MICROSTRIP SIERPINSKI CARPET ANTENNA DESIGN

NOORSALIZA BT ABDULLAH

UNIVERSITI TEKNOLOGI MALAYSIA

MICROSTRIP SIERPINSKI CARPET ANTENNA DESIGN

NOORSALIZA BT ABDULLAH

A thesis submitted in fulfillment of the requirement for the award of the Degree of Master of Engineering (Electrical-Electronics & Telecommunications)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > **MARCH, 2005**

To my beloved parents: Thank you for giving me the chance to be what I can be.

ACKNOWLEDGEMENTS

I wish to express my thankfulness to my supervisor Dr Mohamad Kamal A Rahim for his invaluable guidance, patience and support through the completion of this project. I also would like to thanks En Mohammad Zoinol Abidin Abd Aziz for his help on experimental testing.

Finally, I would like to thank everyone that has been involved in this project directly or indirectly for their help and contribution.

ABSTRACT

Low cost of fabrication and low profile features of microstrip antennas, attract many researchers to investigate the performance of this antenna in various ways. Fractal antenna is a new member in the family of antennas. They have peculiar properties that make them suitable for applications where wideband and multiband are important parameters of the overall performance. Fractal technology allowed us to design miniature antennas and integrate multiple telecommunication services such as cellular (GSM 900 and GSM 1800), wirelessLAN, GPS and hiperLAN2 into a single device. Microstrip sierpinski carpet antenna and sierpinski carpet monopole antenna are designed in this project. The main objective of this project is to design a multiband antenna. The design involved simulations, fabrications and measurements. Mathcad 2001 is used to obtain the size of the basic square patch antenna and simulation was done using Micropatch v.2 and Microwave Office. The fabrication and testing was done at Wireless Communication Centre (WCC). Wideband and multiband operation was observed in sierpinski carpet monopole antenna.

ABSTRAK

Ciri-ciri antena microjalur yang berprofil rendah dan kos fabrikasi yang murah telah membuka laluan kepada para penyelidik untuk mengkaji prestasi antena ini dalam pelbagai cara. Antena pecahan ini masih dikategorikan baru dalam antenna. Antena pecahan ini mempunyai ciri-ciri khusus yang membolehkan ia digunakan dalam aplikasi yang mana jalur lebar dan jalur banyak merupakan parameter yang penting bagi menentukan prestasi keseluruhan. Teknologi pecahan ini membenarkan kita merekabentuk antena yang bersaiz kecil dan memuatkan pelbagai servis telekomunikasi seperti GSM (GSM 900 dan GSM 1800), wirelessLAN, GPS dan hiperLAN2 didalam satu peranti sahaja. Antena tampal pecahan mikrojalur dan antena hamparan tegak direka dalam projek ini. Objektif utama projek ini adalah untuk merekabentuk antena yang mempunyai banyak jalur frekuensi. Proses yang terlibat dalam merekabentuk antena ini ialah simulasi, fabrikasi dan pengukuran. Program Mathcad 2001 digunakan bagi mendapatkan saiz antena segiempat tampal dan simulasi dilakukan menggunakan Micropatch v.2 dan Microwave Office. Fabrikasi dan pengukuran dilakukan di makmal Pusat Perhubungan Tanpa Wayar (WCC). Antena hamparan tegak dapat beroperasi dalam jalur lebar dan banyak frekuensi.

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

DedicationiiiAcknowledgementivAbstractvAbstrakviTable of contentsviiList of TablesxiList of FiguresxiiList of Symbolsxiv	Declaration	ii
AcknowledgementivAbstractvAbstrakviTable of contentsviiList of TablesxiList of FiguresxiiList of Symbolsxiv	Dedication	iii
AbstractvAbstrakviTable of contentsviiList of TablesxiList of FiguresxiiList of Symbolsxiv	Acknowledgement	iv
AbstrakviTable of contentsviiList of TablesxiList of FiguresxiiList of Symbolsxiv	Abstract	v
Table of contentsviiList of TablesxiList of FiguresxiiList of Symbolsxiv	Abstrak	vi
List of TablesxiList of FiguresxiiList of Symbolsxiv	Table of contents	vii
List of Figures xii List of Symbols xiv	List of Tables	xi
List of Symbols xiv	List of Figures	xii
	List of Symbols	xiv

