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ABSTRACT

The connection between beam and column affects directly the integrity of the
building structure. In precast reinforced concrete Industrialised Building Systens
(IBS), complexity often occurred in the implementation of a new type of beam+to-
colunm connection. This is due to the new IBS arrangement and the consequent new
interaction between the jointed elements of beam and column. In this study, an
innovative new type of semi-rigid beanm+to-column connection, called SMART IBS
consisting of beam to column steel connectors and reinforced concrete elements cast
together were detailed out. Four full scale experimental tests were conducted to
achieve the real behaviour of the connection in H-shape and Cruciform sub-frames.
The tests were supplemented with conventional monolithic models representing the
moment resisting connection for comparison of structural specifications. Moreover,
for obtaining more comprehensive behaviour, nonlinear finite element analysis
(NLFEA) using ABAQUS software was conducted. Furthermore, the whole
behaviour of IBS using this new connection was researched through 3D linear
analysis to include gravitational and seismic time-history loads using SAP 2000
software. The response of the connection was investigated through the study of the
ultimate loading capacity, ductility ratio, load-displacement, moment-rotation, modes
of failure and crack patterns. The results of this research confirmed that the new
SMART IBS beantto-column connection was a semi-rigid connection with extra
beneficial ductility in comparison with conventional reinforced concrete conmection.
The ultimate strength of the SMART IBS beam+to-colunmn connection was equal to
the conventional model. Furthermore, the results of NLFEA were matched up to 90%
with experimental tests. In terms of seismic performance, a three dimensional
building of SMART IBS seismic performance was better than the conventional
reinforced concrete frames.



ABSTRAK

Sambungan antara rasuk dan tiang mempengaruhi secara langsung integriti
struktur bangunan. Dalam pra-tuang konkrit bertetulang Sistem Bangunan
Berindustri  (IBS), kerumitan sering berlaku dalam pelaksanaan sambungan rasuk-
ke-tiang. Ini terhasil dari susunan jenis baru sistem IBS dan interaksi baru di antara
rasuk dan tiang. Dalam kajian ini satu jenis sambungan inovatif separa tegar dikenali
sebagai SMART IBS terdiri dari penyambung keluli dan elemen-elemen konkrit
dituang telah diperincikan. Empat ujian skala penuh telah dilakukan untuk
menghasilkan tingkah laku sebenar sambungan pada kerangka-sub bentuk-H dan
salib. Ujian juga ditambah dengan model monolitik konvensional yang mewakili
sambungan rintangan mommen sebagai perbandingan spesifikasi struktur. Selain itu,
untuk memperolehi kelakuan yang lebih komprehensif kajian tingkah laku struktur
analisis unsur tak terhingga (NLFEA) dengan perisian ABAQUS juga telah
dijalankan. Seterusnya, kelakuan menyeluruh bangunan IBS dengan sanmbungan jenis
baru ini telah diselidiki melalui analisis tiga dimensi lelurus termasuk kesan graviti
dan seismik dengan menggunakan perisian SAP 2000. Kelakuan sambungan telah di
kaji melalui semakan kapasiti keupayaan beban muktamad, nisbah kenmuluran,
anjakan beban, putaran, momen-putaran, mod kegagalan dan corak retak. Hasil
kajian ini mengesahkan bahawa sambungan SMART IBS rasuk-ke-tiang adalah
sambungan separa tegar dengan berkemuluran tambahan yang memberi menfaat
berbanding dengan sambungan konkrit konvensional. Kekuatan sambungan SMART
IBS rasuk-ke-tiang adalah sama dengan kekuatan model konvensional. Tarmbahan
pula, keputusan NLFEA adalah berketepatan sehingga 90% berbanding ujian
makmal. Dari segi prestasi seismik, SMART IBS pada bangunan tiga dimensi adalah
lebih baik daripada rangka konkrit bertetulang konvensional.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Industrialised Building System (IBS) is a construction process that utilizes
techniques, products, components, or building systems which involves prefabricated
components and on-site installation. Industrialisation has demonstrated to reduce the
costs, improve the quality and get complex products available at high quality of
finishing to vast majority of people (Richard, 2005). Another definition of IBS by
Trikha (1999) is a system in which concrete components, prefabricated at site or in

factory are assembled to form the structure with minimum in-situ construction.

According to these definitions, the major benefits of IBS are: better quality
control, speed of construction, solving the dependency on skilled labour on site and
simplified convenient working conditions at lesser variations. On the other hand, the
conventional cast in-situ method for reinforced concrete construction has problems
like dirty work and difficulties in wet construction, casting in hot or cold weathers

and in-doubt quality control such as durability and strength for end-user.

The main difficulty in performance of an Industrialised Building System
(IBS) is the connection design and realisation. Furthermore, the integrity of these

structures is dependent on efficiency of their connections. Nonetheless if the entire



IBS component prefabricated with the best quality in factory does not join
together properly on site, the system will not behave as a monolithic and ductile
structure. This phenomenon will be more obvious where the lateral loads (such as

wind or seismic loads) becoming the design criteria.

