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ABSTRACT 

 

 

 

This research aimed to study the capability of the neutron activation analysis 

absolute method by using PUSPATI TRIGA Mark II research reactor, at the 

Malaysia Nuclear Agency (NM). Most of the quantitative measurements of neutron 

activation analysis (NAA) were done through comparative method, which was found 

to have high degree of errors due to the differences in the matrix. NAA based on 

absolute method is a more direct analysis of the irradiated samples based on (n, γ) 

reaction rate without using any standard or comparator. In this study the reaction rate 

of (n, γ) was adopted based on the Høgdahl conventions as well as Westcott 

formalism. This technique requires absolute gamma ray measurements and neutron 

spectrum parameters for the calculation of weights or concentrations of elements 

present in the sample. The neutron spectrum parameters such as epithermal neutron 

flux shape factor (α), thermal to epithermal neutron flux ratio (f), and thermal and 

epithermal neutron flux (φth and φepi) were determined at 40 irradiation positions of 

the rotary rack (RR) as well as at one location of pneumatic transfer system (PTS). 

The value of α in 40 RR was found to be in the range of 0.0060 to 0.1170 with an 

average of 0.0172 and 0.0028 at PTS. The f parameter ranged from 14.74 to 30.26 

with an average value of 19.00 at 40 RR, while at PTS the value was 15.00. The 

results of φth and φepi at 40 RR were found to be in the range from 0.87 × 10
12

 to 2.55 

× 10
12

 n cm
−2 

s
−1

 and from 0.41 × 10
11 

to 1.37 × 10
11 

n cm
−2 

s
−1

, respectively. The 

average values of φth and φepi were 2.17 × 10
12

 n cm
−2

s
−1

 and 1.16 × 10
11

 n cm
−2 

s
−1

 

respectively, and at PTS with value of 3.89 × 10
12

 n cm
−2 

s
−1

 for φth and 2.59 × 10
11

 n 

cm
−2

s
−1

 for φepi. In addition, the spectral index parameter (   / 0r T Tn ) was 

determined at 40 RR and PTS based on Westcott formalism. The average value was 

found as 0.0550 at RR and 0.0493 at PTS. The accuracy and precision of the 

proposed method were investigated by analyzing CRMs Soil-7, SL-1, IAEA-313, 

IAEA-312, NBS 1633A, USGS STM-1 and MAG-1 standard samples. The results 

showed a good agreement with the values reported in certificate with Z-score within 

0< |Z|<2. Moreover, CRMs Soil-7, NBS 1633A and MAG-1 were analysed for 

relative method, and the results were found to be in good agreement with certified 

values. However, the results were slightly less than the results obtained by absolute 

method. Finally, the absolute NAA method was applied to determine the elemental 

concentration of U, Th and rare earth elements in rock samples based on Høgdahl 

convention except for Eu and Lu which were determined based on Westcott 

formalism. All samples were also analysed using relative method for comparison 

with the results obtained by absolute method. The deviations of both methods in 

most cases were found to be less than 10%. 
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ABSTRAK 

 

 

Penyelidikan ini bertujuan untuk mengkaji keupayaan kaedah mutlak analisis 

pengaktifan neutron menggunakan reaktor penyelidikan PUSPATI TRIGA Mark II 

di Agensi Nuklear Malaysia (NM). Kebanyakan analisis kuantitatif pengaktifan 

neutron (NAA) dilakukan menggunakan kaedah perbandingan yang didapati 

mempunyai darjah ralat yang tinggi disebabkan oleh perbezaan matrik. NAA 

berdasarkan kaedah mutlak merupakan analisis penyinaran sampel yang lebih 

langsung berdasarkan kadar tindak balas (n, γ) tanpa menggunakan sampel piawai 

atau sampel bandingan. Dalam kajian ini kadar tindak balas (n, γ) berdasarkan 

konvensyen Høgdahl dan juga formulisme Westcott telah digunakan. Teknik ini 

memerlukan pengukuran sinar gamma mutlak dan parameter spektrum neutron bagi 

pengiraan berat atau kepekatan unsur yang terdapat dalam sampel. Parameter 

spektrum neutron seperti faktor bentuk neutron epiterma (α), nisbah neutron terma 

dan epiterma (f), dan fluks neutron terma dan epiterma (φth dan φepi ) telah ditentukan 

di 40 kedudukan rak berputar (RR) dan juga di satu kedudukan pada sistem 

pemindah pneumatik (PTS). Nilai α di 40 kedudukan RR telah diperoleh dalam julat 

0.0060 hingga 0.1170 dengan nilai purata 0.0172 dan 0.0028 di PTS. Parameter f 

yang diperoleh bernilai 14.74 hingga 30.26 dengan nilai purata 19.00 di 40 

kedudukan RR, manakala di PTS bernilai 15.00. Nilai φth dan φepi yang diperoleh di 

