OPTICAL PROPERTIES AND PHOTOLUMINESCENCE OF COPPER NITRIDE THIN FILM PREPARED BY REACTIVE DC SPUTTERING

NOOR AZIZUN BINTI MOHAMMED ARIFF

UNIVERSITI TEKNOLOGI MALAYSIA

OPTICAL PROPERTIES AND PHOTOLUMINESCENCE OF COPPER NITRIDE THIN FILM PREPARED BY REACTIVE DC SPUTTERING

NOOR AZIZUN BINTI MOHAMMED ARIFF

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (Physics)

FACULTY OF SCIENCE

UNIVERSITI TEKNOLOGI MALAYSIA

JULY, 2013

Specially dedicated to

My beloved husband, EN. ZUL HUSNI BIN ZAHARI, my beloved mother PN. ROBIAH BINTI NGAH, my daughter, SAIDATUL UMAIRAH BINTI ZUL HUSNI, my newborn son MUHAMMAD IMAN ASYRAF BIN ZUL HUSNI

And

Most respected supervisor, ALLAHYARHAM PM DR. BAKAR ISMAIL, DR. WAN NURULHUDA WAN SHAMSURI, and PM DR YUSUF MUNAJAT

Also all my clicks

Thanks for all effort, guidance and blessing.

ACKNOWLEDGEMENT

Alhamdullilah..I would like to thank ALLAH S.W.T for being by my side in my times of discouragement and stressful moments and for enabling me to complete this research.

I would like to express my deepest appreciation to all those who provided me the possibility to complete this thesis. A special gratitude I give to my supervisor, ALLAHYARHAM PM DR. BAKAR ISMAIL, al-Fatihah for him and DR. WAN NURULHUDA WAN SHAMSURI, whose contribution in stimulating suggestions and encouragement, helped me to coordinate my research especially in writing this thesis.

I also want to appreciate my beloved family, especially my husband and my mother, whose keep on supporting me through during stressful and needy moments.

Furthermore, I would also like to acknowledge with much appreciation the crucial role of the staff of vacuum lab and sputtering lab, whose gave the permission to use all required equipments and the necessary materials to complete the task "*Copper Nitride Thin Film by Reactive DC Sputtering*". A special thanks goes to my team mate, NURUL AIN, who helped me to assemble the parts. Also to the staff of Instrument Lab, Nurshaidatul Hidayah and her team mates for helping me in the process analyst the samples and for their guidance in using instrument there. Last but not least, many thanks go to all staff in Physics Department of Faculty Science, especially my Personal Academic Supervisor, PM DR. YUSOF BIN MUNAJAT whose have guide me in achieving the goal. I have to appreciate the guidance given by other supervisor as well as the panels especially in my research presentation that has improved my presentation skills thanks to their comment and advices. Thank you.

ABSTRACT

This research was conducted to prepare copper nitride thin films on glass substrates by reactive DC sputtering technique using a copper plate and nitrogen gas at 20 Pa as source. The Argon pressure 1×10^{-1} mbar and DC voltage of 0.5 kV at room temperature. The deposition time varies from 1.0 hour to 3.5 hours at interval of 0.5 hour. The thickness of films was measured using Ellisopmeter, UV-VIS 3101 Spectrophotometer to measure the optical properties of refractive index, *n*, transmittance, absorbance and reflectance in the visible light region and the photoluminescence property using Luminescence Spectrometer LS55. The films obtained were yellow to reddish-brown depending on the deposition time. For longer deposition time, the thin films turned thicker reddish-brown colour. Thickness of films obtained were in the range 1219.4 nm to 1227.0 nm and the refractive index, n, was about 3.80, constant for all samples. The transmittance increased but absorbance and reflectance decreased as the thickness increased over the wavelength range. The avaege optical band gap energy, E_g obtained in range of 1.65 to 1.94 eV. The averange emmission peak for maximum intensity was about 419.0 nm obtained in the photoluminescence emission for all samples. This shows that the luminescence light is that of violet light.

