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ABSTRACT

Automatic single document text summarization is a process of condensing an
input text document. In this process, a summary extraction approach summarizes
a document by extracting the most informative sentences in a document. To select
such sentences, a sentence scoring approach is used to assign a score for each input
sentence before ranking them accordingly. Based on user defined summary ratio, only
top ranked sentences are selected to be part of the summary and selecting the most
informative sentences is a challenge for extractive based automatic text summarization
researchers. Thus, this research proposed extraction based automatic single document
text summarization methods by investigating a single meta-heuristic evolutionary
algorithm called Differential Evolution (DE) to generate high quality summaries. The
DE algorithm is used (i) to find out the best feature weight score to discriminate
between important and non-important features, (ii) to perform as a cluster machine
learning method using Normalized Google Distance and Jaccard similarity measures to
generate a highly diversed summary, (iii) to employ opposition-based learning (OBL)
approach to improve the performance of the DE algorithm and (iv) to develop a hybrid
model used to investigate the adavantages of the combination of feature weighting,
diversity and OBL approaches. To evaluate the proposed methods, the standard dataset
from Document Understanding Conference (DUC) 2002 and the Recall-Oriented
Understudy for Gisting Evaluation (ROUGE) as the standard evaluation measurement
toolkit were used. Experimental results showed that the hybrid models as well as all
the proposed individual methods performed well for text summarization as compared
to four benchmark methods: Microsoft Word, Copernic, the best DUC 2002, the
worst DUC 2002 summarizers and a human against another human summarizer. In
addition, the proposed methods in the DE algorithm outperformed Genetic Algorithm
and fuzzy swarm diversity based methods evolutionary based algorithms. The results
of the experiments have proven that the proposed hybrid models generate better quality
text-summaries.
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ABSTRAK

Peringkasan teks dokumen tunggal secara automatik merupakan proses
mengkondensasikan teks dokumen input. Dalam proses ini pendekatan pengekstrakan
ringkasan berfungsi meringkaskan dokumen dengan mengekstrak ayat-ayat yang
penting dalam dokumen. Untuk memilih ayat-ayat penting satu pendekatan penskoran
ayat digunakan untuk menetapkan skor bagi setiap ayat sebelum memberikan susunan
kedudukan ayat-ayat tersebut. Berdasarkan nisbah ringkasan yang ditetapkan oleh
pengguna hanya ayat-ayat yang berada pada susunan kedudukan tertinggi akan dipilih
menjadi sebahagian daripada ringkasan. Pemilihan ayat-ayat penting ini merupakan
satu cabaran kepada penyelidik bidang peringkasan teks secara ekstraktif. Untuk itu
kajian ini mencadangkan peringkasan teks dokumen tunggal secara ekstraktif dengan
mengkaji algoritma evolusi meta-heuristik yang dikenali sebagai Pembezaan Evolusi
(DE) bagi menghasilkan ringkasan yang berkualiti tinggi. Algoritma DE digunakan
untuk (i) mengetahui skor terbaik setiap pemberat ciri bagi membezakan ciri-ciri
penting dan yang tidak penting, (ii) melaksanakan kaedah pembelajaran mesin secara
gugusan menggunakan Jarak Google Ternormal dan ukuran kesamaan Jaccard untuk
menjana pelbagai ringkasan, (iii) menggunakan pembelajaran berasaskan tentangan
(OBL) untuk meningkatkan prestasi algoritma DE, dan (iv) membangunkan model
hibrid untuk mengkaji kebaikan gabungan pemberat ciri, kepelbagaian dan pendekatan
OBL. Untuk menilai kaedah-kaedah yang dicadangkan set data daripada Persidangan
Pemahaman Dokumen (DUC) 2002 dan alat pengukuran piawai yang dikenali sebagai
Recall-Oriented Understudy for Gisting Evaluation (ROUGE) digunakan. Hasil kajian
menunjukkan bahawa model hibrid dan semua kaedah individu yang dicadangkan
mempunyai prestasi lebih baik berbanding dengan empat kaedah tanda aras piawai,
iaitu Microsoft Word, Copernic, kaedah-kaedah terbaik dan paling lemah dalam
pertandingan DUC 2002 dan bandingan hasil ringkasan manusia sesama manusia.
Selain itu penggunaan kaedah algoritma DE mengatasi kaedah-kaedah algoritma
evolusi yang lain seperti algoritma genetik dan kaedah kerumunan kepelbagaian kabur.
Keputusan eksperimen telah membuktikan bahawa model hibrid yang dicadangkan
menghasilkan ringkasan teks yang lebih berkualiti.



