrite that are	
	touching each other and form colony	84
4.9	Microstructure of as-received materials, low carbon steel	86

4.10	Optical micrograph of multi-phase material consists of	
	polygonal ferrite (white region) and martensite (dark region)	
	at different temperatures and consists of different ferrite	
	fraction	87
4.11	Crack size versus elapsed cycles data (a versus N)	91
4.12	Fatigue crack growth behavior of MPM samples	92
4.13	Variation of threshold stress intensity factor with areal	
	percentage of ferrite	95
4.14	Representative fractographs, on which the striations are	
	evaluate	96
4.15	Fatigue striation spacing constant, ζ versus ferrite fraction	101

LIST OF ABBREVIATIONS

2D	-	Two-dimensional
3D	-	Three-dimensional
ASTM	-	American Society for Testing and Materials
CAE	-	Computer Aided Engineering
СТ	-	Compact tension
DPS	-	Dual phase steel
FCG	-	Fatigue crack growth
FCP	-	Fatigue crack propagation
FEA	-	Finite element analysis
GDS	-	Glow discharge spectrometer
HSLA	-	High strength low alloy
IHT	-	Intercritical heat treatment
MPM	-	Multiphase material
MVC	-	Microvoid coalescence
MVF	-	Martensite volume fraction
PZ	-	Plastic zone
SEM	-	Scanning electron microscopy

LIST OF SYMBOLS

a	-	Crack length
В	-	Specimen thickness
da/dN	-	Fatigue crack growth rate
E	-	Young modulus
Fe-C	-	Iron carbon
Κ	-	Stress intensity factor
K _{TH}	-	Threshold stress intensity factor
т	-	Paris coefficient
Ν	-	Number of load cycles
Р	-	Load
R	-	Load ratio
r_p	-	radius of the plastic zone
W	-	Specimen width
α	-	Ferrite
γ	-	Austenite
σ	-	Stress
σ_{ys}	-	Yield stress
θ	-	Angle
ζ	-	Fatigue striation spacing constant

LIST OF PUBLICATIONS

JOURNAL NO.

JOURNAL

- Y. Prawoto, R. Idris, N. Kamsah, N. Tamin. Two-dimensional modeling to compute plastic zone in front of compact tension sample of a multiphase material. *Computational Materials Science*. (2009). 47: 482 -490.
- 2 Y. Prawoto, R. Idris, N. Kamsah, N. Tamin. Three-dimensional modeling to compute plastic zone in front of crack in compact tension sample of multiphase material. *Computational Materials Science*. (2011). 50: 1499-1503.
- Roslinda Idris, Yunan Prawoto. Influence of ferrite fraction within martensite matrix on fatigue crack propagation : An experimental verification with dual phase steel. *Material Science and Engineering A*. (2012). 552: 547-554.

CHAPTER 1

INTRODUCTION

1.1 Introduction

The microstructure of conventional steels often makes it impossible to obtain concurrently good ductility and high strength. However, some applications, especially in the transportation industries, require economical high strength steel with good formability [1]. It is generally understood that among other forms of microstructure available in industrial steel, martensite has the best tensile properties [2]. However, at the same time it also has poor toughness due to its brittleness. It has been known and practiced extensively that tempering increases the toughness while sacrificing the material's tensile properties. Tempered martensite, also formerly known as sorbite, is the microstructure resulting from quenching followed by tempering.

To achieve weight reductions and fuel saving in the vehicles and to fulfill the energy and resource requirements, a new kind of steel named as multi-phase steel was developed. This type of steel exhibited a microstructure which was constituted basically on ferrite and martensite. Multi-phase is of interest because of better ductility and could provide a high mechanical resistance than other steels. They are very important for the automotive industry since they reduce weight and cost and also improve the fatigue life of products of many car parts such as wheels, radiator support, doors, spring support, etc (see Figure 1.1) [2]. The service life of many components of this type is dependent on materials fatigue life which is an important consideration in material selection.