In this study, a new type of semi-rigid ductile prefabricated reinforced
concrete beam-to-column connection, patented as SMART IBS, consists of
prefabricated precast reinforced concrete beam and column elements with steel end
connectors was studied. Four full-scaled specimens consist of H and cruciform
subframes using this connection were tested as well as their equivalent conventional
monolithic specimens. Furthermore, for obtaining more detailed behaviour, nonlinear
finite element analysis (NLFEA) using ABAQUS was conducted. The whole
behaviour of reinforced concrete SMART IBS structure is also studied through linear
analysis considering gravitational and seismic time-history loads by using SAP 2000.
Load-displacement, load-strain, moment-rotation relationships, modes of failure,
crack patterns , ultimate strength, ductility, stiffness and energy absorption capacity
are the characteristics that made the structural behaviour of the connection

comprehensible.

1.2  Statement of the Problem

In Industrialised Building system (IBS) construction, the success in forming a
monolithic structure of moment resisting systems, depends on the execution of beam-
to-column connections. Difficulties are often found in newly implemented beam-to-
column connections and consequent new interaction between the jointed elements of

beam and column.

In this study a new hybrid steel-concrete beam-to-column connection for
joining precast reinforced concrete IBS beam and column was studied through

experimental test and finite element analysis.



The features of this IBS beam-to-column connection are:

1. Easy and fast installation with fastening four bolts for every beam end

2. No wet work, the connection is not needed to any cast in-situ which is time
consuming and dirty and also the dependency on foreign workers will be
diminished

3. No welding work at site, results in fast and trusted construction

4. Using both benefits of steel and concrete, ductility of steel in connector
regions and solidity of concrete in body of elements

5. Beam replacement ability, flexible connection properties allow the
replacement and rehabilitation of damaged beams (probably through
earthquake or explosion)

6. Compatibility with architecture, no salient object in the finished view

7. Simplicity of the connection, an innovative hybrid of I shape steel profile at
beam ends plus cruciform and cloven box at the ends of IBS reinforced

concrete columns

Due to previous full-scale tests many of typical beam-column I[BS
connections behave as semi-rigid connections, providing semi-continuity to the
connected IBS components, reducing sagging moments due to gravity load, as well
as enhancing the frame action of IBS skeletal structures. As Elliott er a/ (2004) said
Codes of Practice (e.g. BS8110, EC2 and ACI 318) do not cater for these types of
connections even though the design and analysis of precast structures are
significantly affected by their behaviour. Also EC4, the code of design of composite
steel and concrete structures, generally addresses EC3 (the code of design of steel
structures) for the assessment of moment-rotation behaviour of composite steel and
concrete beam-to-column connections. Although the Precast/Prestressed Concrete
Institute (PCI) manual (2010) contains descriptions of typical beam-to-column
connections fulfilling many functions, the published test results are available for only
a few of them. Besides that, each IBS connection has its exclusive arrangement of
joints and elements with different materials that makes each connection’s behaviour,
individual. On the other hand, reliable connection behaviour can only be properly

assessed by experimental tests or proven performance (Loo and Yao, 1995).



Furthermore, in most of experimental tests only the joint part of the beam-to-
column connection considered by cantilever manner (cruciform subframe) loading in
which a concentrated point load is applied on a part of the beam. In conclusion stated
by Elliott et al (1998): (i) full-scale testing carried out on cruciform shaped
specimens has not allowed the redistribution of hogging bending moments at the end
of the beam and only hogging moments at the end points of the beams were studied
in cruciform specimens and (i) the ratio of the moment-to-shear force remains
constant in cruciform models while in real structure it is not constant. In this study
we modelled the whole beam and two end columns in H-shape subframe with two
point loading manner enhancing the practical real loads applied on the structure, as
well as cruciform one for better investigation of flexural behaviour such as strength,

rigidity and ductility of beam-to-column connection.

In addition, a nonlinear finite element analysis was conducted to investigate
the behaviour of this new connection subjected to permanent loads. In fact, the
inherent complexity of this new hybrid steel-concrete beam-to-column connection
and its connected members needs NLFEA to aid the experimental tests for better
explanation of the behaviour of the connection. Furthermore, the deformation of each
part of a connection will result in a new arrangement in internal forces. The nonlinear

finite element analysis considers this internal forces redistribution.

The degree of nigidity of beam-to-column connection greatly affects the
behaviour of the global skeletal structures against gravitational and lateral loads. This

effect was investigated by performing 3D analysis of the structures by SAP 2000.

1.3 Purpose of the Study

The purpose of this study was to develop an innovative hybrid steel-concrete
beam-to-column connection for precast reinforced concrete Industrialised Building

System using experimental and nonlinear finite element analyses.
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Objectives of the Study

The objectives of this study are:

iii)

To establish full- scale experimental laboratory tests of proposed
new SMART IBS in H and cruciform subframes and to study the

structural behaviour of this new IBS beam-to-column connection.