CHAPTER 1

INTRODUCTION

1.1 Introduction

Recently, several natural-language processing applications have been designed
using intelligent and soft computing techniques to enable the computer systems to
mimic the human text processing practices such as plagiarism detection, pattern
recognition and machine translation. Intelligence techniques such as genetic
algorithms, swarm intelligence, evolutionary algorithms, fuzzy logic and neural
networks are often employed. Some of the main reasons behind enabling such mimic
are because that computer systems are more precise and perform faster compared to
human performance. Automatic text summarization is one of these natural language
applications that use such techniques to optimizes it’s performance.

Text summarization is a process of summarizing texts into condensed forms
Saggion and Poibeau (2013). If the summary is generated by a human, it is
called “manual text summarization”, whereas if a summary is generated using the
computer system it is called “automatic text summarization” (ATS). As this research
concerns automatic text summarization, the rest of this section discusses automatic text
summarization (ATS) approaches, styles, input size, and evaluation techniques.

The research on ATS can be divided into two approaches: extraction-based
summary and abstraction-based summary. The extraction-based approach generates
a summary by selecting (copy-paste) the important sentences. These sentences are
evaluated based a on scoring mechanism called “features” where each sentence is
assigned a score. The top scored sentences are selected as summary candidates
sentences. The abstraction-based approach composes summaries by editing the most
important text units (sentences or phrases) such as: removing, appending, segmenting
and paraphrasing some parts of those text units. The abstraction-based approach is
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more complex compared to extraction-based approach (Armano et al., 2011).

The target summary can be employed and written in one of the following
two styles (Gholamrezazadeh et al., 2009): “indicative summary” or “informative
summary”. Indicative summary presents brief information of what is contained in
the original document focusing on a certain topic. The generated summary of this kind
is usually compressed between five to ten percent of the original text. An informative
summary covers the most topics that arise within the original document. The generated
summary of this kind is usually compressed between twenty to thirty percent of
original text content. In addition, ATS researches cover two types of document input
size i.e. single-document, and multi-document summarization.

Based on the processing level, the summarization techniques can be classified
into three approaches: the surface, entity, and discourse (Mani and Maybury, 1999,
Saggion and Poibeau, 2013). The surface level approach uses a shallow feature set
to extract the most relevant sentences in a document to be included in the summary.
The methods in entity level approach first extract entities and their relationships from
the text, then model the extraction. In order to identify the salient entity-to-entity
relationship from the text, there are several approaches that can be used such as a
graph-based representation and a vector space model. The Discourse-Level approach
concerns modelling the global structure of the text and its relationships such as: the
rhetorical structure of the text (e.g., narrative and argumentation structure), document
format (e.g., document outlines, hypertext mark-up) and topics threads (as they are
exposed in the text).

A recent survey written by Saggion and Poibeau (2013) states that
summarization evaluation still represents a big challenge in computer natural-language
processing. There are several difficulties being faced by the automatic summarization
researchers such as the deep understanding of linguistic issues, language modelling
and computer-based problem solving techniques. In addition, comparing manually
generated human summaries with automatically generated summaries also poses hard
issues for the purpose of evaluation. However, there are two main classes of evaluation
methods used in automatic text summarization: intrinsic and extrinsic (Jing et al.,
1998, Mani and Maybury, 1999, Afantenos et al., 2005). Extrinsic evaluation is a
task-oriented based facility that measures how the summaries are used for a given
task. Whereas the intrinsic evaluation method compares generated system summaries
to reference summaries i.e. human generated summaries. There are many evaluation
tools proposed such as the Recall-Oriented Understanding for Gisting Evaluation
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(ROUGE) (Lin, 2004), and PYRAMID (Nenkova et al., 2007). Both methods represent
intrinsic automatic evaluations tools, and ROUGE is found to highly correlate with the
results of human judgments (Lin, 2004).