CHAPTER IINTRODUCTION TO THE PROJECT11.1 Project Background11.2 Objective21.3 Scope of Work31.4 Dissertation Overview3

CHAPTER II	ANTENNA THEORY	
	2.1 Introduction to Antonno	5
	2.1 Introduction to Antenna	3

2.2 Antenna Properties	6
2.2.1 Impedance	6
2.2.2 VSWR	6
2.2.3 Bandwidth	7
2.2.4 Radiation Pattern & 3 dB Beamwidth	9
2.2.5 Gain	11
2.2.6 Polarization	12
2.3 Microstrip Patch Antenna	14
2.3.1 Introduction to Microstrip Patch Antenna	14
2.3.2 Advantages and disadvantages	16
2.3.3 Feeding Techniques	17
2.3.3.1 Microstrip line feeding	17
2.3.3.2 Coaxial probe	19
2.3.3.3 Aperture coupler feed	20
2.3.3.4 Proximity coupled feed	21
2.3.4 Method of analysis	23
2.3.4.1 Transmision line model	23
2.4 Fractal antenna	28
2.4.1 Fractal geometry	28
2.4.1.1 Koch curves	29
2.4.1.2 Sierpinski gasket	30
2.4.1.3 Sierpinski carpet	31
2.4.2 Self-similarity	32
2.4.3 Fractal dimension	33
2.4.4 Engineering application of fractal	34
2.4.5 Fractal in antenna engineering	35
2.4.6 Fractal antenna elements	36
2.5 Conclusion	38

CHAPTER III MICROSTRIP SIERPINSKI CARPET ANTENNA DESIGN

3.1 Introduction	40
5.1 Introduction	10

40

3.2 Antenna Structure	41
3.2.1 Basic Square Patch Antenna	41
3.2.2 First Iteration of Microstrip Sierpinski	
Carpet Antenna	43
3.2.3 Second iteration of Microstrip Sierpinski	
Carpet Antenna	44
3.3 Fabrication	46
3.4 Conclusion	49

CHAPTER IV	SIMULATIONS	50
	4.1 Micropatch 2.0	50
	4.1.1 Spdesign	51
	4.1.2 Rpanalyz	53
	4.2 Microwave Office	54
	4.3 Conclusion	56

CHAPTER V RESULTS ANALYSIS 57

5.1 Microwave Office 2001	57
5.1.1 Basic square patch antenna	57
5.1.2 First iteration of square patch antenna	59
5.1.3 Second iteration of square patch antenna	a 62
5.2 Measurements	67
5.2.1 Microstrip fractal patch antenna	67
5.2.2 Sierpinski carpet monopole antenna	70
5.3 Discussion	73
5.4 Problems	74
5.5 Conclusion	74

CHAPTER VI CONCLUSION AND RECOMMENDATIONS 75

6.1 Conclusions	75

6.2 Future works	76

REFERENCES	77
------------	----

APPENDIX

A3 79
43 7

LIST OF TABLES

NO.	TITLE	PAGE
2.1	The characteristics of the different feeding	
	technique	22
2.2	Fractal dimension	34
3.1	Laminate specification	40
5.1	Simulation results for second iteration structure	64
5.2	Measurements results for microstrip sierpinski	
	carpet antenna	68

LIST OF FIGURES

NO.	TITLE

PAGE

2.1	Frequency response for antenna	8
2.2	Radiation pattern and 3dB beamwidth	9
2.3	A rectangular patch antenna	15
2.4	Microstrip line feeding	18
2.5	Probe fed for rectangular patch antenna	19
2.6	Aperture coupled feed	20
2.7	Proximity coupled feed	22
2.8	Microstrip line	23
2.9	Electric field lines	23
2.10	Microstrip patch antenna	25
2.11	Top view of the antenna	26
2.12	Side view of the antenna	26
2.13	The first stages in construction of Koch curve	29
2.14	The first stages in construction of sierpinski gasket	30
2.15	The first stages in construction of sierpinski carpet	31
2.16	The self-similarity of sierpinski gasket	33
3.1	Square patch antenna	42
3.2	First iteration of sierpinski carpet fractal antenna	44
3.3	Second iteration of sierpinski carpet fractal antenna	46
3.4	Fabrication process from beginning	47
3.5	Microstrip fractal patch antenna	48
3.6	Sierpinski carpet monopole antenna	48

