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ABSTRACT

The presence of acidic and toxic gases of carbon dioxide (CO2) and hydrogen
sulphide (H2S) will lead to the corrosion in natural gas pipeline system and material
in processing plant. Alternatively, CO2 and H2S can be removed using green
technology via catalytic methanation reaction by converting CO2 to methane (CH4)
gas. Nickel (Ni) and cobalt (Co) oxides are well known catalysts to exhibit higher
activity however they are easily deactivated. It is essential to activate these catalysts
by incorporating dopants to enhance the catalytic performance. So far, the alteration
of these oxides catalysts by adding zirconium, cerium and samarium dopants did not
boost up the activity. In this research, a series of alumina (Al2O3) supported Ni/Co
oxides based catalysts doped with manganese (Mn) and noble metal oxides such as
ruthenium (Ru) and palladium (Pd) were prepared by wetness impregnation method
followed by calcination. Various parameters were studied in this research include
compositions of catalyst, calcination temperatures, effect of H2S gas, different Mn
precursors, effect of sonication, two series furnace testing, reproducibility and
stability testing towards CO2/H2 methanation reaction. The catalysts were subjected
to characterization process using various techniques such as XRD, FESEM-EDX,
Nitrogen Adsorption, TGA-DTG and FTIR in order to study their physical
properties. XRD diffractogram illustrated that the supported catalysts were in
amorphous state at 1000°C calcination temperature and became crystalline at
1100°C. FESEM micrographs showed that both fresh and used catalysts have
spherical shape with small particle sizes in agglomerated and aggregated mixtures.
Elemental analysis performed by EDX confirmed the presence of Al, O, Ni, Co, Mn
and Ru on the catalysts. Nitrogen Adsorption analysis revealed that both catalysts
were in mesoporous structures with BET surface area in the range of 46-60 m2/g. The
prepared catalysts were subjected to catalytic screening using micro reactor coupled
with FTIR to study the performance of the catalysts by determining the percentage of
CO2 conversion, meanwhile the percentage of CH4 formation was analyzed using
GC. For nickel based catalyst, Ru/Mn/Ni(5:35:60)/Al2O3 calcined at 1000°C was
found to be the potential catalyst which gave 99.74% of CO2 conversion and 72.4%
of CH4 formation at the maximum reaction temperature of 400°C. This catalyst can
be reused for seven recycles without treatment. Meanwhile, for cobalt oxide based
catalyst, Ru/Mn/Co(5:40:55)/Al2O3 calcined at 1000°C was found to be the most
potential catalyst which gave 96% of CO2 conversion at low reaction temperature of
250°C with 76% of CH4 formation. This catalyst can be reused for three recycles
without treatment. In the presence of H2S, the CO2 conversion exhibited very low
conversion to CH4 for both Ru/Mn/Ni(5:35:60)/Al2O3 and Ru/Mn/Co(5:40:55)/Al2O3

