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ABSTRACT 
 
 
 
 

Nowadays, thin interphases are used for modern technology. A composite 

structure obtained in such a way exhibits a wide variety of thermal and mechanical 

properties. In this thesis, imperfect transmission conditions (ITCs) are discussed 

based on the finite element method (FEM) for a soft elasto-plastic interphase in a 

plane stress state, as well as thin reactive heat-conducting interphases, where the 

transmission conditions are nonlinear. The ITCs of a thin reactive two-dimensional 

interphase between two bonded materials in a dissimilar strip have been investigated. 

The validity of the transmission conditions for the heat conducting interphases has 

been analysed for three formulations of a reactive layer: with no source formulation, 

with constant source formulation, and with a temperature-dependent source 

formulation. In addition, the ITCs were evaluated in the most general form for 

several cases, demonstrating the high efficiency of the approach. This showed that it 

is possible to reconstruct the full solution inside the interphase using the information 

available for the respective imperfect interface of zero thickness. For the case of 

mechanical problems, it explains a thin elasto-plastic interphase layer, which is 

situated between two different elastic media. The intermediate layer consists of a soft 

elasto-plastic material with a small Young‘s modulus in comparison with those of 

the surrounding materials. The two-dimensional nonlinear transmission conditions 

for the bi-material structures were investigated using an asymptotic technique. This 

study evaluated the ITCs for a thin interphase layer with an adhesive joint, along 

with the mechanical behaviour of the bonded materials. Finally, the good accuracy of 

the nonlinear imperfect transmission conditions of the approach presented in this 

thesis is shown, along with the excellent performance of the finite element analysis 

of the thin elasto-plastic interphases and thin heat-conducting interphases. 
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ABSTRAK 
 
 
 
 

Bahan nipis antara fasa banyak digunakan dalam teknologi moden oleh 

kerana bahan tersebut mempunyai sifat terma dan mekanikal yang luas. Struktur 

komposit, yang mana bentuk dan dimensinya membolehkan ia dikategori sebagai 

bahan antara fasa dikaji di sini. Di dalam tesis ini, keadaan transmisi tak sempurna 

(ITC) untuk bahan lembut elastik-plastik antara fasa dibincang berasaskan Kaedah 

Unsur Terhingga (FEM). Untuk kajian bebanan mekanikal, bahan ini adalah dalam 

keadaan tegasan satah dan untuk kajian bebanan, termal bahan antara fasa akan 

bertindak balas terhadap pemindahan haba yang mana keadaan transmisi adalah 

lelurus. Bahan antara fasa adalah jalur nipis duadimensi yang dilekatkan di antara 

dua bahan berlainan. Kesahihan sama ada bahan mampu membuat simulasi 

pemindahan haba akan diketahui apabila keadaan transmisi dianalisa untuk tiga 

formulasi tindakbalas. Formulasi yang pertama ialah keadaan tanpa sumber haba, 

yang kedua ialah lapisan tindakbalas mempunyai sumber haba yang malar dan yang 

ketiga ialah sumber haba bergantung kepada suhu. Keadaan ITC telah dinilai secara 

umum untuk beberapa kes untuk menunjukkan prestasi efisyen pendekatan ini. 

Keputusannya ialah kaedah ini membolehkan  pembinaan penyelesaian menyeluruh 

di dalam bahan antara fasa dengan menggunakan maklumat  yang terdapat pada 

lapisan tak sempurna yang berketebalan sifar. Untuk kes masalah mekanikal satu 

penyelesaian dibina untuk lapisan nipis elastik-plastik yang terletak antara dua bahan 

elastik. Lapisan pertengahan ini mempunyai modulus elastik yang terlalu kecil 

dibandingkan dengan dua bahan pengapit. Transmisi tak lelurus dua dimensi untuk 

struktur yang diperbuat daripada dua bahan, diselidik dengan menggunakan teknik 

asimtotik. Kajian ini telah dapat menilai ITC dan gayalaku mekanikal untuk lapisan 

antara fasa nipis,  dengan contoh bahan pelekat untuk menghubungkan dua bahan 

berlainan. Satu keputusan jitu untuk keadaan transmisi tak sempurna dan tak lelurus, 

telah diperolehi. Keputusan ini menunjukkan prestasi FEM yang memuaskan. 
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CHAPTER 1 

 

INTRODUCTION  

 

 1.1 Introduction  

 

This chapter consists of four sections that provide an overview of the 

research. First, it discusses the background of the problem. Then, it states the 

problem and explains the scopes and objectives of the research. And lastly, it 

delineates the chapters of the thesis.   