4.1	Design parameter in Micropatch 2.0	52
4.2	Optimization	52
4.3	Screen shot of Microwave Office	56
5.1	Square patch antenna layout	58
5.2	Return loss of square patch antenna	58
5.3	Polar plot for square patch antenna, frequency 1.82 GHz	59
5.4	First iteration antenna layout	60
5.5	Return loss for first iteration	60
5.6	Polar plot for first band, frequency 4.3 GHz	61
5.7	Polar plot for second band, frequency 5.8 GHz	62
5.8	Second iteration antenna layout	63
5.9	Return loss for second iteration	63
5.10	Polar plot for first band, frequency 4.15 GHz	64
5.11	Polar plot for second band, frequency 5.3 GHz	65
5.12	Polar plot for third band, frequency 6.6 GHz	65
5.13	Polar plot for fourth band, frequency 8.1 GHz	66
5.14	Polar plot for fifth band, frequency 9.25 GHz	66
5.15	Microstrip sierpinski carpet antenna	68
5.16	Return loss	68
5.17	E-plane for co-polar and cross-polar, frequency 2.59 GHz	69
5.18	E-plane for co-polar and cross-polar, frequency 5.2 GHz	70
5.19	Sierpinski carpet monopole antenna	71
5.20	Return loss for Sierpinski carpet monopole antenna	71
5.21	Polar plot for co-polar and cross-polar, frequency 2.73 GH	z72
5.22	Polar plot for co-polar and cross-polar, frequency 4.29 GH	z 72
5.23	Input return loss for measurement and simulation	73

LIST OF SYMBOLS

BW	Bandwidth
f	Frequency
L	Length of the Microstrip Patch Antenna
W	Width of the Microstrip Patch Antenna
h	Substrate thickness
tan δ	Loss tangent of dielectric material
V	voltage
G	Gain
ε _r	Relative Permittivity
ε _{eff}	Effective Relative Permittivity
ΔL	Fringe factor
c	Velocity of electromagnetic waves in free space
VSWR	Voltage standing Wave Ratio
CW	Clock wise
CCW	Counter clock wise

CHAPTER I

INTRODUCTION

1.1 **Project Background**

Modern telecommunication systems require antennas with wider bandwidths and smaller dimensions than conventionally possible. This has initiated antenna research in various directions, one of which is by using fractal shaped antenna elements. In recent years several fractal geometries have been introduced for antenna applications with varying degrees of success in improving antenna characteristics. Some of these geometries have been particularly useful in reducing the size of the antenna, while other designs aim at incorporating multi-band characteristics. Yet no significant progress has been made in corroborating fractal properties of these geometries with characteristics of antennas.

Several antenna configurations based on fractal geometries have been reported in recent years. These are low profile antennas with moderate gain and can be made operative at multiple frequency bands and hence are multi-functional. In this work the multi-band (multifunctional) aspect of antenna designs are explored further with special emphasis on identifying fractal properties that impact antenna multiband characteristics. To lay foundations for the understanding of the behavior of such antennas, the nature of fractal geometries is explained first, before presenting the status of literature on antennas using such geometries.

Fractal geometry allows us to design a miniature antenna and integrate multiple telecommunication services into single device. One of the most relevant trends for wireless devices is miniaturization. Miniaturization become important for the next generation of antennas for wireless applications which have to integrate multiple services such as cellular (GSM 900 and GSM 1800), wireless LAN 2.4 GHz, GPS 1.575 GHz, radio and hiperLAN2 5.25GHz into one device such as handsets, laptops and PDAs. In this situation, we need the smallest antenna to make use of the available wireless service and for coverage of the different frequency bands is made possible with multiple-band antenna design.

1.2 Objective

Objective of this project is to design and fabricate a multi band antenna using sierpinski carpet fractal antenna and microstrip fractal antenna. Parameters that influence antenna's performance in term of matching and bandwidth are studied to achieve this objective. Design and fabrication processes are based on simulation using Microwave Office.

1.3 Scope of Work

Scope of this project:-

- i. Design and fabricate a sierpinski carpet fractal antenna and a microstrip fractal antenna.
- ii. Investigate the performance of the sierpinski carpet fractal antenna and microstrip fractal antenna.

1.4 Dissertation Overview

In this dissertation, several topics are covered and they are organized into six chapters. This first chapter, the introduction to the project, gives an explanation of the objective, scope of work and project background.