catalysts.
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ABSTRAK

Kehadiran gas berasid dan toksik seperti karbon dioksida (CO2) dan hidrogen sulfida
(H2S) akan menyebabkan hakisan dalam sistem penyaluran gas asli dan bahan-bahan
dalam loji pemprosesan. Secara alternatif, CO2 dan H2S boleh dirawat dengan
menggunakan teknologi hijau melalui tindak balas metanasi bermangkin yang
menukarkan CO2 kepada metana (CH4). Nikel (Ni) dan kobalt (Co) oksida diketahui
umum dapat memberi aktiviti yang tinggi namun mereka mudah dinyahaktifkan.
Justeru itu, adalah amat penting untuk mengaktifkan mangkin ini dengan
penambahan dopan untuk meningkatkan prestasi mangkin. Setakat ini,
penambahbaikan terhadap kedua-dua mangkin dengan dopan zirkonia, cerium dan
samarium tidak dapat meningkatkan aktiviti pemangkinan. Dalam kajian ini, satu siri
mangkin yang berasaskan Ni/Co berpenyokong alumina (Al2O3) yang didopkan
dengan oksida mangan (Mn) dan logam nadir seperti rutenium (Ru) dan paladium
(Pd) telah disediakan menggunakan kaedah pengisitepuan basah dan diikuti dengan
pengkalsinan. Pelbagai parameter telah digunakan dalam kajian ini, antaranya ialah
komposisi mangkin, suhu pengkalsinan, kesan gas H2S, perbezaan Mn pemula, kesan
sonikasi, ujian dua siri reaktor, ujian kebolehulangan dan kestabilan terhadap tindak
balas metanasi CO2/H2. Mangkin yang disediakan dicirikan menggunakan pelbagai
teknik seperti XRD, FESEM-EDX, penjerapan nitrogen, TGA-DTG dan FTIR untuk
mengkaji sifat-sifat fizikal mangkin tersebut. Belauan XRD menunjukkan mangkin
berkeadaan amorfus pada suhu pengkalsinan 1000°C dan menjadi hablur pada suhu
1100°C. Mikrograf FESEM menggambarkan kedua-dua mangkin sebelum dan
selepas digunakan berbentuk sfera dengan saiz yang kecil dalam campuran aglomerat
dan agregat. Analisis unsur daripada EDX mengesahkan kehadiran Al, O, Ni, Co,
Mn dan Ru pada permukaan mangkin. Analisis jerapan nitrogen menunjukkan
kedua-dua mangkin dalam keadaan liang bersaiz meso dengan luas permukaan BET
di dalam julat 46-60 m2/g. Mangkin tersebut telah menjalani ujian saringan dengan
menggunakan reaktor mikro bersambung dengan FTIR untuk mengkaji prestasi
setiap mangkin dengan menentukan peratusan penukaran CO2, manakala peratusan
penghasilan CH4 dianalisis oleh GC. Untuk mangkin berasaskan nikel,
Ru/Mn/Ni(5:35:60)/Al2O3 yang dikalsin pada suhu 1000°C merupakan mangkin
berpotensi yang telah menghasilkan 99.74% penukaran CO2 dan pembentukan 72.4%
CH4 pada suhu tindak balas maksimum, 400°C. Mangkin ini menunjukkan
kebolehulangan sebanyak tujuh kali tanpa rawatan. Sementara itu, mangkin
Ru/Mn/Co(5:40:55)/Al2O3 yang dikalsin pada suhu 1000°C merupakan mangkin
berpotensi yang telah menghasilkan 96% penukaran CO2 dan 76% pembentukan CH4

pada suhu tindak balas yang rendah iaitu 250°C bagi mangkin berasaskan kobalt.
Mangkin ini menunjukkan kebolehulangan tiga kitaran tanpa perlu rawatan. Dengan
kehadiran H2S, peratusan penukaran CO2 kepada CH4 bagi mangkin
Ru/Mn/Ni(5:35:60)/Al2O3 dan Ru/Mn/Co(5:40:55)/Al2O3 adalah rendah.
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CHAPTER I

INTRODUCTION

1.1 Background of Study

Environmental pollution received a great global concern since it could affect

the living things and earth. Chemicals, particulate matter and biological materials

which released into the air are known as a pollutant which can lead to the air

pollution. Numbers of anthropogenic (human) activities which mostly related to the

different kind of fuel burning have been responsible to these severe pollutions.

Amongst the most significant are the power plants, manufacturing factories,

petrochemical refineries, waste incinerations and much more. Vehicles, chemicals,

and waste deposition in landfills as well as natural sources also may contribute to the

releasing hazardous substance into the air. Air pollution may cause the deterioration

of air quality and give negative impact to the human health and damage to the living

organisms such as food crop and natural environment. Thus, it is very necessary to

control the pollutants released into the air by giving much effort to obtain clean

environmental.

Since emission from burning fuel and vehicles become a major contribution

to the air pollution, it is very important to overcome this problem. According to

Environmental Protection Agency (EPA), coal and oil release higher level of harmful

gas emissions which contain carbon, sulfur dioxide, nitrogen oxides as well as

particulate matters. Alternatively, natural gas can be used in many ways to reduce the

emissions of pollutants into the atmosphere to maintain a clean and healthy

environment. Burning of natural gas is considered as environmental friendly clean
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fuel and emits few harmful pollutants. Moreover, natural gas is economical and

efficient energy since directly delivered to the customer’s facility through safe and

efficient pipeline system.

Natural gas can be ascribed as the deep-seated or ‘fossil’ gases which usually

composed of hydrocarbons and non-hydrocarbons compounds in various proportions.