  

  1.2 Background of the Problem 

 

Thin interphases such as adhesive layers are commonly used in the modern 

technology industry. A composite structure obtained in such a way exhibits a wider 

variety of thermal and mechanical properties. On the other hand, finite element 

modeling (FEM) of composites with thin interphases is still a difficult numerical task 

as it requires high inhomogeneity of the constructed mesh, which can lead to a loss 

of accuracy and even numerical instability. This explains the high interest in 

modeling the interphase as a zero-thickness object described by specific so-called 

―transmission conditions‖ along the infinitesimal interface. 

The obtained transmission conditions may be used to derive new finite 

element formulations in order to overcome the above-mentioned problems in the 

scope of a finite element approach.  
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1.3 Statement of the Problem 

 

For many practical thin interphase layer problems it is not possible to obtain 

a solution by means of analytical techniques. Instead, solving them requires the use 

of numerical methods, which in many cases allow such problems to be solved 

quickly. Often, an engineer can easily see the effect of changes in parameters when 

modeling a problem numerically. This way is much faster, and tends to be more 

inexpensive than assembling and working with the actual experimental apparatus. In 

this project, transmission condition modeling of a thin intermediate layer between 

two bonded materials in a dissimilar strip will be derived and analyzed for heat 

conduction problems and mechanical problems. The validity of these transmission 

conditions for heat conduction problems and mechanical problems will be 

investigated with the finite element method (FEM) for several formulations of a thin 

interphase layer. 

Consider a bi-material domain with a thin interphase layer between two 

materials (Figure 1.1) described by our research. 

 

 

Figure 1.1: Illustration of the specimen problem 

 

The interphase is assumed to be very thin ( Hh  ) so that 0hh 
 
while   

is a small dimension parameter  1 .   

Two materials are applied at the top and the bottom of the interphase layer in 

the same elements size as shown in Figure 1.1. 

Bonded materials 
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The value 2h  in this case is the small parameter  .  The two-dimensional 

FE-mesh is built from 16 and 18 elements along the y-axis into interphase layer 

(Figure 1.2) which can be evaluated by the transmission conditions for heat-

conducting and mechanical problems. 

 

 

Figure 1.2: Schematic representation of the problem from Figure 1.2 (part of A) 

 

In this research, we will investigate all the possible interfaces which can be 

evaluated by the transmission conditions for all of these cases. We would like refer 

here to other methods to deal with thin interphase, as well as to construct effective 

homogenized properties of composite materials. 

 

1.4 The Research Objectives 

 
The objectives of this study can be summarized as follows:  

1)  To find transmission conditions for heat-conducting problems in thin interphase 

layers. 

2) To investigate transmission conditions for mechanical problems in thin interphase 

layers. 

3) Validation of obtained result by comparing with earlier research findings.  

4) To Investigative different interfaces and evaluate the transmission conditions and 

validation of obtained result with analytical method 
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1.5 The Scopes of Research 

 

The scope of this study can be summarized as follows:  

 

1) Finite element modeling of a bi-material structure. 

2) Transmission conditions modeling a thin reactive 2D intermediate layer between 

two bonded materials. 

3) Finite element modeling of a thin elasto-plastic interface between different 

materials 

 

1.5 The Arrangement of Chapters 
 
 

In this thesis, we apply FEM to investigate the transmission conditions for 

thin interphase layers. The challenges fall into two categories – heat-conducting 

problems and mechanical problems. The thesis is organized as follows: 

Chapter 2 discusses a literature review of interphases and their applications in 

technology and then, it defines the transmission conditions and gives a history of 

literature review for thin interphases. 

Chapter 3 describes methodology for the overall research project. 

Comprehensive flowcharts of the research methodology show the objectives of the 

proposed research project.  

Chapter 4 investigate transmission conditions for thin reactive heat-

conducting interphases and universal transmission conditions for several interphase 

cases such as; without source, constant source and temperature-dependent source 

formulations. 

Chapter 5 explains a thin elasto-plastic interphase layer which is situated 

between two different elastic media. Thin adhesive layer consists a soft elasto-plastic 

material behavior whose Young‘s modulus is small enough in comparison with those 

of surrounding materials. 
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In chapter 6, imperfect transmission conditions simulate a thin two-

dimensional interphase layer between two bonded materials based on the finite 

element method (FEM). The numerical results validate the equations of chapter 4 for 

the different cases, namely thin reactive adhesive layers for various sources and 

temperature distributions that are explained in chapter 4. 

In chapter 7, imperfect transmission conditions simulate for a thin elasto-

plastic interphase on plane stress case based on FEM. The numerical results validate 

the equations of chapter 5 for the different cases and boundary conditions. 

Finally, Chapter 8 presents some conclusions and recommendations for the 

future work that could be done in this field. 
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