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ABSTRACT 

 

 

 

 

This research is done to acquire microstructure combinations that resist fatigue 

loading more than typical conventional microstructure (tempered martensite) and to 

study the effects of microstructure on fatigue properties of multiphase steels. A 

multiphase (polygonal ferrite and martensite) microstructure is developed. 2D and 3D 

square models with variation of ferrite fraction are used as local models and placed in 

front of the CT specimen in a global model. The ferrite shapes are from actual 

microstructure of multiphase material. It is found that the plastic zone size changes, as 

the ferrite fraction varies, and saturated at approximately 65% and 60% for 2D and 3D 

modelling, respectively. The influence of a ferrite areal fraction within a martensite 

matrix on fatigue crack propagation is studied. The variation of the areal fraction is 

achieved by means of intercritical thermal treatment, which specifically aims at 

optimizing the resistance to fatigue loading. The steels are annealed at different 

temperatures followed by water quenching and tempering process. Within the 

intercritical annealing temperature range, the areal fraction of ferrite increases with 

decreasing soaking temperature. Fatigue crack propagation tests are conducted 

according to ASTM E647-00 to obtain fatigue crack growth, FCG behaviour. It is found 

that the highest fatigue strength is achieved when the ferrite areal fraction is 

approximately 65%, which in this particular test, corresponds to 748 
0
C annealing 

temperature. It is concluded and is verified by computational modelling that appropriate 

thermal treatment can contribute to a significant improvement of fatigue properties and 

strength. The optimum ferrite fraction found from both computation and experiment is 

approximately 60% –65%.  
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ABSTRAK 

 

 

 

 

Kajian ini dijalankan untuk memperoleh kombinasi mikrostruktur yang 

menentang kelesuan lebih daripada mikrostruktur tipikal konvensional (martensit 

terbaja) dan untuk mengkaji kesan mikrostruktur pada sifat lesu keluli berbilang. Oleh 

itu, mikrostruktur berbilang (poligon ferit dan martensit) telah dibangunkan. Model 

segiempat 2D dan 3D dengan variasi pecahan ferit telah digunakan sebagai model 

setempat dan diletakkan di hadapan spesimen CT dalam model global. Dalam hal ini, 

bentuk ferit terbentuk daripada mikrostruktur sebenar bahan berbilang. Didapati bahawa 

perubahan saiz zon plastik sebagai pecahan ferit berbeza, dan tepu pada anggaran 65% 

dan 60% masing-masing bagi model 2D dan 3D. Seterusnya pengaruh keluasan pecahan 

ferit dalam matriks martensit pada perambatan retak lesu telah juga dikaji. Perubahan 

keluasan pecahan dicapai dengan cara rawatan pengkhususan haba, yang bertujuan 

untuk mengoptimumkan rintangan beban kelesuan. Keluli disepuh lindap pada suhu 

yang berbeza diikuti oleh pelindapkejutan air dan proses pembajaan. Dalam julat suhu 

penyepuhlindapan kritikal, keluasan pecahan ferit meningkat dengan pengurangan suhu 

rendaman. Ujian kelesuan perambatan retak telah dijalankan mengikut ASTM E647-00 

untuk mendapatkan sifat pertumbuhan retak lesu, FCG. Didapati bahawa kekuatan 

kelesuan tertinggi tercapai apabila keluasan pecahan ferit adalah dalam anggaran 65%, 

di mana dalam ujian tertentu, ia sepadan dengan suhu 748 
0
C.  Dirumuskan dan disahkan 

oleh model pengiraan bahawa rawatan haba yang sesuai telah menyumbang kepada 

peningkatan ketara kepada sifat kelesuan dan kekuatan. Pecahan ferit yang optimum 

didapati dengan cara pengiraan dan eksperimen dianggarkan berada pada julat 60% -

65%.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction  

 

 

The microstructure of conventional steels often makes it impossible to obtain 

concurrently good ductility and high strength. However, some applications, especially in 

the transportation industries, require economical high strength steel with good 

formability [1]. It is generally understood that among other forms of microstructure 

available in industrial steel, martensite has the best tensile properties [2]. However, at 

the same time it also has poor toughness due to its brittleness. It has been known and 

practiced extensively that tempering increases the toughness while sacrificing the 

material’s tensile properties. Tempered martensite, also formerly known as sorbite, is the 

microstructure resulting from quenching followed by tempering. 

 

To achieve weight reductions and fuel saving in the vehicles and to fulfill the 

energy and resource requirements, a new kind of steel named as multi-phase steel was 

developed. This type of steel exhibited a microstructure which was constituted basically 

on ferrite and martensite. Multi-phase is of interest because of better ductility and could 
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provide a high mechanical resistance than other steels. They are very important for the 

automotive industry since they reduce weight and cost and also improve the fatigue life 

of products of many car parts such as wheels, radiator support, doors, spring support, etc 

(see Figure 1.1) [2]. The service life of many components of this type is dependent on 

materials fatigue life which is an important consideration in material selection. 

 

       

Figure 1.1 Example of car parts needs to improve the fatigue life [2] 

 

Multi-phase steels can be obtained from the presence of martensitic and austenite 

islands dispersed in a ferrite matrix. These steels are produced by transforming the 

pearlite areas of ferrite-pearlite microstructure in low carbon steel to austenite by heating 

into the ferrite-austenite (α-γ) region and followed by quenching process. There are 

several factors that significantly affect the microstructure of multi-phase steel, namely 

the chemical composition of steel, temperature of intercritical annealing and the rate of 

cooling after annealing. The strength of such steels is determined mainly by the volume 

fraction of martensite, whereas the ductility is determined by the volume fraction of 

ferrite.  
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There is no doubt that controlling and determining the FCP rate is the most 

essential part of the fracture mechanics design approach. The best way to acquire it is by 

knowing the metallurgical mechanisms as well as the continuum mechanics of fatigue 

crack propagation. Nonetheless, it is difficult to combine these approaches since in the 

area where the continuum mechanism approach can be used, the metallurgical influence 

is small and vise versa, see Figure 1.2 [3]. Furthermore, research on microstructure often 

lacks the continuum mechanics approach; the same way research on continuum 

mechanics lacks microstructural observation. 