To compare the behaviour of the SMART IBS with monolithic
conventional reinforced concrete beam-to-column connection
through similar full-scale H and cruciform subframes experimental

tests.

To carry out a nonlinear finite element analysis (NLFEA) of
proposed IBS beam-to-column connection and monolithic one,
using ABAQUS software application and comparison with

experimental results.

To obtain the comparative global behaviour of the 3-Dimensional
frames using SMART IBS and conventional reinforced concrete

beam-to-column connections.

1.5 Significance of the Study

From this study, a clear understanding on the behaviour and failure

mechanism of a new hybrid steel-concrete connection between beam and column in

reinforced concrete Industrialised Building System (SMART IBS) is observed. The

results of this study will be beneficial in understanding the performance of the

connection and its role in the Industrialised Building Systems. Besides that, the



strength of the structure after erection can be predicted too. On the other hand, the

safety of the structure after erection can be investigated.

1.6  Scope of the Study

In this study, the full-scale experimental tests of the new hybrid steel-
concrete IBS beam-to-column connection were carried out with H and cruciform
shape cut-out beam and columns (subframes). The size of the beam and column of
both subframes was 300 mm x 300 mm. The H-shape subframe had a 3200 mm clear
span and 3300 mm columns height. The cruciform subframe had two 1500 mm

length beams in two sides of a 3300 mm column.

The static loads for H-shape and cruciform models were applied gradually in
a downward vertical direction and in the form of two points load on % of beam length

until failure. The loading manner consisted of loading gradually until 10 %, at 2.5 %
increasing steps, of calculated failure load then releasing the applied load to zero. At
second stage of loading, load was applied step by step to 30 %, was at 5 %
increment, of expected failure load then released gradually to zero. Finally, the load
monotonically increased at 5% of steps to failure. The loads applied on cruciform
shape subframe had two reverse directions at the ends of side beams. Besides that,
full-scale monolithic models of those H and cruciform shape subframes constructed
conventionally with the same dimensions for the purpose of comparison between IBS
models and monolithic conventional ones using similar described point loads as
above. The experimental procedures and results are described in chapters 3.6 and 4

respectively.

Furthermore, nonlinear finite element analysis (NLFEA) of all four models

had been conducted by ABAQUS finite element software for achieving a better



understanding of structural behaviour of them. The NLFEA procedures and results

are described in chapters 3.7 and 5, respectively.

Two real size IBS buildings (5-bay, 3500 mm span, 6-storeys, 3300 mm
height) consisted of type I: moment resisting frame system without earthquake load
and type II: improved moment resisting frame with shear wall system considering the
earthquake load was analysed by SAP 2000 software. The application of this
connection is focused on the typical house in Malaysia except the earthquake loads.
Therefore, the non-seismic loads applied on the elements of the models were taken
with reference to Eurocode 1 (2005). The lateral force method using static equivalent
earthquake load was implemented based on Eurocode 8 (2008). In addition, the
seismic time-history analysis was conducted using earthquake spectra of Bam
earthquake in Iran and El Centro in US. The whole structures analysis procedures

and results are described in chapters 3.8 and 6, respectively.



REFERENCES

ABAQUS 6.9 FEA software manual. (2009). SIMULIA, Rising Sun Mills, 166
Valley Street, Providence: RI 02909-2499, USA.

Abd Rahman, A. B., and Omar,W. (2006). Issues and Challenges in the
Implementation of Industrialised Building Systems in Malaysia. 4sia-Pacific
Structural Engineering and Construction Conference (APSEC 2006). 5 — 6
September. Kuala Lumpur, C 45-53.

Abd Rahman, A. B., Leong, D. C. P., Saim, A. A., and Osman M. H. (2006). Hybrid
Beam-to-Column  Connections for Precast Concrete Frames. Asia-Pacific
Structural Engineering and Construction Conference (APSEC 2006). 5 — 6
September. Kuala Lumpur, A281-290.

Abd Rahman, A. B., Hock, L. J. , Saim, A. A. and Osman, M. H. (2007). Design and
Testing of A Full Scale Precast Concrete H-Subframe. ' Construction
Industry Research Achievement International Conference (CIRAC2007).13
March. PWTC, Kuala Lumpur, 1-9.

ACI-ASCE Committee 512. (1964). Suggested Design of Joints and Connections in
Precast Structural Concrete. Journal of the Structural Division, Vol. 90(4),
175-190.

ACI Committee 318 (2008). ACI 318, Building Code Requirements for Reinforced
Concrete, Detroit: ACL

ACI-ASCE Joint Committee 352. (1976). Recommendations for Design of Beam-
Column Joints in Monolithic Reinforced Concrete Structures, Journal of the
American Concrete Institute, Proceedings, Vol. 73(7), 375-393.