40 kedudukan RR masing-masing adalah dalam julat 0.87 × 10
12 

hingga 2.55 × 10
12

 

n cm
−2 

s
−1 

dan 0.41 × 10
11 

hingga 1.37 × 10
11 

n cm
−2 

s
−1

. Nilai purata φth dan φepi 

masing-masing adalah 2.17 × 10
12

 n cm
−2 

s
−1 

dan 1.16 × 10
11

 n cm
−2 

s
−1

, dan di PTS 

dengan nilai 3.89 × 10
12

 n cm
−2 

s
−1 

bagi φth dan 2.59 × 10
11

 n cm
−2 

s
−1 

bagi φepi. 

Seterusnya, parameter indeks spektrum,   / 0r T Tn ditentukan di 40 RR dan PTS 

berdasarkan formulisme Westcott. Nilai purata yang diperoleh adalah 0.0550 di RR 

dan 0.0493 di PTS. Kejituan dan kepersisan kaedah yang dicadangkan ini diselidiki 

dengan menganalisis sampel piawai yang terdiri daripada CRMs Soil-7, SL-1, IAEA-

313, IAEA-312, NBS 1633A, USGS STM-1 dan MAG-1. Hasil kajian menunjukkan 

persetujuan yang baik dengan nilai kepekatan yang dilaporkan dalam sijil dengan 

skor-Z bernilai diantara 0< |Z|<2. Selain daripada itu, sampel piawai CRMs Soil-7, 

NBS 1633A and MAG-1 telah dianalisis dengan menggunakan kaedah bandingan 

dan hasil kajian menunjukkan persetujuan yang baik dengan nilai yang dilaporkan 

dalam sijil, tetapi kurang jitu sedikit berbanding dengan hasil yang diperoleh 

menggunakan kaedah mutlak. Akhir sekali, analisis pengaktifan neutron telah 

digunakan bagi menentukan kepekatan unsur
 
U, Th dan unsur nadir bumi dalam 

sampel batuan berdasarkan konvensyen Høgdahl kecuali bagi unsur nadir bumi Eu 

dan Lu ditentukan berdasarkan formulisme Westcott. Seterusnya, kesemua sampel 

dianalisis menggunakan kaedah perbandingan untuk dibuat perbandingan dengan 

hasil yang diperoleh dengan kaedah mutlak. Sisihan bagi kedua-dua kaedah ini 

dalam kebanyakan kes adalah kurang daripada 10%. 
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ti - Irradiation time (s) 

tm - Measuring time (s) 

T1/2 - Half life (s) 

Tn - Neutron temperture (
o
C) 

T0 - 293.59 K (Maxwellian) neutron temperture 

v - Neutron velocity (m s
‒1

) 

v0 - The Maxwellian neutron velocity (m s
‒1

) 

VCd - Velocity of neutron corresponding with  

Cd-cut off energy  

W’
 

- Constant value for each element 

Z - Z-score 

α - Epithermal neutron flux shape factor 



xxii 

 

β - Beta particle 

γ - gamma abundance 

εp - Full-energy peak detection effeciency  

εabs - Absolute efficiency 

εint - Intrinsic efficiency 

εT - Total efficiency 

θ - Isotopic abundance 

λ - Deacy constant (s
‒1

); ln 2

1/2
T

   

ρ - The absolute gamma emission probability 

σ - Neutron capture cross section 

σ0 - 2200 m s
‒1

 cross section 

σ(E) - The (n, γ) cross section [in cm
2
] at neutron energy E 

σ(v) - The (n, γ) cross section [in cm
2
] at neutron velocity v 

τ - Dead time 

∆m - Uncertainty in mass of sample 

∆N - Uncertainty in the number of counting 

∆R - Uncertainty in the reaction rate 

υepi - Epithermal neutron flux (n cm
‒2

 s
‒1

) 