ABSTRAK

Penyelidikan ini dijalankan untuk menyediakan saput filem nipis kuprum nitrat pada substrat kaca dengan teknik "reactive DC sputtering" yang menggunakan plat kuprum tulin dan gas nitrogen pada tekanan 20Pa sebagai sumber. Tekanan Argon iaitu 1×10^{-1} mbar dan voltan arus terus, DC 0.5 kV pada suhu bilik dengan jangka masa 1 jam ke 3.5 jam dalam selang 0.5 jam. Ketebalan filem, d diukur menggunakan Ellisopmeter, UV-VIS 3101 Spectrophotometer untuk menentukan sifat-sifat optik seperti indeks bias, n, penghantaran, penyerapan dn pantulan dengan julat panjang gelombang cahaya nampak. Sifat luminisene saput filem tipis ditentukan menggunaan Luminescence Spectrometer LS55. Saput filem tipis ang terhasil adalah berwarna kuning kepada coklat kemerahan dan semakin masa deposit filem cenderung kepada coklat kemerahn. meningkat Ketebalan filem, d yang terhasil dengan julat antara 1219.4 nm ke 1227.0 nm dan indeks bias, n, adalah 3.80 yang malar untuk semua sampel yang disediakan. Sifat penghantaran meningkat tetapi sifat penyerapan dan pantulan berkurangan apabila ketebalan saput filem tipis, d meningkat. Ketiga-tiga sifat ini berkurangan dalam julat panjang gelombang cahaya nampak. Purata jurang tenaga optik, E_{g} saput filem tipis ini antara 1.65 ke 1.94 eV. Purata panjang gelombang puncak pancaran foto luminisense yang paling maksimum untuk semua sampel ialah 419.0 nm yang memberikan warna cahaya violet.

TABLE OF CONTENTS

CHAPTER	CONTENT	PAGE
	TITLE	i
	DECLARATION	ii
	DEDICATION	iv
	ACKNOWLEDGEMENT	v
	ABSTRACT	vi
	ABSTRAK	vii
	TABLE OF CONTENT	viii
	LIST OF FIGURE	xii
	LIST OF TABLE	XV
	LIST OF SYMBOL	xvii
1	INTRODUCTION	
	1.1 Introduction	1
	1. 2 Background of Research	2
	1.3 Problem Statement	3
	1.4 Research Objectives	4
	1.5 Research Scope	4
2	LITERATURE REVIEW	
2	2.1 Introduction	6
	2.2 Introduction of Thin Film	6
	2.2 Copper Nitride, Cu_3N Characteristics	8
	2.2 Copper Nitride, Cu ₃ IV Characteristics 2.2.1 Copper Nitride, Structure	9
	2.3 Physical Vapour Deposition of Thin Film	12
		12
	2.3.1 Physical Sputtering	
	2.3.2 Sputtering System	14

2.4 Reactive DC Sputtering Technique	16
2.4.1 Process of Reactive Sputtering	17
2.4.2 Film Deposition Rates, Stoichiometry,	
and Properties by Reactive Sputtering	
Technique	21
2.5 Optical Properties	23
2.5.1 Refractive Index, n	23
2.5.2 Absorption Coeffienct, a	25
2.5.3 Energy Band Gap	27
2.6 Instrumentation of Characterization of Thin Films	
2.6.1 Spectroscopic Ellipsometry	31
2.7.2 UV-Vis Absorption Spectroscopy	35
2.7 Photoluminescence Spectrum	

3 METHODOLOGY

3.1 Introduction		
3.2 Substrate Preparation		
3.2.1 Cutting Substrate	45	
3.2.2 Cleaning the Substrates	47	
3.2.2.1 Pre-Cleaning the Substrates	47	
3.2.2.2 Acid Cromic	48	
3.2.2.3 Desiccations Process	49	
3.3 Reactive DC Sputtering Deposition		
3.3.1 Deposition	50	
3.4 Measurement of Optical Properties		
3.4.1 Introduction of Spectrophotometer		
UV-3103-PC	53	
3.3.1.1 UV-3103-PC Spectrophotometer	53	
3.4.2 Thickness Measurement Using		
Ellipsometer	55	
3.4.2.1 Measurement Procedure	56	
3.4.3 Photoluminescence Spectrum	58	
3.5 Storage of Cooper Nitride, Cu ₃ N Thin Film		

DATA ANALYSIS AND RESULT

4.1 Introduction	61	
4.2 Copper Nitride Thin Film Deposition Process		
4.3 Determination Thickness of Copper Nitride		
Thin Films	63	
4.4 Determination Optical Properties of Copper Nitride		
Thin Films	66	
4.4.1 Refractive Index, <i>n</i> of Copper Nitride		
Thin Films	66	
4.4.2 Transmittance Spectrum of Copper		
Nitride Thin Films	68	
4.4.3 Absorption Coefficient, a of Copper		
NitrideThin Films	70	
4.4.4 Optical Bandgap Energy, E_g Copper Nitride		
Thin Films	71	
4.4.5 Absorbance of Copper Nitride Thin Films	75	
4.4.6 Reflectance of Copper Nitride Thin Films	76	
4.5 Photoluminescence Spectrum of Copper Nitride Thin		
Films	77	

