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ABSTRACT

The presence of disturbances such as bends, contraction, expansion, junction,

bridge piers in a drainage system is very common in Malaysia. These hydraulic

structures often cause the channel flow to choke and form standing waves. The

challenges for this numerical model lie in representing supercritical transition and

capturing shocks. For this purpose, an unstructured two-dimensional finite-element

model is used to solve the governing shallow water equations. This numerical model

utilizes a characteristic based Petrov-Galerkin method implemented with shock-

detection mechanism. The model testing demonstrates the ability of this numerical

model to reproduce the speed and height of flow with the presence of hydraulic

structure under different flow conditions. Four experiments, which consist of weir,

contraction and 90° expansion, hydraulic jump and bridge pier, were conducted in

laboratory Universiti Teknologi Malaysia (UTM). The Reynolds number for these

experiments is within the range of 30000 to 47000. The numerical model results are

compared quantitatively with experimental results, published numerical simulation

and analytical solution. In general, the energy in the model is dissipated too fast and

the short wave in the model tends to travel faster. The present model is not suitable

for any surface flow that has steep gradients. Overall results show that the numerical

model satisfactorily computed the water-surface profiles of the experiments data and

exact solutions. The results demonstrate that the numerical model provides an

alternative tool in validating theoretical finding and evaluating flow performance.
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ABSTRAK

Kehadiran struktur-struktur dalam sistem saluran seperti bengkokan saluran,

pengecilan dan pengembangan lebar, simpang saluran, dan tiang jambatan adalah

amat umum di Malaysia. Struktur hidraulik ini sering mengakibatkan aliran dalam

saluran bergelora dan mewujudkan gelombang tegak. Cabaran-cabaran yang

dihadapi oleh model ini termasuklah memapar semula aliran genting lampau dan

juga kejutan gelombang dalam model. Untuk tujuan ini, satu model berunsur

terhingga dalam dua dimensi telah digunakan untuk menyelesaikan persamaan

‘shallow water equation’. Model ini mempergunakan ciri berdasarkan kaedah

Petrov-Galerkin beserta dengan mekanisme pengesanan kejutan gelombang. Ujian-

ujian model mempamerkan kebolehan model berangka ini dalam menghasilkan

semula kelajuan dan kedalaman aliran dalam saluran yang berstruktur hidraulik di

bawah keadaan aliran yang berbeza-beza. Empat eksperimen yang terdiri daripada

empangan dasar, pengecilan dan 90° pengembangan, lompatan hidraulik dan tiang

jambatan telah dijalankan di makmal Universiti Teknologi Malaysia (UTM). Dalam

eksperimen-eksperimen tersebut, nombor Reynolds didapati berada dalam

lingkungan 30000 hingga 47000. Keputusan daripada model berangka ini

dibandingkan secara kuantitatif dengan keputusan eksperimen dan penyelesaian

analitikal. Secara umumnya, tenaga aliran dalam model dilepaskan terlalu cepat dan

gelombang pendek dalam model bergerak dengan lebih cepat. Model ini tidak sesuai

untuk sebarangan permukaan aliran yang berkecuraman. Secara keseluruhannya,

model berangka ini berjaya menghasilkan profil permukaan air daripada eksperimen

dan penyelesaian tepat. Keputusan menunjukkan bahawa model berangka ini telah

memperkenalkan kaedah alternatif dalam pengesahan sesuatu penemuan teori dan

penilaian prestasi aliran.
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CHAPTER 1

INTRODUCTION

1.6 Introduction

The design of structures to control waterways in Malaysia is a major concern

for engineers. The options for flood control in urban areas, however, are limited. A

large fraction of the ground surfaces is paved causing concentrated flood flow peaks.

One of the practical methods of routing the water through the urban areas is via the

use of high-velocity channels.

Hydraulic engineers often use the term “high-velocity channel” when 

referring to a control flood channel which was designed to discharge water as fast as

possible to discharge point such as river or sea (Berger and Stockstill, 1995). High-

velocity channels are often used for drainage purposes in urban regions where real

estate is expensive. This kind of channels are normally constructed at a sufficient

slope so that the flow is supercritical, thus reducing the flow area and concentration

time.

The designer of these high-velocity channels is faced with many problems

that cannot be solved easily. At the design level, two main concerns are the water

depth and velocities of the flow. The depth must be known to determine sidewall

heights and minimum bridge span elevations. Normally, a designer simply applies an
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empirical equation such as the Manning’s equation to obtain water depth with known 

discharge rate. However, determining the depth of flow is complicated by side

inflows and boundary features such as contractions, expansions, curves, and

obstructions. These boundary features in a supercritical channel cause flow

disturbances that can result in a significant oscillation in flow.

Besides water depth, consideration should be given to flow velocity when

designing a channel section. According to MASMA (Urban Stormwater

Management Manual for Malaysia), flow velocity should be controlled within range

0.6–4.0 m/s to prevent sediments and to protect channel from bank corrosion.

For these design purposes, many methods have been used such as empirical

equations, physical models and numerical model. A numerical model in handling

shock capturing will be tested through this study.