Ahmadizadeh, M., Shakib, H. (2004). On the December 26, 2003, southeastern Iran
earthquake in Bam region, Engineering Structures. 26, 1055-1070.

Al-Shaarbaf, 1. A. S. (1990). Three Dimensional Nonlinear Finite Element analysis
of Reinforced Concrete. Ph.D. Thesis, University of Bradford: UK.



291

Ambrose, J., Vergun, Dimitry. (1999). Design for Earthquakes. New York. :John
Wiley & Sons, Inc.

American Society of Testing Materials, (2010). ASTM C469-87a, Standard Test
Method for Static modulus of Elasticity and Poisson’s Ratio of Concrete in
Compression: Pennsylvania: ASTM.

Badir, Y. and Razali, A. (1998). Theory of classification: its application and Badir-
Razali building Systems classification, Journal of the Institute of
Engineering, Malaysia (IEM), October.

Badir, Y., A. Kadir, M. R., and Hashim, A. H. (2002). Industralised Building System
Construction in Malaysia. Journal of Architectural Engineering. Vol. §(1),
19-23.

Bathe, K.J. (1982). Finite Element Procedures in Engineering Analysis. New Jersey :
Prentice-Hall, Inc.

Bedard, C. And Kotsovos, M. D. (1985). Application on NLFEA to Concrete
Structures. Journal of Structural Engineering. Vol. 111(12), 2691-2707.

Bertero, V. V., Popov, E. P. and Forzani, B. (1980). Seismic Behavior of
Lightweight Concrete Beam-Column Subassemblages. ACI Journal
Proceedings. Vol. 77(1), 44-52.

Bjorhovde, R., Colson, A. and Brozetti, J. (1990). Classification System for Beam-
to-Column Connections. Journal of Structural Engineering. Vol. 116(11),
3059-3076.

Bhatt, P, Kirk, D. W. (1985). Tests on improved beam-to-column connections for
precast concrete. ACI Journal . Vol. 82(6), 835-843.

Brauer, J. R. (1993). Basic Finite Element Concepts in Brauer, J. R. What Every
Engineer Should Know about Finite Element Analysis. New York: Marcel
Dekker, Inc.

British Standard Institution. (1983). BS [881-121: Testing Concrete- Part 121:
Method for Determination of Static Modulus of Elasticity in Compression. :
London. British Standard Institution.

British Standard Institution. (1990). BS 5950: Structural Use of Steelwork in
Building. : London. British Standard Institution.

British Standards Institution. (1984). BS 6399: British Standard Codes of Practice
Jor Dead and Imposed Loads. :London. British Standard Institution.



292

British Standards Institution. (1985). BS 8110: British Standard Codes of Practice
Jor Design and Construction. :London. British Standard Institution.

British Standard Institution. (2001). BS EN 10002-1, Metallic Materials-Tensile
Testing, Part 1: Method of Test at Ambient Temperature. . London. British
Standard Institution.

British Standard Institution. (2009). BS EN 10002-1, Metallic Materials-Tensile
Testing, Part 1: Method of Test at Ambient Temperature. . London. British
Standard Institution.

British Standard Institution. (2004). BS EN 10025-2, Hot Rolled Products of
Structural Steels, Part 2: Technical Delivery Conditions for Non-Alloy
Structural Steels: London. British Standard Institution.

British Standard Institution. (2009). BS EN 12350-2, Testing Fresh Concrete, Part 2:
Stump-Test: London. British Standard Institution.

British Standard Institution. (2000). BS EN 12390-1, Testing Hardened Concrete,
Part 1: Shape, dimensions and other requirements for specimens and moulds:
London. British Standard Institution.

British Standard Institution. (2009). BS EN 12390-2, Testing Hardened Concrete,
Part 1: Making and curing specimens for strength tests: London. British
Standard Institution.

British Standard Institution. (2009). BS EN 12390-3, Testing Hardened Concrete,
Part 3: Compressive Strength of Test Specimens: London. British Standard
Institution.

British Standard Institution. (2000). BS EN 12390-4, Testing Hardened Concrete,
Part 4: Compressive Strength-Specification for testing Machines: London.
British Standard Institution.

British Standard Institution. (2009). BS EN 12390-6, Testing Splitting Strength of
Test Specimens, Part 6: Tensile Splitting Strength of Test Specimens: London.
British Standard Institution.

British Standard Institution. (1992). BS EN 20898-1, Mechanical Properties of
Fasteners, part 1: Bolts, Screws and Studs. : London. British Standard
Institution.

British Standard Institution. (2010). BS EN ISO 15630-1, Steel for the Reinforcement
and Prestressing of Concrete- test Methods, Part 1: Reinforcing bars, wire

rod and wire. :London. British Standard Institution.



293

Carroll.W. F. (1999). A Primer for Finite Element in Elastic structures. Canada: John
Wiley & Sons, Inc.