This highly flammable and combustible gas normally found associated with crude

petroleum as gaseous phase of crude oil (Tiratsoo, 1979). It is also can be found in

oil, natural gas and coal fields. Natural gas is well established in the world which

supplies 23.5% of energy sources (Kidnay and Parish, 2006). Moreover, natural gas

known as the most cleanest, safest and has been applied in various sectors.

According to the Energy Information Administration (EIA), about 23% of the

energy consumption comes from natural gas making it a vital component of the

nation’s energy supply. Total energy consumed in the US as depicted in Figure 1.1.

Figure 1.1 Total Energy Consumed in the U.S-2007 (Source: EIA-Annual
Energy Outlook 2009)

Since natural gas offers a number of environmental benefits over other

sources of energy, it has been utilized across all sectors. Figure below gives an idea

of the proportion of natural gas used per sector. About 35% of natural gas is mainly

consumed by the residential sector than others. Home owners use natural gas for

heating, cooking, clothes drying and gas fireplaces and logs. While, the commercial
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sector such as office buildings, schools and hotels, use natural gas for space heating,

water heating and cooling. Thousands of factories also consume natural gas as a fuel

burning as industrial customers. The fraction of natural gas consumptions by sectors

are shown in Figure 1.2.

Figure 1.2 Natural Gas Consumption by Sector (Source: EIA – Annual Energy
Outlook 2009)

1.1.1 Natural Gas in Malaysia

Malaysia which strategically located in the middle of important routes for the

seaborne energy trade of the Straits of Malacca and South China Sea is a major oil

and natural gas producer. Malaysia has 83 trillion cubic feet (Tcf) of proven natural

gas reserved dated January 2011 as stated in Oil and Gas Journal. In Asia-Pacific,

Malaysia was recognized as the fourth largest natural gas reserves holder as shown in

Figure 1.3. Most of the Malaysian gas reserves are located in the eastern area,

predominantly offshore Sarawak which contributes 48% of the gas, meanwhile 38%

and 14% of gas reserves at peninsular Malaysia and offshore Sabah, respectively

(Gas Malaysia Sdn. Bhd.).
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Figure 1.3 Natural gas reserves in Asia-Pasific (Source: Oil and Gas Journal)

Oil and natural gas sectors in Malaysia are dominated by Petronas, in which

has monopoly on all upstream and downstream natural gas developments and

liquified natural gas (LNG) trade. Petronas has collaborated with foreign companies

such as Shell and Murphy Oil in operating natural gas production. The production of

raw natural gas has been increased progressively until it reached 2.7 Tcf in 2010.

Meanwhile, domestic natural gas consumption in various sectors such as residential,

commercial and industrial has increased to 1.1 Tcf in 2010 in which 42% of gas

production. There are several important projects ongoing on the offshore Sarawak

and Sabah such as Malaysia-Thailand Joint Development Area (JDA) and New
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Figure 1.4 Malaysian natural gas production and consumption 1991-2010

The main hub and the largest Malaysian natural gas are located in Bintulu,

Sarawak. In 2010, Malaysia was the third largest exporter of liquefied natural gas

(LNG) in the world after Qatar and Indonesia, which 1 Tcf of LNG is estimated at

10% of total world LNG export. Malaysian natural gas has been supplied to Japan,

South Korea, Taiwan and China since they are the largest purchasers. Mostly, LNG

is transported by Malaysia International Shipping Corporation (MISC), which owns

and manages 27 LNG tankers. MISC is 62% owned by Petronas which holds

majority interests in three LNG processing plants at Bintulu, Sarawak (offshore

fields). Figure 1.5 shows the world LNG exporters in the year 2010.

Figure 1.5 Top world LNG exporters in year 2010
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However, crude Malaysian natural gas consists of CO2 and H2S at higher

percentages which considered as sour natural gas. Sour gas is unfavorable because it

contains sulfur compounds and carbon dioxide that can be extremely harmful which

will lead to severe environmental pollution and corrode the pipeline system. The

chemical composition of Malaysian natural gas and United State before it is being

refined is shown in Table 1.1. Since Malaysian natural gas consists of 23% of CO2

and 5% of H2S, it is necessary to purify in order to remove all the impurities and to

enhance the production of methane.