υth - Thermal neutron flux (n cm
‒2

 s
‒1

) 
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CHAPTER 1 

INTRODUCTION  

1.1 Introduction 

The technique of nuclear activation analysis is based on activation of the 

elements by sub-atomic particles and the subsequent measurement of induced 

radioactivity. If the sub-atomic particle is a neutron then the technique is called 

neutron activation analysis (NAA). The technique was first discovered in 1936 by 

Georg von Hevesy and Hilde Levi, whereby a neutron source was used to activate a 

mixture of rare earth elements to determine the concentration of dysprosium (Dy) 

and europium (Eu). However, due to relatively weak neutron sources and inefficient 

γ-spectrometry available, the development of NAA was rather slow. Therefore, most 

data on elemental content was obtained through chemical separations and decay 

curve analysis. Twenty years later, the rapid progress of NAA began when the 

nuclear research reactor made intense sources of neutrons available. 

In the early sixties, the development of neutron activation analysis 

accelerated when NaI (TI) gamma-ray detectors became available coupled with 

multichannel pulse-high analyzers. Now it is possible to obtain gamma-ray spectra 

data with higher efficiency and moderate energy resolution which allow for the 

simultaneous determination of different radionuclides without chemical separations. 

With the advent of the high purity Ge detector, around 1970, neutron activation 
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analysis became one of the major techniques in the nuclear analysis field (Abugassa, 

1999; Blaauw, 1993). 

The high sensitivity of NAA technique makes the technique suitable for the 

determination of trace elements including rare earth elements (REEs). In addition, 

NAA determines many elements simultaneously and non-destructively 

(instrumental). Furthermore, due to its simplicity and high degree of accuracy, NAA 

has been recommended as a method for certifying reference materials and for 

utilization in multidisciplinary studies (IAEA-TECDOC-1215, 2001). 

Nowadays, neutron activation is among the most sensitive tools used for 

identification and for the quantitative elemental analysis of samples in the field of 

geology, agriculture, environmental science, as well as biological and biomedical 

studies. Most elements can now be determined at the level of ppb (part per billion). 

Basically in this technique, a given sample is irradiated with thermal or epithermal 

neutrons and becomes radioactive. The unstable isotope then decays normally by 

emitting beta particles and gamma quanta with specific energies into a more stable 

configuration. The intensity of the characteristic gamma ray lines in the spectrum, 

are proportional to the elemental concentration that are measured and used for 

quantitative identification of the element. High fluxes of neutrons are normally 

required for the activation process and the most popular neutron source for this 

specification is the nuclear reactor. 

The neutron spectrum (intensity versus energy) in a reactor consists of three 

components: thermal, epithermal and fast neutrons. For the neutron capture processes 

to occur, thermal neutrons are used. However, the entire reactor neutron spectrum 

may also be utilized via filtering with either cadmium or boron to achieve selective 

activation with epithermal or fast neutrons. Activation with epithermal neutrons is 

known as Epithermal NAA, and activation with fast neutrons is called Fast NAA 

(Sood et al., 2004). 
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There are three approaches in doing NAA: relative method, k0-

standardization method (single comparator), and absolute method. Elemental 

analysis of unknown sample using the relative method is usually performed by 

irradiating a standard material of known mass simultaneously with the sample, then 

followed by comparing their gamma ray spectrum of the elements of interest and 

counting them under identical conditions. This method requires no detailed 

information of the neutron flux, φ at the reactor irradiation site or of the nuclear data 

for the isotope concerned. Here, it is assumed that, neutron flux, irradiation and 

counting times, geometries and other variables are the same for both the unknown 

sample and known chemical standard. One of the drawbacks of the relative method is 

the difficulty in maintaining the stability of chemical standard. 

In the case of simultaneous determination of a large number of elements in 

one sample, the relative method requires preparation, counting and data processing of 

a standard for each element to be determined. There is a high possibility of instability 

and non homogeneity of the standard used. In addition, differences in matrix 

composition between the standard and sample can contribute to experimental 

uncertainty. It is cumbersome to irradiate a large number of standards and samples at 

the same time. 

The k0-standardization method is based on simultaneous irradiation of a 

sample and a neutron flux monitor (normally gold), and the use of a composite 

nuclear constant called k0-factor. This technique eliminates the need of using multi-

element standards to achieve better precision and accuracy of the result. Compared to 

the relative method, the technique of k0-NAA is experimentally simpler but more 

complex in the formulation and calculations as well as computational programming. 