Figure 1.1 Example of car parts needs to improve the fatigue life [2]

Multi-phase steels can be obtained from the presence of martensitic and austenite islands dispersed in a ferrite matrix. These steels are produced by transforming the pearlite areas of ferrite-pearlite microstructure in low carbon steel to austenite by heating into the ferrite-austenite (α - γ) region and followed by quenching process. There are several factors that significantly affect the microstructure of multi-phase steel, namely the chemical composition of steel, temperature of intercritical annealing and the rate of cooling after annealing. The strength of such steels is determined mainly by the volume fraction of martensite, whereas the ductility is determined by the volume fraction of ferrite. There is no doubt that controlling and determining the FCP rate is the most essential part of the fracture mechanics design approach. The best way to acquire it is by knowing the metallurgical mechanisms as well as the continuum mechanics of fatigue crack propagation. Nonetheless, it is difficult to combine these approaches since in the area where the continuum mechanism approach can be used, the metallurgical influence is small and vise versa, see Figure 1.2 [3]. Furthermore, research on microstructure often lacks the continuum mechanics approach; the same way research on continuum mechanics lacks microstructural observation.

 $Log \Delta K$

Figure 1.2 Schematic plot of the area grouping and their mechanisms [3]

In this research, the conceptual design, as well as the computation results and parts of the static and impact experiments are discussed lightly. In contrast, the discussion is focused on the fatigue crack propagation experimental procedure and the verification of the results with computational results. This research was done to obtain an optimized sample that grains its fatigue performance from its high toughness yet possesses high tensile properties due to its tailored microstructure. The objective ultimately is to achieve a microstructure that resists fatigue more than the microstructures conventionally available, and in an economical manner.

1.2 Objective of the Research

The main objective of the present research is to investigate and to provide a better understanding of the effects of heat treatment on the mechanical properties of multi-phase steels. The primarily objective of the research are:

- 1. To obtain microstructure combination that can resists to fatigue loading more than typical conventional microstructure (tempered martensite) and the effect of microstructure on fatigue properties of multi-phase steels.
- 2. To acquire the optimize phase composition of the microstructure which presumably the combination between polygonal ferrite and martensite by means of computational approaches.
- 3. To formulate heat treatment method for producing the optimum microstructure.

1.3 Scope of the Research

The scopes of this research work are:

- 1. Model creation and computational approach by using finite element method (Abaqus CAE) for two-dimensional, 2D modeling.
- 2. Model creation and computational approach by using finite element method (Abaqus CAE) for three-dimensional, 3D modeling.
- 3. Sample making and heat treatment to produce multi-phase material.
- 4. Fatigue crack propagation test to get the optimized sample which have the best characteristics resist to fatigue loading.
- 5. Fractography analysis by using Scanning Electron Microscope (SEM).

1.4 Methodology of the Research

To achieve the objective of this study, several methods have been used in the implementation of this research. These methods can be briefly explained as follows.

a) Computational method

Two-dimensional, 2D and three-dimensional, 3D of plane strain models are developed to estimate the plastic zone size in front of a crack. 2D and 3D square models with variation of ferrite fraction are used as local models and placed in front of the CT specimen in a global model. The model is developed and meshed in ABAQUS/CAE (ABAQUS pre-processor).

b) Experimental procedure

i. Sample making and heat treatment

Compact tension samples appropriate for fatigue crack propagation and static test are made prior to heat treatment.

ii. Metallographic analysis

The microstructures of the samples are examined from the point of view of microstructure and chemical composition in term of the specific changes due to heat treatment. The quantitative approach is considered in Chapter 3, using image analysis coupled with scanning electron microscopy.

iii. Fatigue crack propagation testing

The heat treated samples are investigated with fatigue crack propagation testing and are carefully examined in terms of microstructure and mechanical properties, to achieve the optimized characteristics that resist to fatigue loading.

iv. Fractography analysis

The fatigue striations spacing formed on the fracture surface of the samples are analyzed using scanning electron microscopy (SEM). The quantitative relationships between microstructure and mechanical properties are investigated.

1.5 Significant of the Research

It is concluded that appropriate thermal treatment can contribute to a significant improvement of fatigue properties and strength, which is verified by computational modeling. The variations of the areal fractions are achieved by means of intercritical thermal treatment, which specifically aims at optimizing the resistance to fatigue loading.

1.6 Thesis Structure

The thesis comprises of five chapters. A brief explanation on every chapter is described as follows.

Chapter one, the introduction overviews the application and importance of multiphase steel and highlights it as an important element of the automobile industries. It discusses the research objectives, scope, methodology, significant of the research and thesis structure.