Table 1.1 Composition of natural gas between United State and Malaysia

Chemical Name United State (%) Malaysia (%)

Methane (CH4) 89 48

Carbon dioxide (CO2) 2 23

Hydrogen sulfide (H2S) 1 5

Others 8 24

Prior to transporting to end-use markets, natural gas is processed to meet

pipeline quality standards or conventional practice. According to American Society

for Testing Material (ASTM), the minimum and maximum qualities that are needed

for natural gas pipeline quality are as shown in Table 1.2.

Table 1.2 Quality needed for natural gas pipeline

Maximum Value (% mol) ASTM Method

Methane 65 < x <100 D 1945*
Ethane 14 D 1945*

Propane 5 D 1945*

Nitrogen 18 D 1945*

Carbon dioxide 3 D 1945*

Hydrogen 5 D 2650

Carbon Monoxide 0.1 D 1946

Hydrogen Sulfide 5.7 mg/m3 D 2725

Water Vapour 110 mg/m3 D 1142
* D 1945 – Standard test method for analysis of natural gas by GC
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1.1.2 Purification of Natural Gas

Gas processing of crude natural gas is crucial to guarantee a clean-burning

and environmentally acceptable produced by natural gas. In gas processing, the most

important part is the removal of undesired compound; CO2 and H2S. This process

always referred as sweetening processes. There are many methods available for the

treatment of acidic natural gas such as physical solvents, adsorption process,

chemical solvents, hybrid solvents and also physical separation as stated by Kohl and

Nielsen (1997).

Earlier study by Hao et al. (2002), to upgrade the low quality of natural gas

using selective polymer membranes. This membrane processes are designed to

reduce the concentration of CO2 and H2S. However, this method acquires high cost

and low selectivity towards toxic gas separation. Moreover, Rangwala (1996)

suggested this method need further development on membrane since the performance

depends on the specific characteristics of flue gas composition, and the specific

features of the separation such as low pressure source, large volumetric flow rate,

high temperature and low commodity value of H2S and CO2. Furthermore, this

process also requires a clean gas feed in order to remove impurities.

Meanwhile, chemical absorption processes using aqueous alkanolamine

solutions to treat gas streams containing H2S and CO2. They can exhibit good

reactivity at low cost and very flexible in design and operation. However, different

amines need to be selected depends on the composition and operating conditions of

the feed gas as to meet the product gas specification as told by Mokhatab et

al.(2006). Alkanolamine that regularly have been used for absorption desulfurization

process such as monoethanolamine (MEA), diethanolamine (DEA), triethanolamine

(TEA), di-isopropanolamine (DIPA), diglycolamine (DGA), and

methyldiethanolamine (MDEA). For instance, MDEA is effectively remove CO2

from natural gas but did not effectively remove H2S gas (Salako and Gudmundsson,

2005). Amine treating method is costly and impractical as amine solution are

expensive as well as corrosion may be favoured if high heat reaction applied.



8

Another method can be used to remove H2S only which is known as Iron

Sponge process. This method has been applied as batch-type function thus is not

easily adapted in continuous operating cycle. This process allows sour gas to pass

through a bed of wood chips that have been impregnated with a special hydrated

form of iron oxide which can attract H2S. Regeneration of the bed earns higher

operating cost and excessive maintenance. Even H2S gas can be totally removed

using this method; however CO2 still remains in the gas, thus it is not suitable for

reducing large content of CO2 (Curry, 1981).

Besides, molecular sieves processes are highly selective for the removal H2S

gas (as well as other sulfur compounds) and water from gas streams and own high

absorption efficiency. Thus, it is known as dehydration and desulfurization process.

However, gas that has excessively high water content may require upstream

dehydration. Similar to the Iron sponge process, regeneration of the bed is achieved

by passing heated clean gas over the bed. When temperature increases, it will release

the adsorbed H2S into the regeneration gas stream. Moreover, some of natural gas

may lost by the adsorption of hydrocarbon components by molecular sieves (Speight,

2007).

All the above methods are currently applicable in industry, even though they

are not economical. Therefore, an alternative method should be used in order to

improve the quality of natural gas. CO2 and H2S gas can be removed from natural gas

simultaneously via catalytic methanation reaction. Catalysts for CO2 methanation

have been widely studied because of their potential and application in the conversion

of CO2 gas to produce methane using green technology, (Wan Abu Bakar et al.,

2008). Usually, the catalyst was prepared various precursor salts to produce metal

oxide because of the expensiveness of pure metal. This process gives several

advantages such as can increase the purity, quantity and quality of the natural gas

without wasting the undesired components (CO2 and H2S) but fully used them in

order to produce methane.
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1.2 Reactions involved in proposed technology

There are two reactions involved in this technology which are methanation

and desulfurization reactions. Referring to previous literature, the proposed

mechanism is postulated to study the reaction in details.