Chapter II begin with the description of antenna characteristics. This is followed by discussion of relevant theory and literature review on the designed antenna structures. Matching techniques and method of analysis are also presented.

Chapter III presents the antenna design procedure and the fabrication of the designed antennas. This chapter discusses the design of basic microstrip square patch antenna and microstrip fractal patch antenna.

Chapter IV presents brief description of software used in designing and simulating the antenna structures. Some examples of the simulation results are included.

Chapter V presents some results and analysis that obtained from simulation and measurement.

Chapter VI presents the conclusions for this thesis. Some ideas for future works of this project are suggested.

REFERENCES

- Iona Ene, Roman Baikan and V.Rusk, (2000), "Fractal Antennas", University Politeknica, Buckavest, Romania.
- John Gianvittorio and Yahya Rahmat Samii, (2001), "Fractal Patch Antenna", Department of Electrical Engineering, University of California, Los Angeles.
- 3. D.Anagnostou, C.Christodoulu and J.Iyke,(2000), "Smart reconfigurable antenna for satellite application", University of Mexico, USA.
- John Gianvittorio and Yahya Rahmat Samii,(2002),"Fractal Antenna: A Novel Of Miniaturizaion Technique and application, University of California, Los Angeles.
- Lora Schulwitz," The Small Koch Fractal Monopole: Theory, Design and Application", Electrical Engineering and Computer Sceince, University of Michingan.
- Basile Panoutsopoulos,(2003)," Printed Circuit Fractal Antenna", IEEE Transaction on Antenna and Propagation.
- Ban Leong Oii,(2004)," A Modified Contour Integral Analysis For Sierpinski Fractal Carpet antenna with and without Electromagnetic Band Gap Ground Plane", IEEE Transaction on Antenna and Propagation, Volume 52, pp 1286-1293,.
- Kenneth A. O'Connor, (2001)," 915 MHz Microstrip Antenna", Master Thesis.
- 9. Constantine A. Balanis,(1997)," Antenna Theory Analysis and Design", John Wiley and Sons Inc.
- Ramesh Garg, Prakash Bhartia, Inder Bahl, Apisak Ittipon, (2000)," Microstrip Antenna Design Handbook", Artech House.

- Dr. Max Ammann,(1997)," Design of Rectangular Microstrip Patch Antennas for the 2.4 Ghz Band", Dublin Institute of Technology.
- 12 M.T Chryssomallis,(2004)," Controlling the input impedance of a microstrip patch antenna without additional matching element",demoeritus Unversity of Thrace.
- 13 Yiau Hwei Chan,(1997),"Steerable Planar Antenna System for wireless LAN", University of Quennsland.
- 14 R.V Hara Prasad, Y.Purushottam, V.C Mirsa and Ashok,(2000), "Microstrip Fractal Pacth Antenna For Multiband communication", Electronic Letters, pp 1179-1180.
- 15 Walker G.J and James,(1998),"Fractal volume antenna",Electronic Letters, pp 1536-1537.
- C.T.P Song, P S Hall, H. Ghafouri-Shiraz and D. Wake,(1999)," Fractal Stacked monopole with very wide bandwidth", Electronic Letters, pp 945-946.
- 17 T W Hee, P S Hall and K Y Liew,(2003), "Wideband Stacked Sierpinski carpet dipole antenna", IEEE Transaction, pp 242-245.
- C Borja, and J Romeu,(2000), "Multiband Sierpinski Fractal Patch Antenna", IEEE Transaction, pp 1708-1711.
- 19 KJ Vinoy,(2002)," Fractal Shaped Antenna Elements for Wide and Multi band Wireless applications", Pennsylvania State University, Ph.D Thesis.
- AA Moreira, C Peixeiro and J Guterman, (2004), "Dual-band Miniaturized Microstrip Fractal Antenna for a Small GSM1800 + UMTS Mobile Handset", IEEE MELECON, pp 499-501.
- 21 C Puente, J Romeu, (1996), "Perturbation of the Sierpinski Antenna to Allocate Operating Bands", Electronics Letter, pp 2186-2188.
- 22 CTP Song, PS Hall, I Henning and H Ghafouri, (2001)," Fractal Antenna Research at University Of Birmingham", International Conference on Antenna and Propagation, pp 724-726.
- S Ganguly and L Yoonjae, (2002)," A Novel Conformal Multiband Antenna Design Based on Fractal Concepts", IEEE Transaction, pp 92-955.