This technique requires experts to interpret the spectrum of selected elements in the 

sample, which are difficult to do. For multi-element analysis, this method may not be 

easy as far as nuclear data and decay scheme parameters are concerned. 

On the other hand, NAA based on absolute method is a more direct analysis 

of the irradiated samples without using any standard or comparator. This technique 
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requires absolute gamma ray measurements and neutron spectrum parameters for the 

calculation of weights or concentrations of elements present in the sample. The usual 

parameters that characterize the neutron flux are their fluxes, thermal and epithermal 

flux ratio and epithermal parameters. 

1.2 Problem Statement 

The reactor available at Malaysia Nuclear Agency (NM) has been utilized for 

INAA studies in many fields such as environmental, nuclear data studies, nutritional 

epidemiological studies, industrial materials analysis, geological and geochemistry 

studies. The main method used at NM is the relative technique, simply because of its 

easiness method. However, this method becomes difficult in case of multi-element 

analysis. The choice of standard for each element is a great challenge and is also 

influenced by many factors such as solubility in solvents, purity, weighing, resistance 

to radiation and decomposition (Kafala and MacMahon, 2007). Several approaches 

have been suggested to solve this problem such the use of synthetic multi-elements 

standard and standard reference material (SRM). In the first approach, the 

preparation of multi-element in one solution involves the problems of stability of 

individual ions during storage and adsorption of elements on container wall. Whereas 

the use of SRM is convenient to control the conditions of irradiation, cooling and 

counting of samples, it is not easy to maintain proper reference standard materials 

and the benefit is reduced by uncertainties in the analytical data (Kim et al., 1986). 

 The application of the k0- standardization method in NM was studied by 

many researchers (Abugassa et al., 1996; Abugassa, 1999; Abugassa et al., 2004; 

Khoo et al., 2007; Wee et al., 2006; Yavar, 2012). This method had been 

implemented but not in a wide scales due to the lack of expert in the k0 software 

management. Furthermore, the problem of choosing suitable comparator elements for 

multi-elements analysis may not be easy (Kafala and MacMahon, 2007) 



5 
 

In order to overcome the problems mentioned above, absolute method is the 

better choice in NAA method. In this case the direct elemental concentration 

calculations from few measured neutron parameters are thought to reduce the 

uncertainties obtained from the relative and k0 methods. The neutron flux parameters 

had been measured at rotary rack irradiation positions of PUSPATI reactor but it was 

not utilized for absolute NAA method. With the large amount of accurate nuclear 

data available, the NAA absolute  method  became more reliable and accurate. This 

research will focus on the study of the capability of the absolute method at PUSPATI 

TRIGA Mark II research reactor and applied it to determine U, Th and rare earth 

elements (REEs) content in rock samples as compared with the relative method. 

1.3 Research Objectives 

The objectives of this research are as follows: 

a) To determine neutron spectrum parameters at PUSPATI TRIGA Mark II 

research reactor irradiation facilities at the forty positions of Rotary Rack 

(RR) and one location of Pneumatic Transfer System (PTS). These include 

the epithermal neutron flux shape factor α, thermal to epithermal flux ratio, f 

and thermal and epithermal neutron fluxes (φth, φepi). 

b) To determine the elemental concentration of certified reference materials 

(CRMs) of IAEA (Trace Elements in Soil-7, Lake Sediment SL-1, Stream 

Sediment IAEA-313 and IAEA-312), USGS (Nepheline Syenite STM-1 and 

Marine Sediment MAG-1) and NBS (Coal Fly Ash 1633A) by absolute 

method and examine their accuracy using Z-scores. 

c) To compare the results of CRM (IAEA Soil-7, Marine Sediment MAG-1 and 

NBS Coal Fly Ash 1633A) with the results determined by relative method. 

d) To determine the elemental concentration of U, Th and REEs in rock samples 

by both absolute and relative methods and compare their results based on 

their respective relative deviations and correlation coefficients. 
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1.4 Research Scope 

The main aim of this work is to affirm the capability of absolute method of 

neutron activation analysis as one of the standardization method of NAA, which can 

be used by Malaysia Nuclear Agency. The concentration of elements in samples 

determined by absolute method is based solely on the reaction rate formulation of the 

neutron capture processes. The proposed method was developed based on Høgdahl 

convention and Westcott formalism. The Westcott formalism was used in this study 

to determine the elemental concentration of Eu and Lu, whereby their (n, γ) reaction 

showed a significant deviation from 1/v cross section behavior. 