Chapter two highlighted the theory of fracture mechanics and the formation of multi-phase steel that resist to fatigue loading. It covers the literature review on metallurgical mechanism of fatigue cracking and methodology for assessment of the influence of ferrite fraction within martensite matrix on fatigue crack propagation, the literature on the formation of multi-phase steels that resist to fatigue loading and also other researchers works on determination of the quantitative relationship of the multi-phase steel for specific application.

Chapter three narrates in details the research methodology of this research. It proposed improvement for life prediction methodology by discussing a research frame work employed in this research and presenting step by step process in accomplishing the results in the form of research methodology flow chart. This chapter gives adequate details regarding computational approach and detailed experimental procedures carried out throughout this research work.

Chapter four narrates the final discussion of this research. The results of the computational method and the experimental data are discussed comprehensively and are validated for model predictions.

Finally, the conclusions for the whole research and future recommendations are presented in chapter five.

1.7 Summary

In this chapter presented the definition to the problem, the objective and the scope of the project. An explanation of the methodology and significant of the project and also the report structure are enhanced in this chapter.

REFERENCES

- A. Bayram, A. Uguz, M. Ula. Effects of microstructure and notches on the mechanical properties of dual phase steels. *Materials Characterizations*. (1999).
 43: 259-269.
- 2. G. Krauss. *Steels: Heat Treatment and Processing Principles*. ASM International, Material Park, Ohio, USA. (1990). vol. 1: 64–72.
- 3. M.E. Fine, Y.W. Chung. *Fatigue failure in metals*, ASM Handbook: Fatigue and Fracture, ASM International Metals Park Ohiu. (1996). vol. 19: pp. 64–72.
- 4. D. Broek. *Elementary Engineering Fracture Mechanics*. 4th edition. Dordrecht, The Netherlands: Martinus Nijhoff Publishers. (1986).
- 5. M. Tayanc, A. Aytac, A. Bayram. The effect of carbon content on fatigue strength of dual-phase steels. *Materials and design*. (2007). 28: 233-266.
- Y. Prawoto, M. Fanone, S. Shahedi, M. Ismail, W. W. Nik. Computational approach using johnson cook model on dual phase steel. *Computational Materials Science*. (2012). 54: 48 - 55.

- A. J. Abdalla, T. M. Hashimoto, C. M. Neto, M. S. Pereira. Relationship between microstructure, mechanical properties and dislocation substructures in a multiphase steel. *Revista Brasileira de Aplicacoes de Vacuo*. (2004). 23: 52-57.
- C. Kim. Modelling tensile deformation of dual-phase steel. *Metall Tran.* (1988).
 19A: 1263-1268.
- 9. Y. Prawoto. Designing steel microstructure based on fracture mechanics approach, *Materials Science and Engineering*: (2009). A 507: 74 86.
- S. Akay, M. Yazici, A. Bayram, A. Avinc. Fatigue life behaviour of the dualphase low carbon steel sheets. *Journal of materials processing technology*. (2009). 209: 3358-3365.
- 11. K. V. Sudhakar, E. S. Dwarakadasa. A study on fatigue crack growth in dual phase martensitic steel in air environment. *Bull. Material Science*. (2000). 23: 193-199.
- M. Maleque, Y. Poon, H. Masjuki. The effect of intercritical heat treatment on the mechanical properties of aisi 3115 steel, *Journal of Materials Processing Technology*. (2004). 153-154: 482-487.
- 13. F. Hayat, H. Uzun. Effect of heat treatment on microstructure, mechanical properties and fracture behaviour of ship and dual phase steels, *Journal of Iron and Steel Research International*. (2011). 18: 65-72.
- 14. A. Gural, B. Bostan, A. Ozdemir. Heat treatment in two phase region and its effect on microstructure and mechanical strength after welding of a low carbon steel. *Materials and Design*. (2007). 28: 897-903.