CEB-FIP. (1990). CEB-FIP, Design code. Lausanne (Switzerland): Thomas Telford.

Chen, W. F. (Ed.) (2000). Practical Analysis for Semi-Rigid Frame Design.
Singapore: World Scientific.

Cheok, G. S. and Lew, H. S. (1991). Performance of Precast Concrete Beam-to-
Column Connections Subject to Cyclic Loading. PCI Journal. Vol. 36(3), 56~
67.

Cheok, G. S. and Lew, H. S. (1993). Model Precast Concrete Beam-to-Column
Connections Subject to Cyclic Loading. PCI Journal. Vol. 38(4), 80-92.

Cheok, G. S., Stone, W. C. and Kunnath, S. K. (1998). Seismic Response of Precast
Concrete Frames with Hybrid Connections. ACI Structural Journal. Vol.
95(2), 527-539.

Chowdhury, M. R., Ray, J. C. (1995). Further Consideration for Nonlinear finite-
Element Analysis. Journal of Structural Engineering. Vol. 121(9), 1377-
1379.

CIB. (2010). New perspective in Industrialization in construction- a state-of- the art
report, CIB Publication 329. Rotterdam, Netherlands: CIB.

CIDB. (2003). Industrialised Building System (IBS) Roadmap 2003-2010. Kuala
Lumpur, Malaysia: CIDB.

Collings, D. (2010). Steel-Concrete Composite Buildings Designing with
Euorocodes. London: Thomas telford.

Cook, R. D., Malkus, D. S., PLesha, M. E. and Witt, R. J. (2002). Concepts and
Applications of Finite Element Analysis.4™ ed. United States: John Wiley &
Son Inc. 719 p.

Cooper, R. (2005). Progress management in Design and Construction. Oxford,
London: Blackwell Publishing .

De Borst, R., Remmers, J. J. C., Needleman, A. And Abellan, M. A. (2004). Discrete
vs Smeared Crack Models for Concrete Fracture: Bridging the Gap.
International  Journal for Numerical and Analytical Methods in
Geomechanics.Vol. 28(7-8), 583-607.

Desai, P. and Krishnan S. (1964). Equation for stress strain curves of concrete.AC/
Journal, 61(3), 345-360.



294

Dilrukshi, K. G. S., Dias, W. P. S., Rajapakse, R. K. N. D. (2010). Numerical
Modelling of Cracks in Masonry Walls Due to Thermal Movements in an
Overlying Slab. Engineering Structures. Vol. 32(5), 1411-1422.

Dolan, C. W., Stanon, J. F., Anderson, R. G. (1987). Moment Resistant Connections
and Simple Connections. PCI Journal. Vol. 32(2), 62-74.

Dolan, C. W, Pessiki, S. P. (1989). Model testing of Precast Concrete Connections.
PCI Journal. Vol. 56(2), 85-103.

Durrani, A. J. and Wight, J. K. (1985). Behavior Of Interior Beam-To-Column
Connections Under Earthquake-Type Loading. Jouwrnal of the American
Concrete Institute. Vol. 82(3), 343-349.

EERI, (1989). Armenia Earthquake Reconnaissance report, Earthquake Engineering
Research Institute, 175p.

Ehsani, M. R., Wight, J. K. (1985). Exterior Reinforced Concrete Beam-To-Column
Connections Subjected To Earthquake-Type Loading. Journal of the
American Concrete Institute. Vol. 82(4), 492-499,

Elliott, K. S. (1996). Multistorey Precast Concrete Framed Structures. London:
Blackwell Science Ltd.

Elliott, K. S., Davis, G., Gorgun, H. and Adlparvar, M. R. (1998). The Stability of
Concrete Skeletal Structures. PCI Journal. Vol. 43(2), 42-60.

Elliott, K. S. (2000). Research and development in precast concrete framed
structures. Progress in Structural Engineering and Materials. 2, 405-428.
John Wiley & Sons, Ltd.

Elliott, K. S. (2002). Precast Concrete Structures. London: Blackwell Science Ltd.

Elliott, K. S., Davis, G., Ferreira, M., Gorgun, H. and Mahdi, A. A. (2003). Can
Precast Concrete Structures Be Designed as Semi-Rigid Frames? Part 1- The
experimental evidence. The Structural Engineer. 81(16), 14-27. The
Institution of Structural Engineers, UK.

Elliott, K. S., Davis, G., Ferreira, M., Gorgun, H. and Mahdi, A. A. (2003). Can
Precast Concrete Structures Be Designed as Semi-Rigid Frames? Part 2-
Analytical equations & column effective length factors. The Structural
Engineer. 81(16), 28-37.The Institution of Structural Engineers,UK.

Elliott, K. S., Ferreira, M. D. A. and. El Debs, M. K. (2004). Strength-Stiffness

Requirement Approach for Semi-Rigid Connections in Precast Concrete



295

Structures, [International Conference on Concrete Engineering and
Technology. Universiti Malaya, Kuala Lumpur.