The absolute method requires the determination of neutron reactor parameters 

experimentally. In addition, the full-energy-peak efficiencies (εγ) of the gamma ray 

detector for counting purposes have to be determined. Practically, neutron flux 

parameters change according to reactor core configuration, as well as homogeneity 

and population of neutron flux incident in particular irradiation positions. This 

change may affect the accuracy of elemental concentration. Therefore, to avoid this 

possible effect the neutron flux parameters were determined by attaching a suitable 

monitor (Au and Zr) to the samples and then irradiated simultaneously. 

In this study, the neutron flux parameters α, f, φth, and φepi were determined 

by using three monitors (Au, Zr and Co), irradiated with and without cadmium cover 

at forty irradiation positions of rotary rack (RR) and one location at pneumatic 

transfer system (PTS) facilities in PUSPATI TRIGA Mark II (thermal power 

capacity of 1 MW). In addition, the calibration efficiencies of two coaxial HPGe 

detectors, coupled with Canberra GC3018 and Ortec GEM25-76-XLB-C were 

determined experimentally at four different source-detector distance. A simple 

computer program written in MATLAB was developed to calculate the neutron flux 

parameters and efficiency calibration of the detectors. 

In order to evaluate the accuracy and precision of the absolute method, the 

absolute method was applied to determine of elementals concentration in different 
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types of Certified Reference Materials (CRM): IAEA (Lake Sediment SL-1; Trace 

Elements in Soil-7; Stream Sediment IAEA-313 and IAEA-312); USGS (Nepheline 

Syenite STM-1 and Marine Sediment MAG-1) and NBS (Coal Fly Ash 1633A) and 

the results were compared with the certified values. 

This study involves the application of absolute method on rock samples in 

order to determine the concentrations of uranium, thorium and rare earth elements 

(La, Ce, Nd, Sm, Eu, Tb, Dy, Yb and Lu). Rock samples were collected from six 

states namely: Perak, Penang, Kelantan, Negeri Sembilan, Selangor and Johor. The 

results were compared to NAA relative technique. 

1.5 Significance of the Research 

This research is for the purpose of developing standard methods in NAA, 

specifically the absolute method because it offers several advantages over the relative 

and k0 methods such as expense, versatility and ease of automation. It also offers the 

possibility of multi-element analysis in one single irradiation without the use of 

standard or comparator which better enhances the NAA technique. 

This work will introduce a simple approach to calculating nuclear parameters 

such as the epithermal neutron flux shape factor (α); fitting the efficiency calibration 

curve; determining the correction of coincidence effect; and that it is able to produce 

reliable results that can be effectively applied for NAA. In addition, it is hoped that 

this study will demonstrate the viability of the absolute NAA method in 

determination of elements present in different types of samples. 

Furthermore, this study is contribute significant information to provide 

general information and baseline data for the NAA absolute method related to 

mathematical formulas, excel workbook format and a simple programming approach 
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that can be used to determine neutron flux parameters, efficiency calibration  that can 

establish the NAA absolute method in Malaysian Nuclear Agency.  

1.6 Thesis Organization 

This thesis consists of six chapters. Chapter 1 presents the introduction of the 

NAA method; problem statement; objectives of the study; scope of the study; and 

significance of the study. 

Chapter 2 involves a literature review of NAA including information on 

uranium, thorium and rare earth elements. Chapter 3 discusses the derivation of 

mathematical formulae based on Høgdahl Convention and Westcott Formalism for 

the calculation of elemental concentrations using absolute NAA. Full details on 

instrumentation and methodology are presented in Chapter 4, involving the 

information on the reactor and γ-ray spectrometry including the HPGe detector and 

experimental procedures. Chapter 5 covers the calibration of detectors used in this 

study and a discussion of results for the determination of neutron flux parameters α, 

f, φth and φepi, and the determination of elemental concentrations for U, Th and REEs 

(La, Ce, Nd, Sm, Eu, Tb, Dy, Yb, and Lu). Conclusion and suggestions are 

summarized in Chapter 6. 
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