5 CONCLUSIONS AND SUGGESTIONS

5.1 Introduction	86
5.2 Conclusion	87

REFERENCE

89

LIST OF FIGURES

NO. FIGURE	E TITLE	PAGE
2.1	Crystal Structure of Cu ₃ N (Borsa & Boerma, 2004)	
2.2	The Copper Nitride thin films result for optical	
	properties (Odeh, 2008)	11
2.3	Schematics of simplified sputtering systems:	
	(a) DC, (b) RF (Ohring,2002)	16
2.4	A typical reactive sputter deposition system.	18
2.5	The deposition rate and (bottom) the discharge	
	voltage as a function of reactive gas flow for the	
	experiment shown in Figure 2.4 (Rossnagel, 1997)	19
2.6	Influence of nitrogen, electrical resistivity and	
	Temperature coefficient of resistivity of reactively	
	Sputtered Ta film (Ohring, 2002)	22
2.7	The Energy Band Model	28
2.8	Direct Band (left) and Indirect Band (right)	30
2.9	Schematic drawing of an ellipsometer	33

2.10	Diagram component of UV-Visible Spectrophotometer	37
2.11	Singlet and triplet states	41
2.12	Photoluminescence process	43
3.1	Dimension of the Substrate Glass	46
3.2	The equally divided glass substrates after cutting	46
3.3	Ultrasonic Branson 3210 cleaner	48
3.4	Reactive DC Sputtering Process	52
3.5	UV-3103-PC Spectrophotometer	55
3.6	An Ellipsometer	44
3.7	Luminescence spectrometer LS55	59
3.8	Dessicator for thin film storage	
4.1	The Samples in reddish- brown color after deposition	
	Process	63
4.2	Graph of Refractive Index, d versus Thickness, d	
	of films	67
4.3	Graph of %Transmittance versus wavelength (nm)	68
4.4	Graph of % Transmittance versus Thickness of films, d	
	for one wavelength, λ =650nm	69
4.5	Absorption Coefficient, <i>a</i> against wavelength, λ	70
4.6	Graph of $(ahv)^{1/2}$ against energy, hv	71
4.7	Graph of $(ahv)^{1/2}$ against energy, hv for sample S6	73

4.8	Graph of optical bandgap energy against thickness of	
	Thin films	74
4.9	Graph of Absorbance versus wavelength (nm)	75
4.10	Graph of % Reflectance versus Wavelength (nm)	76
4.11	Photoluminescence spectra for all copper nitride	
	samples	78
4.12	Graph of Emission peak foe each samples at maximum	
	Intensity	85

LIST OF TABLE

NO. TABLE	TITLE PA	
4.1	6 Samples deposited by using reactive DC	
	sputtering system	62
4.2	Thickness of the samples	64
4.3	Thickness and deposition time of the samples	65
4.4	Relationship between thickness of film and refractive	
	index, n value	66
4.5	Thickness of films, d and Transmittance Thickness of	
	films, d for one wavelength, λ =650nm	69
4.6	Values of optical band gaps at different deposition time	e 72
4.7	Emission Peak for sample S1	79
4.8	Emission Peak for sample S2	80
4.9	Emission Peak for sample S3	80
4.10	Emission Peak for sample S4	81
4.11	Emission Peak for sample S5	82

xvi

83

4.13	Emission Peak for maximum intensity for all samples	84

4.12

LIST OF SYMBOL

Α	-	Absorptivity
	-	Absorption Coefficient
A1	-	First Analyzer Reading
A2	-	Second Analyzer Reading
P1	-	First Polarizer Reading
P2	-	Second Polarizer Reading
DC	-	Direct Current
Т	-	Transmittance
R	-	Reflectance
E_g	-	Optical Bandgap Energy
Ι ₀	-	Initial Intensity
Ι	-	Intensity

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter of introduction introduces on some general information about background of research, problem statement, research objectives and the scope of the research.

1.2 Background of Research

Thin films technology is important due to miniaturization of mainly electrical appliances such as hard disk, hand phone, home appliances and car electronics. The characteristics of thin films are almost the same with material in bulk form. Experts keep study ways to improve the characteristics of thin films. Thin films technology is used for coatings and decorative parts too. Among advantages of thin films devices are low power consumption, relatively small and reduction occupied space and higher speed performance (Sakrani, 2004).