The methods proposed in this research are for single document extraction based
text summarization that produce informative summaries using techniques of surface-
level processing approach.

1.2 Problem Background

Most research in the area of information retrieval (IR) aim to relieve high
information load (e.g., Internet, documents) that users potentially face by proposing
methods that are precisely targeted for retrieved results. Searching for the information
of interest in a wide scope of knowledge is a very difficult task, and if the
retrieval systems are imprecise (designed with poor quality) they may return missed-
information or zero-sum results. In addition, exploring many documents one by one is
time consuming. Accordingly, ATS researchers aim to mitigate or solve this problem
by proposing methods that produce high quality summaries. The goal of the summary
as a part of the IR system acts as a rapid guide to information of interest through
presenting a condensed form of each document within the field of search.

The initially proposed methods for text summarization research are surface
level (feature-scoring) approaches (Luhn, 1958, Baxendale, 1958, Edmundson, 1969).
(Luhn, 1958) proposed a term-frequency approach to indicate term-importance within
the context. (Baxendale, 1958) proposed a sentence position approach to enable
the summarizer to identify the sentence importance within the document. Ten years
later, (Edmundson, 1969) included the above two approaches and proposed a feature
of pragmatic words (cue words such as “significant”, “key”, “idea” and so on).
Since feature scoring approach presented significant results, researchers worked on
proposing additional features to enhance the summarization quality.

The literature demonstrates that the text features approach plays an observable
role in generating qualified summaries (Ferreira et al., 2013, Haque et al., 2013).
Therefore, other researchers tried to enclose feature weighting to adjust feature scores
in summarization problems (Fattah and Ren, 2009, Binwahlan et al., 2009a, Suanmali
et al., 2011b). Empirically, the feature selection methods lead to high quality solution
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generation. Similarly, the quality of the text summary is sensitive to these features
as to how they are scored and weighted. Therefore, the need for a mechanism to
differentiate between high and low importance features has emerged. To this end, many
feature selection mechanism were proposed, but there is further need to design and
build strong mechanisms in order to obtain higher qualified results. The Differential
Evolution (DE) algorithm is an evolutionary algorithm that is able to carry out such a
role and acts as a feature weighting machine learner. The DE has not been previously
proposed as feature-weighting mechanism in text summarization problem; however, it
has been employed in related fields such as document clustering, image classification
and web data extraction (Abraham et al., 2006, Omran et al., 2005c). The following
are the reasons of why the DE was chosen to solve the problem of automatic text
summarization. The DE is a powerful algorithm for real parameter optimization (Storn
and Price, 1997). A recent work published by (Das et al., 2009) reported that the
DE algorithm has become quite popular in the machine intelligence and cybernetics
communities. It has successfully been applied to different domains of science and
engineering, such as mechanical engineering design (Joshi and Sanderson, 1999),
signal processing (DAS and KONAR, 2006) and machine intelligence (Omran et al.,
2005a). Section 2.4.1.1 provides in details the characteristics of the DE algorithm
which make it strong and robust compare to other heuristic methods.

