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ABSTRACT 

 

 

 

 

The main aim of this study is to simulate and investigate the gamma and gamma 

prime phases structure stability and behaviour of misfit dislocation-precipitate with 

additional of Ni3Ti (DO24) in Ni-based superalloys using MD at 10 K, 293 K and 1000 

K. The Ni3Ti are homogeneously distributed through γ phase and the percentages are 

varied from 0.22%, 0.5%, 0.89% and 2.11%. MD is capable to produce three 

dimensions modelling based on time evolution of a set of interacting atoms and 

integrating their equation of motion. The Embedded Atom Method (EAM) is used to 

calculate phase stability, point defect properties, surface energies and relaxation for Ni-

Ti-Al system. The empirical embedding energy function, electron density function and 

interatomic pair potential function used by this method are obtained. The conclusion of 

this simulation shows that distribution of Ni3Ti is vital in determining the Ni-Ni3Al 

phase stability. The data of temperature, total energy, stress in x-axis, stress in y-axis, 

stress in z-axis and volume are plotted and snapshot of each percentage of Ni3Ti added 

is taken at different step. At higher temperature (1000 K), it is more favourable and 

stable condition for higher Ti concentration (9L 2.11%) because of lower energy level 

and more stable temperature condition. 
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ABSTRAK 

 

 

 

 

Tujuan utama kajian ini adalah untuk menjalankan proses simulasi bagi 

menyiasat kestabilan fasa dan ketidakpadanan struktur gamma dan gamma prime 

serta kehelan-mendakan dengan penambahan Ni3Ti (DO24) dalam superalloys 

berasaskan Nickel menggunakan Molecular Dynamic (MD) pada 10 K, 293 K and 

1000 K. Ni3Ti diedarkan secara serata melalui fasa γ dengan peratusan penambahan 

Ni3Ti diubah dari 0.22%, 0.5%, 0.89% and 2.11%. MD berupaya untuk 

menghasilkan pemodelan 3 dimensi yang berdasarkan evolusi masa satu set atom 

yang berinteraksi sesama sendiri dan mengintegrasikan persamaan pergerakan yang 

terlibat. Embedded Atom Method (EAM) digunakan untuk mengira kestabilan fasa, 

ciri-ciri kecacatan titik, tenaga permukaan dan kelonggaran untuk sistem Ni-Ti-Al. 

Fungsi tenaga pembenaman empirikal, fungsi ketumpatan elektron dan fungsi 

potensi pasangan atom yang digunakan melalui kaedah ini, dapat diperolehi. 

Kesimpulannya, hasil daripada proses simulasi ini menunjukkan bahawa 

pembahagian Ni3Ti adalah sangat penting dalam menentukan kestabilan fasa Ni-

Ni3Al. Data suhu, jumlah tenaga, tekanan di x-paksi, tekanan di paksi-y, tekanan di 

paksi-z dan  isipadu diplotkan dan gambar setiap peratusan Ni3Ti diambil pada 

langkah yang berbeza. Pada suhu yang lebih tinggi (1000 K), keadaan ada lebih 

sesuai dan stabil bagi peratusan Ti yang lebih tinggi (9L 2.11%) kerana jumlah 

tenaga ada lebih rendah dan keadaan suhu yang lebih stabil. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

 In the recent past, with the rapid development of the computer technology, 

molecular dynamics (MD) simulation based on the computer simulation has played more 

and more important role in understanding the mechanical properties of materials. 

Computer simulation provides a direct route from the microscopic details of a system to 

macroscopic properties of experimental interest [1]. 

 

 

 Nickel based superalloys have combination of high temperature strength, 

toughness, and resistance to degradation in corrosive or oxidizing environments. These 

materials are widely used in aircraft and power-generation turbines, rocket engines, and 

other challenging environments, including nuclear power and chemical processing plants. 

 

 

 Ni-based superalloys consist of a high volume fraction of cuboidal γ’ phase (L12 

structure) separated by narrow γ channels (FCC solid solution) [2].  The γ΄ cuboidals 

generally align along [100] lattice direction, each of which as an average edge length of 

the order 500nm. Due to the edge length of the γ’ cuboidal is very small, there is a vast 

interfacial region between the solid solution γ phase and the ordered γ’ precipitates [3]. 

It is believed that the structure and properties of γ/γ’ interface greatly affect the shape, 
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the size and coarsening rate of γ’ precipitate, which in turn is a major factor influencing 

creep rupture strength of superalloys [4]. 

 

 

 Since the lattice parameters of the two phases are similar but not identical, a 

stress field resulting from the lattice mismatch will be created. This will lead to the 

unstable stress field at the interface. In order to minimize the elastic stress field between 

the γ and γ’ phase, the atoms on the interface will rearrange themselves. This justified 

with the principle of minimum energy. This stage is known as the self-accommodating 

process. Gradually, the misfit dislocations will be created in the interface to reduce the 

distorted energy.  A plastic deformation is formed due to the misfit dislocation move in 

the interface cause permanent change of shape [5]. 

 

 

 

 

1.2  Background of Study 

 

 

 Computer simulation for example molecular dynamics has been used for 

studying mechanical properties of nickel based superalloys for last few ten years. The 

nickel based superalloys have been used widely in industry application. Nucleation of a 

single defect on the atomic scale sometimes brings about fatal malfunction of such 

devices. Therefore, it becomes important to understand the mechanics and mechanism of 

defect nucleation on a microscopic scale. Although the fracture of materials has been 

investigated for many years, there remain many uncertainties with regard to the 

nucleation process because of experimental difficulties. 