Englekrik, R. E. (2002). Design-Construction of the Paramount — A 39-Story Precast
Prestressed Concrete Apartment Building, PCI Journal. Vol. 40(2), 56-71.

European Committee for Standardization (2005). FEurocode ECI, Actions on
Structures, General Rules for Buildings. Brussels: CEN.

European Committee for Standardization (2004). Eurocode EC2, Design of Concrete
Structures (BS EN 1992), General Rules for Buildings. Brussels: CEN.
European Committee for Standardization (2005). Furocode EC3, Design of Steel

Structures (BS EN 1993). Brussels: CEN.

European Committee for Standardization (2004). Furocode EC4, Design of
composite steel and concrete structures (BS EN 1994). Brussels: CEN.
European Committee for Standardization (2011). Furocode ECS, Design of

structures for Earthquake Resistance (BS EN 1998). Brussels: CEN.

Fintel, M., (1986). Performance of Precast and Prestressed Concrete in Mexico
Earthquake, PCI Journal, Vol. 31(1), 18-42.

Fintel, M., (1995). Performance of buildings with shear walls in earthquakes of the
last thirty years, PCI Journal, Vol. 40(3), 62-80.

George, M. L., Rwlands, D. and Kastle, B. (2003). What is Lean Six Sigma.US:
McGraw-Hill.

Goodchild, C. H. (1995). Hybrid Structures. Berkshire, UK: British Cement
Association on behalf of the industry sponsors of the Reinforced Concrete
Council.

Gorgun, H. (1997). Semi-Rigid Behaviour of Connections in Precast Concrete
Structures. Ph.D Thesis. University of Nottingham, UK.

Hanson, N. W. and Conner, H. W. (1967). Seismic Resistance of Reinforced
Concrete Beam-Column Joints, Journal of the Structural Division. Vol.
93(STS), 533-560.

Hanson, N. W. (1971). Seismic Resistance of Concrete Frames with Grade 60
Reinforcement, Journal of the Structural Division, Vol. 97(ST6), 1685-1700.

Hinton, E. (1984). Numerical methods and software for dynamic analysis of plates

and shells. Swansea, U.K.: Pineridge press.



296

Hognestad, E. (1951). A Study of Combined Bending and Axial Load in Reinforced
Concrete Members, Bulletin Series No. 399, University of Illinois Urbana,
USA.

Hong, O. C. (2006). Analysis of IBS for School Complex. BS. Thesis. Universiti
Teknologi Malaysia, Skudai.

Hu, Y. X,, Liu, S.C. and Dong, W. (1996). Earthquake Engineering. London: E &
FN SPON.

International Code Council. (2009). International Building Code (IBC). Delmar,
CA, USA: Cengage Learning.

Ingraffea, A. R., Saouma V. (1985). Numerical modelling of discrete crack
propagation in reinforced and plain concrete. In Sih G.C., DiTomasso A.
(Eds), Fracture Mechanics of Concrete. Dordecht: Martinus Nijhoff
Publisher.

loannides, A.S. (1988). Frame Analysis Including Semi-Rigid Connections and P-
Delta Effects . Connections in Steel Structures, Behaviour, Strenngth and
Design. Pages 214 to 221. NY, USA: Elsevier Applied Science.

Johansson, Morgan (2000). Nonlinear Finite Element Analysis of Concrete Frame
Corners. Journal of Structural Engineering. Vol. 126(2): 190-199.

Johnson, R. P. and Anderson, D. (1994). Designers’ Guide to EN 1994-1-1,Furocode
4: Design of composite steel and concrete structures, part 1.1:General
rules and rules for buildings. London: Thomas Telford Publishing.

Kamar, K. A. M. (2011). Industrialized building System (IBS): Revisiting Issue of
Definition and Classification. International journal of Emerging Sciences,
Vol. 1(2), 120-132.

Kaplan, H., Nohutcu, H., Cetinkaya, N., Yilmaz, S., Gonen, H. and Atimaty, E.
(2009). Seismic strengthening of Pin-Connected Precast Concrete
Structures with External Shear Walls and Diaphragms. PCI Journal. Vol.
54 (1), 88-99.

Khaloo, A. R. and Parastesh, H. (2003). Cyclic Loading of Ductile Precast Concrete
Beam-Column Connection. ACI Structural Journal. Vol. 100(4), 291-296.

Kotsovos, M.D. and Pavlovic, M. N. (1995). Structural Concrete: Finite Element

Analysis for Limit State Design. London: Thomas Telford.



297

Kulkarni, A. S., Li, B., Yip, W. K. (2008). Finite Element Analysis of precast
Hybrid-Steel Concrete Connections under Cyclic Loading. Journal of
Constructional Steel Research. Vol. 64(2), 190-201.

Kulkarni, A. S., Li, B. (2009). Investigations of seismic Behaviour of Hybrid
Connections. PCI Journal. Vol. 54(1), 67-87.