In recent years, copper nitride (Cu₃N) thin film has been attracting considerable attention as a new material applicable for optical storage devices and high-speed integrated circuits. Copper nitride is semiconductor and its optical reflectivity in the visible and infrared range is far smaller than that of pure Cu (Murayama et al 1996 & Dorranian et al, 2010). It is known that copper nitride, Cu₃N is stable at room temperature but starts to decompose into Cu and N₂ above 300°C. The low decomposition temperature and discriminating optical properties of the compound compared to those of Cu are applicable for optical read-only memory disks by generating microscopic Cu-metal spots on copper nitride, Cu₃N film under local laser heating (Asano, 1985). Copper nitride is one of the important covalent metal nitride compounds and has been scarcely studied. Copper nitride, Cu₃N films can also be used as buffer layers for depositing Cu-metal lines on Si wafers to achieve higher signal speed than existing Al-metal lines in integrated-circuit fabrication processes. The crystal structure of copper nitride, Cu₃N is also interesting as it has the cubic anti-ReO₃ structure in which Cu atoms do not occupy the fcc (face centered cubic) close-packing sites. Hence another metallic atom can be inserted into the body center of the cubic unit cell to induce significant changes in the electrical

properties (Moreno *et al*, Fan *et al* & Pierson *et al*, 2007). Furthermore, the photoluminescence property has been scarcely studied for references now.

Maya (1993) developed the film by Direct Current (DC) sputtering and have shown its potential use in maskless laser writing (Maya, 1993). Copper nitride will be prepared by reactive DC sputtering as this technique has the following advantages. First, deposition rate is very high compared with RF magnetron sputtering using ceramic target by about 10 times (Ko and *et al* ,2008 & Li,X *et al* , 2003). Second, the deposition area can be enlarged by means of using large sputtering target. Third, the deposition technique uses a low priced metallic target compared with PLD or RF magnetron sputtering. By virtue of above advantages, reactive DC sputtering is suitable for commercial use (Kim *et al*,2009). Furthermore, reactive sputtering with a metal cathode has received the most attention because of the opportunity for high rate, controlled deposition, as well as the ability to use DC rather than RF power.

1.3 Problem Statement

It is important and interesting to study the optical properties for copper nitride thin films (Asano, 1990 & Borsa, 2002). Examples are refractive index, the transmittance, absorbance, reflectance and optical band gap. Furthermore, there is scarcely references regarding the photoluminescence property of the copper nitride thin films as alternative material for example as safety warning that very useful for field of technology, industry and etc nowadays.

1.4 Research Objectives

Main objectives are:

- To prepare copper nitride thin films at different deposition time by reactive DC sputtering technique.
- 2. To investigate the optical properties of copper nitride thin films.
- 3. To investigate the photoluminescence property of copper nitride thin films.

1.5 Research Scope

This research involve the preparation of copper nitride thin films using reactive DC sputtering technique at the room temperature and pressure of chamber at 1×10^{-1} mbar with present of nitrogen gas at 20 Pa as the reactive gas into chamber during deposition process. The interests of this research to investigate the optical and photoluminescence properties of copper nitride thin films.

REFERENCES

- Asano M, Umeda K, Tasaki A. *Cu₃N thin film for a new light recording media*. Japanese Journal of Applied Physics 1990;29(10):1985e6.
- Bart Van Zeghbroeck, 1997, http://ecee.colorado.edu/~ecen4375/tools/ellipsom.htm

Borsa DM, Boerma DO. Surf Sci 2004;548:95.

Borsa DM, Grachev S, Boerma DO. IEEE Trans Magn 2002;38:2709.

D. M. Manos and D. L. Flamm, etc. *Plasma Etching*, , Academic Press (1989)

D.M. Borsa, D.O. Boerma, Surf. Sci. 548 (2004) 95-1

D.M. Borsa, S. Grachev, C. Presura, D.O. Boerma, Appl. Phys. Lett. 80 (2002) 1823

- Dorranian D, Dejam L, Sari AH, Hojabri A. Structural and optical properties of copper nitride thin films in a reactive Ar/N₂ magnetron sputtering system.
 European Physical Journal Applied Physics 2010;50:20503.
- D.Y. Wang, N. Nakamine, Y. Hayashi, J. Vac. Sci. Technol. A 16 (1998) 2084-2092.

Du Y, Ji AL, Ma LB, Wang YQ, Cao ZX. J Cryst Growth 2005;280:490.

Fan XY, Wu ZG, Zhang GA, Li C, Geng BS, Li HJ, et al. *Ti-doped copper nitride films deposited by cylindrical magnetron sputtering*. Journal of Alloys and Compounds 2007;440:254e8.