1.7 Problem Statement

Open channel especially high-velocity channels are used for drainage in

urban regions, since urban sprawl increase rainfall runoff due to altered land use.

Flood control channels are designed and built to safely manage the anticipated

hydrologic load. The desire is to minimize the water’s time of residence in the urban 

area. The channels are designed to carry supercritical flow to reduce the water depths

and the required route. Structures, such as bends and transitions cause flow to choke

and form jumps. These hydraulic conditions generally necessitate higher walls,

bridges and other costly containment structures. A poorly designed channel can

cause bank erosion, damaged equipment, increased operating expense, and reduced

efficiency (Berger and Stockstill, 1995). Furthermore, crossings may be washed out,

and the town may be flooded.

Predicting the potential location of shocks and determining the elevation of

water surface in channel are necessary to evaluate and decide the required sidewall

heights. Normally empirical equations are often used in the channel design due to its
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simple application. However, the presence of bends, contractions, transitions,

confluences, bridge piers and access ramps can cause the flow to choke or to produce

a series of standing waves and these all will complicate channel design.

In the past, applications of physical models are common for this water profile

evaluation. Although physical model can reproduce a channel if properly conducted,

but great care must be taken in model dimension and scale. A major drawback of

physical models is the problem of scaling down a field situation to the dimensions of

a laboratory model. Phenomena measured at the scale of a physical model are often

different from conditions observed in the field. For example, the Reynolds number of

the flow in site will not be the same as Reynolds number in the physical model.

Changes to the physicalmodel require a “cut and try” technique that involves 

tearing down sections of the channel and rebuilding them with the new desired

design. Due to the time and cost constraints of physical models, it is not practical to

examine a wide range of designs. This could result in hydraulic performance that is

only acceptable over a limited range.

Mathematical models have been developed to overcome the problem

mentioned above. A mathematical model consists of a set of differential equations

that are known to govern the flow of surface water. The reliability of predictions of

models depends on how well the model approximates the field situation. Inevitably,

simplifying assumptions must be made because the equations such as differential

continuity equation and momentum equation are too complex to be solved. Usually,

the assumptions necessary to solve a mathematical model analytically are fairly

restrictive. To deal with more realistic situations, it is usually necessary to solve the

mathematical model approximately using numerical techniques. Therefore, an

inexpensive and a readily available model is needed. A numerical model is a logical

approach.

An area of engineering design that can benefit the use of numerical model is

the design and modification of high-velocity channels essential for the routing of

floodwater through urban areas. The proper design of new channels and re-design of

existing channels is required to avoid such things as bank erosion, damaged
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equipment, increased operating expenses, flooding, and higher construction costs. By

using numerical model, a better channel design can be produced with minimum cost

and time.

1.8 Objective of the Study

The primary purpose of the research is to develop a methodology and

ascertain the effectiveness of using a numerical model for open channel modeling.

The challenges for this numerical model lie in representing supercritical transitions

and, capturing the potential location and movement of the shocks. The specific

objectives of the study are listed as the following:

1. to assess the practicality of using a two-dimensional numerical model to aid

in the design of a realistic open channel, and

2. to evaluate the performance of the numerical model in handling shock

capturing in various test cases through comparison with published results,

laboratory tests and analytical solutions.

1.9 Scope of the Study

The purpose of this research is to describe the numerical flow model and to

illustrate typical open flow fields that the model is capable of simulating. Only

rectangular channel is focused in this research. A few test cases are conducted in

laboratory using simple geometries. Numerical results are used for comparison with

published laboratory results. Model parameters are tested to determine the model

sensitivities. This reduces the number of parameters to only those that have major

impact on the design. The model verification consists of comparing results computed

using the numerical model with laboratory results and analytical solutions. However,

studies will only focus on steady state flow. Model limitations will also be discussed.
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The results can be used to determine the appropriate parameters to be optimized in

the future.

1.5 Significance of Research

In surface water modelling, the most challenging part is to detect the location

and water elevation of hydraulic jump or shock. The height of the jump is critical to

the design of channel walls and bridges within high-velocity channel. And through

this prediction, we can also define easily the critical location within the existing

channel so that improvement can be done quickly before flood happens in that

location. A lot of flow models used recently are not able to perform this task

accurately. Some flow models have been developed specially for this shock capture

purpose but most of them in one-dimensional (1D) mode.

There were some concerns to the adequacy of one-dimensional (1D) analysis

of the flow conditions such as contractions, expansions, bends, hydraulic jumps and

bridge piers which are commonly found in high-velocity channels. There was a

question as to whether computing cross-sectional averaged flow variables provided a

sufficiently accurate estimate of flow depths and velocities within these boundary

features. Thus, a two-dimensional (2D) analysis was deemed necessary to evaluate

these flow conditions.

A numerical model HIVEL2D is used to assess the design computationally

before the construction of the physical model begins. Using a numerical model

would accelerate this design process and lead to an improved initial physical model

thus reducing the time spent on the physical model. This would allow for exploration

of more design alternatives in a shorter length of time resulting in a more cost-

effective solution.
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