- M. Okayasu, K. Sato, M. Mizuno, D. Hwang, D. Shin. Fatigue properties of ultra-fine grained dual phase ferrite/martensite low carbon steel. *International Journal of Fatigue*. (2008). 30: 1358-1365.
- J. Luo, W. Shi, Q. Huang, L. Li. Heat treatment of cold-rolled low-carbon si-mn dual-phase steels. *Journal of Iron and Steel Research International*. (2010). 17: 54-58.
- A. Huseyin, K. Havva, K. Ceylan. Effect of intercritical annealing parameters on dual-phase behavior of commercial low-alloyed steels. *Journal of Iron and Steel Research International*. (2010). 17: 73-78.
- D. Laurito, C. Baptista, M. Torres, A. Abdalla. Microstructural effects on fatigue crack growth behavior of a microalloyed steel. *Procedia Engineering*. (2010). 2: 1915-1925.
- 19. K. Kocatepe, M. Cerah, M. Erdogan. Effect of martensite volume fraction and its morphology on the tensile properties of ferritic ductile iron with dual matrix structures. *Journal of Materials Processing Technology*. (2006). 178: 44-51.
- 20. Y. Prawoto, R. Idris, N. Kamsah, N. Tamin. Two-dimensional modeling to compute plastic zone in front of compact tension sample of a multiphase material. *Computational Materials Science*. (2009). 47: 482 - 490.
- 21. Y. Prawoto, R. Idris, N. Kamsah, N. Tamin. Three-dimensional modeling to compute plastic zone in front of crack in compact tension sample of multiphase material. *Computational Materials Science*. (2011). 50: 1499-1503.
- 22. C Laird. The influence of metallurgical structure on the mechanisms of fatigue crack propagation. Fatigue Crack Propagation, Special Technical Publication,

ASTM STP NO. 415. Philadelphia, PA: American Society of Testing and Materials. (1967). p. 131.

- 23. J.M. Snodgrass, D Pantelidis, ML Jenkins, JC Bravman, RH Dauskardt. Subcritical debonding of polymer/silica interfaces under monotonic and cyclic loading. *Acta Material*. (2002). 50: 2395.
- 24. C.J. Gilbert, R.O Ritchie. Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. *Applied Physics Letters*. (1997). 71: 476.
- 25. P.A. Hess, R.H Dauskardt. Mechanisms of elevated temperature fatigue crack growth in Zr–Ti–Cu–Ni–Be bulk metallic glass. *Acta Material*. (2004). 52: 3525.
- 26. S.Y. Liu, I.W Chen. Fatigue of Yttria-stabilized zirconia: II, crack propagation, fatigue striations, and short-crack behavior. *Journal American Ceramic Society*. (1991). 74: 1206.
- 27. D.A. Meyn. Observations on micromechanisms of fatigue crack propagation in 2024 aluminum. *American Society Material*. (1968). 61: 42.
- W.D, Callister. *Materials Science and Engineering*: An Introduction. 7th edition. New York : John Wiley & Sons. (2007).
- 29. W.A, Wood, *Recent observations on fatigue fracture in metals*, ASTM STP 237 American Society for Testing and Materials, Philadelphia. (1958) pp. 110-121.
- 30. J. Oh, N.J. Kim, S. Lee, E.W. Lee. Correlation of fatigue properties and microstructures in investment cast. *Materials Science and Engineering*. (2003). A340: 232-242.

- 31. Y. Prawoto, R.A. Winholtz. The growth rate and plastic zone size variations of a fatigue crack grown in a tensile residual stress field, in: Proceedings of the Eighth International Conference on Nuclear Engineering, American Society of Mechanical Engineers. (2000). paper 8785.
- 32. D.G. Pavlou. Prediction of fatigue crack growth under real stress histories. *Engineering Structures*. (2000). vol. 22: 1707–1713.
- 33. ASTM International, *Standard test methods for tension testing of metallic materials*, ASTM Designation E 8-04.
- N. Pugno, M. Ciavarelle, P. Cornetti, A. Carpinteri. A generalized Paris' law for fatigue crack growth. *Journal of the mechanics and physics of solids*. (2006). 54: 1333-1349.
- 35. L. Leon. Jr Mishnaevsky. Automatic voxel-based generation of 3D microstructural FE models and its application to the damage analysis of composites. *Materials Science and Engineering*. (2005). A407: 11-23.
- 36. Abaqus Analysis User's Manual. Volume II: Analysis, ABAQUS Inc. (2006).
- 37. ASM International. *Introduction to Steels and Cast Irons*. Ohio, USA: ASM International. (2006).
- 38. G. Krauss. *Steels Processing, Structure, and Performance*. United States of America: ASM International. (2005).
- 39. G.R. Speich. *Physical Metallurgy of Dual Phase Steels*. In: Kot R. A. and Bramfitt B.L. Fundamentals of Dual-Phase Steels. United States of America: The Metallurgy Society of AIME. 3-4. (1981).