F. Zeng, F. Pan, J. Alloys Compd. 335 (2002) 181–187

Gallardo-Vega C, de la Cruz W. Appl Surf Sci 2006;252:8001.

George, Joy (1992). Preparation of Thin Films. New York : Marcel Dekker, Inc.

Gordillo N, Gonzalez-Arrabal R, Alvarez-Herrero A, Agullo-Lopez F. J Phys DAppl Phys 2009;42:165101.

H. Kurz, Mikro. Acta 133 (2000) 299.

I.M Odeh (2008). Fabrication and optical constants of amorphous copper nitride thin films prepared by ion beam assisted dc magnetron reactive sputtering. Journal of Alloys and Compounds 454.102–105

J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15 (1966) 627

- J. Wang, etc al.. *Copper Nitride (Cu₃N) Thin Films Depostited by RF Magnegtron Sputtering.* Journal of Crystal Growth 286 (2006) 407-412
- L. Maya, J. Vac. Sci. Technol. A 11 Ž1993. 604.
- L. Maya, Mater. Res. Soc. Symp. Proc. 282 Ž1993. 203.
- Li XA, Yang JP, Zuo AY, Yuan ZB, Liu ZL, Yao KL. *Study on La-doped copper nitride films prepared by reactive magnetron sputtering*. Journal of Materials Science & Technology 2009;25(2):233e6.

K.J. Kim, J.H. Kim, J.H. Kang, J. Cryst. Growth 222 (2001) 767-772

M. Mikula, D. B'uc, E. Pin'c'ık, Acta Physica Slovaca 51 (1) (2001) 35-43.

Maruyama T, Morishita T. *Copper nitride and tin nitride thin films for writeonce optical recording media.* Applied Physical Letters 1996;69(7):890e1.

Maruyama T, Morishita T. Copper Nitride (Cu₃N) Thin Films prepared by RF

Reactive Sputtering. J Appl Phys 1995;78:4104.

- Mattox.D.M.(1998).Handbook of Physical Vapor Deposition (PVD)
 Processing Films Formation, Adhesion, Surface Preparation and Contamination
 Control. New Mexico: William Andrew Inc.
- Moreno-Armenta Ma Guadalupe, Perez1 William Lopez, Takeuchi Noboru. *First- principles calculations of the structural and electronic properties of* Cu_3MN compounds with M = Ni, Cu, Zn, Pd, Ag, and Cd. Solid State Sciences 2007;9:166e72.

Navio C, Capitan MJ, Alvarez J, Yndurain F, Miranda R. Phys Rev B 07;76:085105.

Nosaka T, Yoshitake M, Okamoto A, Ogawa S, Nakayama Y. Appl Surf Sci2001;169:358.

- Nurliyana, A.R.(2011). Optical Properties of Copper Nitride Thin Films Prepared By reactive DC Sputtering. Universiti Teknologi Malaysia, Skudai.
- Ohring. M,(2002). *Materials Science of Thin Films (Second Edition) Deposition and Structure*. Elsevier Inc.
- Pierson J.F., Vacuum 66 (2002) 59-64.
- Pierson JF, Horwat D. Addition of silver in copper nitride films deposited by reactive magnetron sputtering. Scripta Materialia 2008;58:568e70.
- R. Cremer, M.Witthaut, D. Neuschutz, C.Trappe, M. Laurenzis, O.Winkle, Reddy KVS, Reddy AS, Reddy PS, Uthana S. J Mater Sci: Mater Electron 2007;28:1003.
- Sakrani.S,(20040 "Lecture Note: Thin Films Technology," Universiti Teknologi Malaysia,Skudai.

Soto G, Diaz JA, de la Cruz W. Mater Lett 2003;57:4130.

Torndahl T. PhD thesis, ISBN 91-554-6081-X; 2004.

U. Hahn, W. Weber, Phys. Rev. B 53 (1996) 12684.

Wang J, Chen JT, Yuan XM, Wu ZG, Miao BB, Yan PX. J Cryst Growth 2006;286:407.

Wehner, G.K., Advances in Electronic and electron Physics, vol VII. New York, NY: Academic Press;1955.

Yue GH, Yan PX, Liu JZ, Wang MX, Li M, Yuan XM. J Appl Phys 2005;98:103506.

Zhengou Ji, et al. Reactive DC Magnetron Deposition of Copper Nitride Films For Write-Once Optical Recording, Material Letters 60(2006):3758-3760

Z.Q. Liu, W.J. Wang, T.M. Wang, S. Chao, S.K. Zheng, Thin Solid Films 325 Ž1998. 55.