1.2.1 Methanation and desulfurization reactions

In this proposed natural gas purification, the conversion of carbon dioxide to

methane is an important process. To form methane (CH4), hydrogen gas is used

along with carbon dioxide gas through methanation process as shown in Equation 1.1

below. This reaction is moderately exothermic, ΔH° = -165 kJ/mol in the presence of

catalyst to speed up the reaction.

CO2 (g) + 4H2 (g) →   CH4 (g) + 2H2O (l) (1.1)

Meanwhile, H2S desulfurization can also be reduced to elemental sulfur

simultaneously by oxidation reaction as in Equation 1.2 below:

H2S (g) + ½ O2 (g) →    S (s) + H2O (l) (1.2)

In order to enhance the catalytic methanation, a suitable catalyst must be

chosen to promote selective CO2 methanation because side products (carbon

monoxide, CO and water) are also possible to form (Equation 1.3), which obviously

should be avoided. Thus, high selectivity of the catalyst in promoting CO2

methanation is very necessary. Based on Equation 1.3, CO produced by this reaction

also can be used to form methane in the presence of hydrogen as in Equation 1.4.

CO2 (g) + H2 (g) →   CO (g) + H2O (l) (1.3)

CO (g) + 3H2 (g) →   CH4 (g) + H2O (l) (1.4)
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Since this technology offers a number of benefits, thus the present study is

aimed to develop a modifying nickel and cobalt oxide based with the incorporation

of manganese and noble metals. Perhaps, high conversion can be achieved possibly

at low reaction temperature (below than 200°C).

1.2.2 Mechanism of Methanation Reaction

Mechanism of methanation reaction has been studied a long time ago. Many

researchers agreed that the methanation process involves Langmuir-Hinshelwood

mechanism to support the reaction process between active species and catalyst

surface.

A study by Jacquemin and co-workers (2010), suggested the mechanism of

methanation reaction over Rh/Al2O3 catalyst involves three steps. First step could be

the chemisorptions of CO2 on the surface catalyst. Secondly, the adsorbed CO2 would

disassociate to form CO (ads) and O (ads) species on the surface catalyst. Third step is

the reaction of dissociated species with hydrogen. The dissociative adsorption of

CO2 into carbon monoxide and oxygen has been proven by in situ DRIFT

experiments by the presence of bands signify to Rh-CO, Rh3+-CO and Rh-(CO2)2.

The methanation is proposed below:
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Figure 1.6 The proposed mechanism of methanation reaction over
Ru/Mn/Ni(5:35:60)/Al2O3 catalyst (adapted from Jacquemin et al.
2010)

According to Figure 1.6, carbon dioxide and hydrogen molecule is reacting

with the catalyst surface by chemisorptions and created an active species that
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adsorbed onto the surface catalyst. The adsorbed CO2 will dissociate to form CO (ads)

and O (ads). Meanwhile, hydrogen molecule dissociate become an active H atom

species (Step 3 and 4). Water has been formed when H+ is attracted to oxygen

species (Step 5 and 6). Next, four hydrogen atoms filled the gap left from oxygen in

carbon molecule to produce methane (Step 7 and 8). This catalytic cycle

continuously occurs as new molecules are attracted to the surface catalyst.

1.3 Statement of problem

Carbon dioxide and hydrogen sulfide is a major impurity in Malaysian natural

gas with the composition of 20-30% of CO2 and 5% of H2S. The presence of both

toxic gases will lead to severe environmental pollution as well as the delivery system

of natural gas. CO2 emission into the atmosphere is very high particularly from fossil

fuels burning thus contribute to the global warming. In the presence of water, CO2

and H2S tend to form carbonic and sulfuric acid respectively, which will corrode the

delivery pipeline in the meantime, may induce the acid rain phenomena. Moreover,

at low temperature, CO2 and H2S are potentially to freeze during the cryogenic

process since their melting points are higher than the boiling point of methane. The

delivery pipelines and storage vessels tend to clog when freezing, thus have produced

various maintenance issues and less effective production. Thus, for the reasons

given, it is completely necessary to treat these hazardous and toxic gases in order to

purify the natural gas.