 

 

Figure 1.2 Schematic plot of the area grouping and their mechanisms [3] 

 

In this research, the conceptual design, as well as the computation results and 

parts of the static and impact experiments are discussed lightly. In contrast, the 

discussion is focused on the fatigue crack propagation experimental procedure and the 

verification of the results with computational results. This research was done to obtain 
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an optimized sample that grains its fatigue performance from its high toughness yet 

possesses high tensile properties due to its tailored microstructure. The objective 

ultimately is to achieve a microstructure that resists fatigue more than the 

microstructures conventionally available, and in an economical manner. 

 

 

 

 

1.2 Objective of the Research 

 

 

The main objective of the present research is to investigate and to provide a 

better understanding of the effects of heat treatment on the mechanical properties of 

multi-phase steels. The primarily objective of the research are: 

 

1. To obtain microstructure combination that can resists to fatigue loading more 

than typical conventional microstructure (tempered martensite) and the effect of 

microstructure on fatigue properties of multi-phase steels.  

2. To acquire the optimize phase composition of the microstructure which 

presumably the combination between polygonal ferrite and martensite by means 

of computational approaches.  

3. To formulate heat treatment method for producing the optimum microstructure. 

 

 

 

 

1.3 Scope of the Research 

 

 

 The scopes of this research work are: 
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1. Model creation and computational approach by using finite element method 

(Abaqus CAE) for two-dimensional, 2D modeling. 

2. Model creation and computational approach by using finite element method 

(Abaqus CAE) for three-dimensional, 3D modeling. 

3. Sample making and heat treatment to produce multi-phase material. 

4. Fatigue crack propagation test to get the optimized sample which have the best 

characteristics resist to fatigue loading. 

5. Fractography analysis by using Scanning Electron Microscope (SEM). 

 

 

 

 

1.4 Methodology of the Research 

 

 

To achieve the objective of this study, several methods have been used in the 

implementation of this research. These methods can be briefly explained as follows. 

 

a) Computational method 

Two-dimensional, 2D and three-dimensional, 3D of plane strain models are developed 

to estimate the plastic zone size in front of a crack. 2D and 3D square models with 

variation of ferrite fraction are used as local models and placed in front of the CT 

specimen in a global model. The model is developed and meshed in ABAQUS/CAE 

(ABAQUS pre-processor). 

 

b) Experimental procedure 

i. Sample making and heat treatment  

Compact tension samples appropriate for fatigue crack propagation and 

static test are made prior to heat treatment.  
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ii. Metallographic analysis 

The microstructures of the samples are examined from the point of view 

of microstructure and chemical composition in term of the specific 

changes due to heat treatment. The quantitative approach is considered in 

Chapter 3, using image analysis coupled with scanning electron 

microscopy. 

 

iii. Fatigue crack propagation testing 

The heat treated samples are investigated with fatigue crack propagation 

testing and are carefully examined in terms of microstructure and 

mechanical properties, to achieve the optimized characteristics that resist 

to fatigue loading.  

 

iv. Fractography analysis 

The fatigue striations spacing formed on the fracture surface of the 

samples are analyzed using scanning electron microscopy (SEM). The 

quantitative relationships between microstructure and mechanical 

properties are investigated.  

 

 

 

 

1.5 Significant of the Research 

 

 

It is concluded that appropriate thermal treatment can contribute to a significant 

improvement of fatigue properties and strength, which is verified by computational 

modeling. The variations of the areal fractions are achieved by means of intercritical 

thermal treatment, which specifically aims at optimizing the resistance to fatigue 

loading. 
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1.6 Thesis Structure 

 

 

The thesis comprises of five chapters. A brief explanation on every chapter is 

described as follows. 

  

Chapter one, the introduction overviews the application and importance of multi-

phase steel and highlights it as an important element of the automobile industries. It 

discusses the research objectives, scope, methodology, significant of the research and 

thesis structure. 

 

Chapter two highlighted the theory of fracture mechanics and the formation of 

multi-phase steel that resist to fatigue loading. It covers the literature review on 

metallurgical mechanism of fatigue cracking and methodology for assessment of the 

influence of ferrite fraction within martensite matrix on fatigue crack propagation, the 

literature on the formation of multi-phase steels that resist to fatigue loading and also 

other researchers works on determination of the quantitative relationship of the multi-

phase steel for specific application.  

 

Chapter three narrates in details the research methodology of this research. It 

proposed improvement for life prediction methodology by discussing a research frame 

work employed in this research and presenting step by step process in accomplishing the 

results in the form of research methodology flow chart. This chapter gives adequate 

details regarding computational approach and detailed experimental procedures carried 

out throughout this research work.  

 

Chapter four narrates the final discussion of this research. The results of the 

computational method and the experimental data are discussed comprehensively and are 

validated for model predictions. 
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Finally, the conclusions for the whole research and future recommendations are 

presented in chapter five. 

 

 

 

 

1.7 Summary 

 

 

In this chapter presented the definition to the problem, the objective and the 

scope of the project. An explanation of the methodology and significant of the project 

and also the report structure are enhanced in this chapter. 
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