Another challenge that needs to be addressed concerns capturing most of
the document subtopics. This leads to generate a summary that covers most of the
themes presented in the text. To solve this problem, the cluster-based (or diversity)
approach is used to diversify the sentence selection mechanism whereby selected
sentences cover most topics in the document. There are several approaches employed
for the diversity-based approach in text summarization (Carbonell and Goldstein,
1998, Filippova et al., 2007, Gong and Liu, 2001b,a, Kraaij et al., 2001, Mori et al.,
2005, Steinberger et al., 2005, Binwahlan et al., 2009c). The diversity is used in
the summarization to control sentence redundancy in the summary which generates
a higher quality summary. The DE algorithm presented previously has been used to
optimize the sentence clustering process in order to optimize the diversity within the
generated summary text (Alguliev and Aliguliyev, 2009). This research implemented
the same method presented by (Alguliev and Aliguliyev, 2009) and discovered two
limitations. First, the selection of the similarity measure called “Normalized Google
Distance (NGD) (Cilibrasi and Vitanyi, 2007) is improper. Second, sentence centrality
is computed independently from other sentences within the document. The NGD is
a similarity measure that was successfully implemented to extract a similarity score
between two terms in large databases such as Google (Cilibrasi and Vitanyi, 2007)
in which billion number of web pages are processed; Table 1.1 shows an example
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Table 1.1: Number of retrieved web-pages using Google search engine for certain
keywords.

Keyword Number of retrieved web-pages
“Text” 4,260,000,000

“Summarization” 13,100,000
“Text Summarization” 221,000

of retrieved numbers of web pages with 3 keywords searched at the moment of
writing this thesis. Employing the NGD in a small database search space resulted
in improper score calculation (Alguliev and Aliguliyev, 2009). Hence, selecting a
proper similarity measure plays an important role in adjusting data clustering (Jain
et al., 1999). (Alguliev and Aliguliyev, 2009) computed the sentence centrality score
after clustering the sentences. However, computing such a score prevents the method
from capturing the full relationship between sentences in the document (Shen et al.,
2007). Therefore, this study tries to utilize other similarity measures and different
sentence scoring mechanisms; then, building a new diversity-based method using the
DE algorithm. The method optimizes the clustering process by using an alternative
similarity measure, the “Jaccard coefficient” (Jaccard, 1901) , and a “feature-scoring”
mechanism for diverse sentence extraction in text summarization.

Naturally, the proposed methodologies are exposed to advantages and
disadvantages. Although the optimization techniques are used to overcome some
limitations of other proposed methods, they suffer many defects. (Jun et al., 2011)
surveyed some evolutionary computing algorithms (ECAs). The survey discussed
how the ECAs search performance could be optimized using machine learning
techniques. This trend of research direction treated the term “Machine Learning for
Evolutionary Computing (MLEC)” for the discussed purpose. The ECAs agreed in a
general structure which includes the following stages: population initialization, fitness
evaluation and selection, population reproduction and variation, algorithm adaptation,
and local search. The survey viewed the algorithm defects and the successful solutions.
Most of the techniques used to enhance the search performance of the ECAs are
machine learning techniques; they have been initially used to train algorithms before
addressing a targeted problem solution. Machine Learning (ML) techniques were used
to optimize all stages of the ECAs. In the initial population stage, the machine learning
(ML) techniques were used to:

1. Organize the initial solution position.

2. Improving the initial solution quality.
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3. Incorporate historical search performance.

The Opposition-based learning (OBL) is a machine learning technique that has been
widely used to enhance the DE search performance by adjusting the following: initial
population, the next generation of the population, and maintenance of population
diversity (Rahnamayan and Tizhoosh, 2008). The OBL was tested on a numerical
dataset (Rahnamayan and Wang, 2008) but neither tested on text data nor used for text
summarization problems. In addition, the-state-of-the-art review exposed that fact that
none of the proposed automatic text summarization studies built based on optimization
techniques is included in the concept of the MLEC. So this study investigates the
incorporation of OBL (Rahnamayan and Tizhoosh, 2008) to enhance the DE algorithm
and test its performance in non-numerical datasets (text data).

This current work considers four important issues in text summarization:
feature-weighting mechanism, diversity-based optimization and machine learning for
ECAs, and a combination of these issues in a single hybrid model.

1.3 Problem Statement

By understanding the problem background, we found that designing a robust
feature weighting mechanism is necessary for generating high quality summary. On
the other hand, generating a summary with high diversity could lead to the inclusion
of most of the topics existing in the input document. Furthermore, by not relying on
the random estimation, it could improve the performance of the evolutionary algorithm
which could subsequently enhance the quality of the generated summary. This research
concerns sentence extraction to answer the following research questions:

• Can the evolutionary algorithm produce optimal weights for the selected features
that produce a high quality summary?