Various technologies have been implemented in sweetening process of

natural gas such as membrane separation, iron sponge and amine treating. However,

these methods are still inefficient, low selectivity and not cost effective as well as

only capable to remove 10% of CO2 in crude natural gas. Alternatively, CO2 and H2S

can be removed using green technology via catalytic methanation reaction by

converting CO2 to methane gas to increase methane production besides creating an

environmental friendly approach for purification of natural gas.
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In this proposed technology, variety of catalysts has been developed for

CO2/H2 methanation reaction. Monometallic oxide (Ni and Co) catalyst has been

proved to exhibit high conversion however easily deactivated. By incorporating

dopants into the system, it will enhance the stability of the catalyst as well as to

increase the catalytic conversion. Early studies proved that Ru/Mn catalyst had

achieved higher CO2 conversion at low reaction temperature. However, higher

composition of noble metal (bimetallic oxide) leads to increase the cost of producing

catalyst. Thus, taking the benefit of this catalyst, nickel and cobalt were incorporated

in Ru/Mn system to reduce the cost besides both nickel and cobalt is known to be

active in methanation reaction, high activity and selectivity towards methane. These

types of catalyst have not been discovered yet in any published material in

methanation reaction.

1.4 Objectives of the research

The objectives of this research are:-

1. To prepare the alumina supported nickel and cobalt oxide based catalysts

using wet impregnation method.

2. To characterize the potential catalysts.

3. To test the prepared catalysts in methanation process using simulated natural

gas.

4. To optimize the catalyst preparation and catalytic testing parameters.

1.5 Scope of the research

This research involves the preparation of nickel and cobalt oxide based

catalysts by incipient wetness impregnation method in CO2/H2 methanation reaction.

The incorporation of manganese and noble metals such as ruthenium and palladium

as dopants were believed to enhance the catalytic methanation. The prepared
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catalysts were calcined at the respective calcination temperature of 400°C, 700°C

and 1000°C. The catalytic activity was performed using in house built micro-reactor

connected to FTIR. Simulated natural gas comprises of carbon dioxide and hydrogen

gases were used in the ratio of 1:4 (CO2:H2) according to the real natural gas

composition. Methane yield was analyzed by GC-FID to confirm the formation of

methane from CO2 conversion.

Potential catalysts will be further studied by several optimization parameters

to investigate the optimum condition to contribute the highest conversion. Last but

not least, these potential catalysts were characterized to study the properties of the

catalyst that responsible to the catalytic activity. Various techniques were also

implemented to the catalysts such as Field Emission Scanning Electron Microscope-

Energy Dispersive Analysis of X-Ray (FESEM-EDX), Nitrogen Gas Adsorption

(NA), X-ray Diffraction (XRD), Thermogravimetry Analysis-Differential Thermal

Analysis (TGA-DTA) and Fourier Transform Infrared Spectroscopy (FTIR).

1.6 Significance of the research

Present commercialized methanation catalyst comprises of supported noble

metal such as Ru, Rh and Pd. Even though they found to exhibit high activity and

stability, considering their high cost and restricted availability thus make them

unsuitable to be used in industry. Taking the advantages of noble metal, nickel and

cobalt will be used in order to reduce the cost of producing catalyst. Apart from it,

nickel and cobalt commonly applied in few reactions such as hydrogenation and

methanation due to its high activity and surface area. In this research, manganese and

noble metal were incorporated with nickel/cobalt oxide in the hope to avoid the

catalyst deactivation. This catalyst comes with low price since the use of noble metal

was fixed 5 wt% and working at low temperature since achieving high conversion at

250°C reaction temperature.
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This catalyst offers very promising technique since unwanted CO2 can be

used to produce methane without wasting undesired component (CO2). Catalytic

methanation can remove acid gases (CO2 and H2S simultaneously) which are

hazardous to environment. Using this green technology, natural gas can be

considered as an environmentally friendly clean fuel when offering important

environmental benefits compared to other fossil fuels, thus it will help to reduce

problems of acid rain, ozone layer or greenhouse effect.

If the proposed technology is successful, it may increase the price, quality

and quantity of natural gas as well as national income. The ultimate goal of this

research is to produce the most potential catalyst that can create sustainable

environment and fulfilled the specifications above. Thus, this catalyst can be applied

using real natural gas.
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