Kupfer, H., Hislsdurf, H. K. And Rusch, H. (1969). Behaviour of Concrete under
Biaxial Stresses, ACI Journal Proceeding. Vol. 66(8), 656-666.

Lee, D. L. N, Yee, A. A., Hanson, R. D. and Wight, J. K. (1977). RC Beam-Column
Joints under Large Load Reversals. Journal of the Structural Division, Vol.
103(12), 2337-2350.

Leong, D. C. P. (2006). Behaviour of Pinned Beam-to-Column Connections for
Precast Concrete Frames. MSc Thesis. Universiti Teknologi Malaysia:
Malaysia.

Loo, Y. C. and Yao, B. Z. (1995). Static and Repeated Load Tests on Precast
Concrete Beam-to-Column. PCI Journal. Vol. 40(2), 106-115.

Marsono, A. K. (2000). Reinforced Concrete Shear wall Structures with Regular and
Staggered Opening. Ph.D Thesis. University of Dundee: UK.

Marsono, A. K., Mokhtar, A. M. and Md Tap, M. (2010). National Patent No.

2010003779. SMART Industrialised Building System (IBS) Component.

Marsono, A. K., Mokhtar, A. M. and Md Tap, M. (2011). International Patent No.

PCT/MY 2011/000182. SMART Industrialised Building System (IBS) Component.

Marwar, N. F. (2007). Earthquake Analysis of IBS Double Storey Housing. M.Sc.
thesis. Universiti Teknologi Malaysia (UTM): Malaysia.

Massicotte, B., Elwi, A. E. and MacGregor, J. G. (1990). Tension-Stiffening Model
for Planar Reinforced Concrete Members. Jowrnal of Structural
Engineering. Vol. 116(11), 3039-3058.

Meinheit, D. F. and Jirsa, J. O. (1981). Shear Strength of RC Beam —Column
Connections. Journal of Structural Engineering. Vol. 107(11), 2227-2244,

Moehle,J. P., Hooper, J. D., and Lubke, C. D. (2008). Seismic design of reinfo rced
concrete special moment frames: a guide for practicing engineers, NEHRP
Seismic Design Technical Brief No. 1. Gaithersburg, MD., USA: National
Institute of Standards and Technology.

Mork, P. B. (2005). IBS A Short History. /BS Digest. July-September (3),

Construction Industry Development Board Malaysia (CIDB).



298

Mosley, B., Bungey, J. And Hulse, R. (1999). Reinforced Concrete Design. (5" ed.).
Hampshire, UK: Palgrave.

Mosley, B., Bungey, J. And Hulse, R. (2007). Reinforced Concrete Design to
Eurocode 2. Hampshire,UK: Palgrave.

Nethercot, D. A., Li, T. Q. and Ahmed, B. (1998). Unified Classification System for
Beam-to-Column Connections. Journal of Steel Research. Vol. 45(1), 39-
65.

Oehlers, D.J. and Bradford, M. A. (1999). Elementary Behaviour of Composite Steel
& Concrete Structural members. Oxtord, UK: Butterworth Heinemann.

Park R. and Paulay T. (1975). Reinforced Concrete Structures. New York:

JohnWiley & Sons.

Park, R., (1995). A Perspective on the Seismic design of Precast Concrete Structures
in New Zealand, PCI Journal, Vol. 40(3), 40-60.

Peng, F. Y. (20006). Analysis of IBS Factory Building. BS. Thesis. Universiti
Teknologi Malaysia, Skudai.

Pillai, S. U. and Kirk, D. W. (1981). Ductile Beam-Column Connection in Precast
Concrete. ACI Journal. Vol. 78(6). 480-487.

Punmia, B. C., Jain, A. K. And Jain, A. K. (2007). Limit State Design of Reinforced
Concrete. India: Laxmi Publication Ltd.

Reddy, J. N. (2004). An Introduction to Nonlinear Finite Element Analysis. New

York: Oxford University Press.

Restrepo, J. L., Park, R. and Buchanan, A. (1993). Seismic Behaviour of Connections
Between Precast Concrete Elements, Research Report 93-3. New Zealand:
Department of Civil Engineering, University of Canterbury.

Richard,R. B. (2005). Reproduction before automation and robotics. Journal of
Automation in Construction. 14, 251-441.

Richardson, J. G. (1991). Quality in Precast Concrete: Design-Production-

Supervision. New York: Longman Scientific & Technical.
Rodriguez, M. (2000). Earthquake resistant precast concrete buildings floor
accelerations in buildings. New Zealand: University of Canterbury. Dept. of
Civil Engineering.
Ross, T. F. (1998). Advanced Applied Finite Element Methods. England: Horwood
Publishing Limited.



299

Rots, J. G. and Blaauwendraad, J. (1989). Crack Models for Concrete: Discrete or
Smeared? Fixed, Mult-Directional or Rotating?. HERON. Vol. 34 (1), 3-
33.