• Can sentence selection based on an optimized cluster-based approach achieve
better diversity in the summarization?

• Can an opposition-based learning technique enhance the search performance
of an evolutionary algorithm and obtain better qualified results compared to
traditional versions for text summarization purposes?
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• Can the combination of the previous multiple techniques could exploit the
advantages of each method then interact together to produce a summary best
than previous methods?

1.4 Research Objectives

The main goal of this research is to introduce text summarization methods
designed to solely use a functional approximation (randomized search) approach
attached to different learning techniques. Several proposed text summarization
research works have been designed using different and hybrid techniques such as
functional approximation and approximate reasoning. The functional approximation
includes evolutionary algorithms and neural networks, and the approximate reasoning
includes probabilistic models and fuzzy logic. Therefore, this research investigates
the following hypothesis: “Is a single meta-heuristic based method integrated with
learning approaches able to generate higher quality summarization.” To achieve this
goal, the following objectives have been fixed:

1. To investigate DE-based feature weighting method for text summarization.

2. To improve an existing diversity summary generation method using the term-
weighting approach and Jaccard similarity measure. In addition, to design a new
real-to-integer data modulator for solving the discrete problem (clustering) for
generating a high diverse summaries.

3. To investigate the opposition-based learning technique to optimize the
summarization solutions generated from the Differential-Evolution algorithm.

4. To investigate a hybrid approach of differential evolution algorithm with cluster-
based approach to select diverse contents from the text for summarization
purposes.

1.5 Research Scope

This research was designed using a single meta-heuristic “Differential
Evolution” algorithm integrated with learning approaches (feature scoring, cluster
based and opposition based learning) in order to examine its ability compared to other
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summarization applications that are designed using several hybrid techniques. The
following aspects are the scope of this research:

1. The methods proposed in this research are for single document extraction based
text summarization that produces informative summaries using techniques for
surface-level processing. These methods were designed to use a Differential
Evolution algorithm with feature-weighting approach, cluster-based approach,
the opposition-based learning approach and hybrid-based approach.

2. For the evaluation of data, the DUC 2002 was selected as the test bed of each
proposed method. DUC 2002 was chosen because it is the last dataset designed
for single document summarization.

3. The Recall-Oriented Understanding for Gisting Evaluation (ROUGE) toolkit
was selected to measure and evaluate the system”s generated summaries with
reference summaries. In addition, the statistical significance test “Pearson
Correlation Coefficient” is used to measure the agreement level between the
proposed methods and the human method.

4. The proposed methods in automatic text summarization are evaluated and
compared with well-known benchmark methods such as Microsoft Word
summarizer and Copernic summarizer. The best and worst systems from the
DUC 2002 summarization competition are also compared. In addition to these
four methods, similar methods were selected from the literature that may have
the same/similar structure and/or methodological functions to some of this
study”s proposed methods.

1.6 Research Significance

Since the beginning of research in automatic text summarization by (Luhn,
1958) all proposed methods aim to increase the quality of the summarization results
via designing a single technique or by combining models of other techniques.
This research desires to make a significant contribution by presenting a novel
“Differential Evolution Based Automatic Text Summarization Model” to get higher
quality summary. First: the proposed model generates optimal weighting for selected
features embedded within the model. Second: to achieve diversity in the summary,
this model clusters similar sentences through the same evolutionary algorithm to
avoid data redundancy problem. Third: the proposed model enhances the search
performance of the evolutionary algorithm (DE) in order to extract optimized results
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instead of relying on random estimated solutions using Opposition-Based Learning
(OBL) concept. Fourth: a hybrid model of all three techniques above are integrated
together to utilize their advantages in a single model. The additional significance of this
proposed model is that it was built by using a single optimization algorithm (DE); the
DE was then appended and supplied with different learning techniques such as feature
selection approach, cluster-based approach and opposition-based learning approach.