 

 

 In microelectromechanical systems (MEMS), thin films of Ni and Ni alloy have 

been widely used. As the dimensions of components in these systems decrease to the 

micro-scale, even the nano-scale, the interfacial phenomena significantly differ to the 

counterparts on the macro-scale. A better understanding of micro- or nano-tribology will 

benefit the fabrication of the small components. Thus, molecular dynamics simulations 

have been conducted to investigate the nanoscratch behaviour of nickel [6]. 
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 The recent rapid progress of computers makes the microscopic simulation of 

solid structures possible. Cyclic stress–strain curves and fatigue crack growth can be 

investigated by molecular dynamics. Nanoscale fatigue damage simulations were 

performed in nickel single crystals[7]. The mechanical properties of nickel nanowire at 

different temperatures are studied using molecular dynamics simulations [8]. 

 

 

 Besides that, the effects of nickel coating on the torsional behaviours of single-

walled carbon nanotubes (SWCNTs) subject to torsion motion are investigated using the 

molecular dynamics simulation method [9]. Extremely high strain rate effect on the 

mechanical properties of nickel nanowires with different cross-sectional sizes is 

investigated by Dan Huang et al. The stress–strain curves of nickel nanowires at 

different strain rates subjected to uniaxial tension are simulated [10]. 

 

 

 T.W. Stone also conducted molecular dynamics simulations using the embedded 

atom method potentials to describe the interparticle behaviour of two single crystal 

spherical nickel nanoparticles during compaction based on the particle size and contact 

angle [11]. 

 

 

 The mechanism of dislocation at the γ/γ’ interface of Ni-based superalloys, for 

example; the misfit dislocation, dislocation pinning by γ’-precipitates and the nucleation 

of super dislocation in precipitates, is of great interest in understanding the mechanical 

performances of the superalloys. Several studies have been made on the phenomena at 

the interface, with both experiment and analytical approaches, for instances direct 

observation of dislocation behaviour by high resolution TEM and finite-element analysis 

based on geometrically necessary dislocation theory [12].  

 

 

 Aihara et al. have conducted a molecular dynamics study on the strength of a γ/γ΄ 

interface that idealizes a γ/ γ’ interface in Ni-based superalloys. The simulation is 

conducted on a nanoscopic wire with a laminate structure made from staked γ (Ni) and γ’ 

(Ni3Al) layers, so that the effect of the free surfaces is significant and thus the 
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dislocation behaviour in the simulation may not be consistent with that in the bulk of the 

γ/ γ’ microstructure. Moreover, it seems of greater interest to investigate the dislocation 

behaviour not only at a planar interface but also at multiple intersections of interfaces 

such as an apex or edge of the cuboidal precipitate [12]. 

 

 

 Therefore, the effect of alloying element especially the DO24 Ni3Ti added to Ni-

based superalloys are great interest to investigate the behaviour of misfit dislocation in γ/ 

γ’ interface because it is still new and can be explored. 

 

 

 

 

1.3  Problem Statement 

 

 

The interactions between these γ and γ’ phases affect the properties of Ni-based 

single-crystal superalloys. Capability in understanding the microscopic structure of the γ 

and γ’ phases are of the utmost importance in the development of novel alloys with 

superior mechanical properties.  

 

 

Previous study has been done in order to investigate the preferential site in Ni3Al 

lattices. The knowledge about the preferential site for alloying elements is useful in 

clarifying the role of ternary system additions in controlling the mechanical properties of 

Ni-based superalloys. MD simulations have been used to simulate the stability of Ni-Ni3Al 

phases, interface and dislocation-precipitate interaction. However, the interaction of DO24 

Ni3Ti with Ni phase on atomistic scale in Ni-based superalloys is still unclear.  

 

 

The stability of the Ni-Ni3Al phases and interface are evaluated by gradually 

changing the alloying element (DO24 Ni3Ti) concentration in either Ni phase. The energy 

and semi-coherent interface between Ni and Ni3Al phases are also investigated by 

changing the combination of crystal orientation. Addition of alloying element (DO24 Ni3Ti) 

will lead to higher melting point and hardening coefficient.  
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1.4 Objective of Study 

 

 

The main objective of this study is to simulate and investigate the effects of Ni3Ti 

with DO24 structure  precipitate and composition on Ni-based superalloys using molecular 

dynamics method.  

 

 

 

 

1.5  Scope of Work 

 

 

The scope of work is clearly define the specific field of the research and ensure 

that the entire content of this project is confined the scope. This project is done base on 

the scope below: 

 

1. Study the effect of alloying element-DO24 Ni3Ti in Nickel Based Superalloys. 

2. Utilize Molecular Dynamic (MD) method. 

3. Learn the programming language – Fortran 90. 

4. Analyze and develop existing MD coding. 

5. Alter the additional percentages and distribution. 

6. Study the changes in the simulation cell. 
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1.6 Significance of Study 

 

 

This project has several important outcomes which included as the following; 

 

i. Comparison for analytical and experiment’s result with computer simulation’s 

result.  

ii. Improve the understanding and gain new knowledge for adding alloying element 

(DO24 Ni3Ti) and varies the percentages of additional element in Ni-based 

superalloys. 

iii. New milestone to explore new area of study of atomic computer simulation in 

Mechanical Engineering Faculty (FKM), UTM. 
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