Saatcioglu, M., Mitchell, D., Tinawi, R., Gardner, N. J, Gillies, A. G., Ghobarah, A.,
Anderson,D.L. and Lau, D. (2001). The August 17, 1999, Kocaeli (Turkey)
earthquake — damage to structures. Can. J. Civ. Eng. 28(4), 715-737.

Seckin, M. and Fu, H. C. (1990). Beam-Column Connections in Precast Reinforced
Concrete Construction. ACI Structural Journal. Vol. 87(3), 252-261.

Seeber, K. (Ed.) (2004). PCI Design Handbook Precast and Prestressed Concrete.
(6" ed.) Chicago, IL. : Precast/ Prestressed Concrete Institute (PCI).

Song, H. I. (2004). Nonlinear Finite Element Analysis of the Precast Concrete Beam
to Column Connection. MSc. Thesis. Universiti Teknologi Malaysia, Skudai.

Steel Construction Institute, (1996). Joints in Steel Construction, Moment
Connections, London: SCL

Stone, W. C., Cheok, G. S. And Stanton, J. F. (1995). Performance of Hybrid
Moment-Resisting Precast Beam-Column Concrete Connections Subjected
to Cyclic Loading, ACI Structural Journal. Vol. 92(2), 229-249.

Sturm, E. R. and Shaikh, A. F. (Ed.) (1988). Design and Typical Details of
Connections for Precast and Prestressed Concrete, Second Edition.
Chicago, IL: Precast/Prestressed Concrete Institute (PCI).

Sudhakar, A. K., Li, B., Yip, W. K. (2008). Finite Element Analysis of Precast
Hybrid-Steel Concrete Connections under Cyclic Loading, Journal of
Constructional Steel Research. Vol. 64(2), 190-201.

Sudhakar, A. K., Li, B. (2009). Investigations of Seismic Behaviour of Hybrid
Connections. PCI Journal, Vol. 54(1), 67-87.

Swaddiwudhipong, S., Seow, P. E. C. (2006). Modelling of steel fiber-reinforced
concrete under multi-axial loads. Cement and Concrete Research, Vol. 36,
1354-1361.

Task group 7.3 Féderation international du beton. (2003). Seismic Design of Precast
Concrete Building Structures: state-of-art report, Swiss: Féderation

international du béton (Fib).

Thanoon, W.A., Peng, L. W, Kadir, M. R. A., Jaafar, M. S. And Salit, M. S. (2003).

The Essential Characteristics of Industrialised Building System. International



300

Conference on Industrialised Building SystemsMalaysia. 10-11 September. ,
Kuala Lumpur, 283-291.

Trikha, D. N. (1999). Industrialised Building System- Prospects in Malaysia.
Proceedings of World Engineering Congress 1999. Industrialised Building
Systems and Structural Engineering. 19-22 July. Kuala Lumpur, 37-42.

Vecchio, F. J. (1989). Nonlinear Finite Element Analysis of Reinforced Concrete
Membranes, ACI Structural Journal. Vol. 86(1), 26-35.

Waddell, J. J. (1974). Precast Concrete: Handling and Erection (ACI monograph no.
8). (1™ ed.) Ames, IA: Towa State University Press.

Walker, H. C. (Ed.) (1973). PCI Manual on Design of Connections for precast
Prestressed Concrete: Chicago, IL: Precast/Prestressed Concrete Institute
(PCI).

Wang T., Hsu T.T.C. (2001). Nonlinear finite element analysis of concrete structures
using new constitutive models, Computers and Structures, Vol. 79(32),
2781-2791.

Warszawski, A. (1999). Industrialised and Automated Building Systems: a

managerial approach. London: E&FN Spon.

Weaver,W.J. and Johnston,P.R. (1984). Finite Elements for Structural Analysis.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

Wee, L. S. (2004). Nonlinear Finite Element Analysis (NLFEA) of Reinforced
Concrete Tube in Tube Tall Building. MSc. Thesis. Universiti Teknologi
Malaysia, Skudai.

Wilson, E.L., Habibullah, A. (2009). SAP 2000 integrated finite element analysis and
design of structures, Berkeley, CA: Computers and Structures, Inc.

Yang, K. H., Oh, M. H., Kim, M. H. and Lee, H. C. (2010). Flexural Behaviour of
Hybrid Precast Concrete Beams with H-Steel Beams at Both Ends.
Engineering Structures, Vol. 32(9), 2940-2949.

Yunus, S. R. (2007). Earthquake Analysis of IBS for Single Storey Housing. MSc.
Thesis. Universiti Teknologi Malaysia, Skudai.

Zoetemeijer, P. (1989). Influence of Joint Characteristics on Structural Response of
Frames. (ed Narayanan, R.). Structural connections, Stability and Strength.

Pages 121 to 151. NY, USA: Elsevier Applied Science Publishers Ltd.