1.7 Contribution of the Study

The expected contributions of this research are as follows:

1. Extraction of the most important sentences can be obtained by identifying
optimal feature weighting using differential evolution algorithm.

2. Achieving diversity in summarization and avoiding the data redundancy problem
as obtained through the optimized cluster-based method. Mainly, this structured
contribution encloses three sub-contributions as follow:

(a) NGD + DE-based Term-Weighting: A novel integration of the term-
weighting approach with NGD similarity measure.

(b) DE + Jaccard: A novel integration of the Jaccard similarity measure with
the DE algorithm

(c) Real-to-Integer Modulator: A novel real-to-integer value modulator is
designed. This modulator aims to amend real values generated by the DE
to integer-base values that enable the DE search in discrete space and fine-
tune the cluster based problem.

3. Avoid reliance on random estimated solutions and produce more qualified
summaries to exceed those of former approaches (1 and 2).

4. A hybrid model designed to integrate the advantages of all proposed
contributions in order to improve the quality of summary generation.

1.8 Thesis Organization

This thesis is organized into eight chapters as follows:
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Chapter 1, Introduction: this chapter discusses general issues concerning
this research. It also states the problem background, the problem statement,
research objectives, research scope, research significance, and expected contribution,
respectively.

Chapter 2, this chapter reviews state-of-the-art approaches in the field of
automatic text summarization. The chapter reviews recent surveys introduced in the
field. Since this research proposes evolutionary algorithm based solutions, the chapter
also reviews, in particular, most summarization research based on similar or other
evolutionary algorithms. In addition, it reviews machine learning methods that have
been presented to enhance the search performance of evolutionary algorithms. The
chapter covers available datasets utilized in methodology evaluation as well as the
evaluation of tools-kit.

Chapter 3, Research Methodology: this chapter defines the methodology
followed in this research to achieve the study”s objectives. The main experiments
of this study are: binary differential evolution based text summarization; diversity
based differential evolution text summarization; opposition diversity based differential
evolution text summarization, and hybrid model based differential evolution text
summarization.

Chapter 4, Binary Differential Evolution Based Text Summarization: this
chapter presents features the weighting method which uses the evolutionary algorithm
Differential Evolution (DE). The DE is configured in binary mode in order to control
probable score calculation. The method will be compared against “state of the
art” methods and similar systems based on particle swarm optimization and generic
algorithms.

Chapter 5, Diversity Based Differential Evolution Text Summarization:
this chapter proposes cluster-based methods enhanced with the DE algorithm for
generating a highly diverse summary. The methods also aim to avoid falling into a
problem of data redundancy. Three methods have been proposed: the first is to improve
the Normalized Google Distance (NGD) (Cilibrasi and Vitanyi, 2007) similarity
measure performance by incorporating the term-weighting approach. Secondly, to
investigate the proper selection of similarity measure that is more suitable to the
dataset. Thirdly, is to design a novel “real-to-integer” value modulator instead of
adopting an external genetic mutation operator.
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Chapter 6, Opposition Diversity Based Differential Evolution Text Summa-
rization: the main goal of this chapter is to avoid the problem of generating solutions
based on random estimates. The problem of the application based on random estimates
(guesses) is that it may give different solutions each time that are far from the optimal
points. This chapter investigates the use of Opposition-based learning (OBL) to solve
this issue for automatic text summarization. The OBL is proposed to make sure it
is able to enforce DE generating solutions that are closer to optimal points than are
traditional versions in text summarization.

Chapter 7, Hybrid model based on DE algorithm: this chapter aims to integrate
the advantages of all proposed methods in one single (hybrid) model. The model
initially extracts the optimal feature-weights assigned, then, calls on the methods
proposed in Chapter Five to explore sentence diversity. Methods in Chapter Five
are then automatically improved with a method component presented in Chapter Six.
Finally, the optimized feature scores are employed for selecting the top “n” sentences.

Chapter 8, Conclusion and Future Work: this chapter concludes the research
and attempts to give an overall discussion regarding all contributions presented in this
research as well as recommendations and suggestions for future research.
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