- 40. M.D. Maheswari, A. Chatterjee, T. Mukherjee. and Irani, J.J. *Heat Treatment*. 1981 Birmingham; AISI Metal society. (1981). Pg 67-77.
- 41. ASTM International, *Standard test methods for measurement of fatigue crack growth rates*, ASTM Designation E 647-12.
- 42. Z. Zhang, G. Bernhart, D. Delagnes. Cyclic behaviour constitutive modelling of a tempered martensitic steel including ageing effect. *International Journal of Fatigue*. (2008). 30: 706-716.
- 43. M. Tu, C. Hsu, W. Wang, Y. Hsu. Comparison of microstructure and mechanical behavior of lower bainite and tempered martensite in jis sk5 steel. *Materials Chemistry and Physics*. (2008). 107: 418-425.
- 44. D.F. Davey. Point counting techniques, Retrieved in March 2012, from http://www.physiol.usyd.edu.au/~daved/teaching/emu/point_counting.html.
- 45. ASTM. *Standard test method for measurement of fatigue crack growth rates*, in: ASTM: E647, ASTM International Publisher, West Con-shohocken, *PA*. (2008).
- 46. C. William. Connors. Fatigue striation spacing analysis. *Materials characterization*. (1994). 33: 245-253.
- 47. H.S. Kim. On the rule of mixtures for the hardness of particle reinforced composites. *Materials Science and Engineering*. (2000). A 289: 30–33.
- 48. C. Dong. A modified rule of mixture for the vacuum-assisted resin transfer moulding process simulation. *Composites Science and Technology*. (2008). 68: 2125–2133.

- F.M. AL-Abbasi, J.A. Nemes. Micro Mechanical Modeling of Dual Phase Steels. International Journal of Mechanical Sciences. (2003). 45: 1449–1465.
- 50. F. Iacoviello. Microstructure influence on fatigue crack propagation in sintered stainless steels. *International Journal of Fatigue*. (2005). 27: 155-163.
- 51. M. Chapetti, T. Tagawa, T. Miyata, M. Fujioka. Fatigue of an ultra-fine grained low carbon steel. *Physical Metallurgy and Alloy Design*. (2008). 2: 813-828.
- 52. M. Chapetti, H. Miyata, T. Tagawa, T. Miyata, M. Fujioka. Fatigue crack propagation behaviour in ultra-fine grained low carbon steel. *International Journal of Fatigue*. (2005). 27: 235-243.
- 53. W. Callister. *Materials Science and Engineering an Introduction*, John Wiley, New York. (2003).
- 54. Z.Wang. Fatigue of martensite-ferrite high strength low-alloy dual phase steels. *ISIJ Int.* (1999). 39: 747-759.
- 55. N. Youri. Lenets, S. Richard. Bellows. Crack propagation life prediction for Ti-6Al-4V based on striation spacing measurements. *International Journal of Fatigue*. (2000). 22: 521-529.
- 56. P.M. Moreira, P.F. de Matos, P.M. de Castro. Fatigue striation spacing and equivalent initial flaw size in Al 2024-T3 riveted specimens. *Theoretical and applied fracture mechanics*. (2005). 43: 89-99.
- 57. J.H. Bulloch, A.G Callagy. A detailed study of the relationship between fatigue crack growth rate and striation spacing in a range of low alloy ferritic steels. *Engineering Failure Analysis*. (2010). 17: 168-178.

- 58. A. Shyam, Edgar Lara-Curzio. A model for the formation of fatigue striations and its relationship with small fatigue crack growth in an aluminum alloy. *International Journal of Fatigue*. (2010). 32: 1843-1852.
- 59. B. Strauss, W. Cullen. *Fractography in failure analysis*, E-24 on Fracture Testing, ASTM Committee, New York. (2003).
- 60. T. Niendorf, F. Rubitschek, H.J. Maier, J. Niendorf, H.A Richard, A. Frehn. Fatigue crack growth-microstructure relationships in a high-manganese austenitic TWIP steel. *Materials science and engineering*. (2010). A 527: 2412-2417.