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ABSTRACT 

 
 
 
 

Optical tweezer technique for molecular trapping is becoming of increasing 

importance for numerous biological applications. The main objective of this study 

was to investigate the dynamical behavior of the optical tweezers signals in 

microring resonators (MRR). Operating system consists of modified nonlinear add-

drop optical filter made of InGaAsP/InP integrated together with a series of nonlinear 

nanoring resonators. This particular form is known as a PANDA ring resonator. 

Different models of operating system were designed and optical transfer functions 

for each model were derived by using Z-transform method. Simulation results were 

obtained from MATLAB2010a program by using parameters of practical devices. 

Input signals in the form of dark soliton were generated at center wavelength 1.5 µm 

with peak intensity 1 W/m2 and pulse width 50 ps. Radii of rings were set to be 

R=34 µm, R1=60 nm, R2=60 nm, R3=50 nm and R4=50 nm respectively. Coupling 

coefficients of the system were chosen to be 1=0.15, 2=0.65, 3=0.5, 4=0.5, 

5=0.5 and 6=0.50. Intense output signals in the form of potential well are generated 

at the intensity of 219.14 W/m2 and FWHM around 20 nm. Simulated results shows 

an optical force of 15.83 fN generated from intensity gradient associated with the 

output signal are calculated for particle of diameter 20 nm. Stiffness at the center of 

the trap was recorded at 2.23 fN nm-1. This study shows that the model was able to 

control the dynamical behavior of optical tweezers. Analytical formulation of such 

system provides the underlying physics of dynamic optical tweezers generation 

within MRR. 
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ABSTRAK 

 
 
 
 

Teknik penyepit optik untuk memerangkap molekul menjadi semakin penting 

bagi pelbagai aplikasi biologi. Objektif utama kajian ini adalah untuk menyelidik 

sifat dinamik isyarat penyepit optik di dalam pengalun cincin mikro (MRR). Sistem 

operasi terdiri daripada penapis optik menambah-lepaskan tak linear diubahsuai yang 

dibuat daripada InGaAsP/InP bersepadu dengan siri pengalun cincin nano yang tidak 

linear. Sistem ini dikenali sebagai pengalun cincin PANDA. Model sistem operasi 

yang berlainan telah direka dan fungsi pemindahan optik untuk setiap model 

diperoleh dengan menggunakan kaedah pemindahan-Z. Hasil simulasi telah 

diperoleh dengan menggunakan program MATLAB2010a berdasarkan nilai peranti 

praktikal yang sebenar. Isyarat input dalam bentuk soliton gelap yang dihasilkan 

pada gelombang yang berpusat pada 1.5 μm dengan keamatan puncak 1 W/m2 dan 

lebar denyut 50 ps. Jejari cincin ditetapkan pada R = 34 μm, R1 = 60 nm, R2 = 60 nm, 

R3 = 50 nm dan R4 = 50 nm. Pekali gandingan sistem telah dipilih pada 1=0.15, 

2=0.65, 3=0.5, 4=0.5, 5=0.5 dan 6=0.50. Isyarat output dalam bentuk telaga 

keupayaan dihasilkan pada keamatan 219.14 W/m2 dan FWHM sekitar 20 nm. 

Keputusan simulasi menunjukkan daya optik 15.83 fN telah dijana daripada 

kecerunan keamatan isyarat output bagi zarah berdiameter 20 nm. Kekukuhan di 

pusat perangkap dicatatkan pada 2.23 fN nm-1. Kajian ini menunjukkan bahawa 

model ini mampu untuk mengawal sifat dinamik isyarat penyepit optik. Formulasi 

analisis sistem tersebut dapat menyediakan pengetahuan asas fizik terhadap 

penghasilan penyepit optik dinamik di dalam MRR.  
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CHAPTER 1 

 

 

 

 
INTRODUCTION 

 

 
 

 

1.1 Background of Study 

 

 

Over the past few years, various types of single-molecule force spectroscopy 

techniques such as optical tweezers, magnetic tweezers and atomic force microscopy 

(AFM) have been developed to investigate tiny force and motion associated with 

nano-scaled particle. Among these, optical tweezers are considered as one of the 

most successful technique for ultrafine positioning, measurement, and confinement 

of nanoscopic object [1]. Since its interception in early 1970s, the field of optical 

tweezers has developed rapidly. The capability of this technique to extend the optical 

trapping down to nanometer-scaled is the main reason why they are frequently used 

in single-molecular studies [2-5]. Besides, this technique offers a unique property in 

which it can be used to interact with specific nano-scale object in non-invasive 

manners. Due to this special ability, conventional optical tweezers techniques have 

been implemented in various fields of studies ranging from physical chemistry to the 

medical sciences [6-9]. For instance, biophysics researchers have used optical 

tweezers to stretch a single strand of DNA in order to observe and study its elasticity 

and numerous other properties [10, 11]. In other biophysics experiment, this 

technique has been used to study the motility of human sperm [12]. In chemistry, 

they used this versatile tool in the process of gold nano-particle trapping. They have 
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successfully demonstrated that metallic materials can be trapped by using this 

technique [13, 14]. As for atomic physicist, they have also found a use for this 

technique by trapping individual molecules and atoms for various applications [15-

17]. 

 

 
Basically, there are two major types of optical trapping that need to be 

understood. Both types hold different theory and approximation on explaining how 

optical tweezers work. Each approximation is used to describe the trapping 

phenomenon at different scale of particle size relative to the wavelength of the laser 

beam. The first approximation of trapping is considered when the size of particle is 

much smaller than the wavelength of laser and this phenomenon is categorized in 

Rayleigh regime [18]. This approximation can be used to accurately describe the 

behaviour of the particle in electromagnetic wave under certain condition that 

requires a small dielectric sphere to be treated as an induced point dipole [19]. Due to 

the scattering of the electromagnetic waves from the induce dipole, Lorentz force are 

detected associated with the momentum change of the system. The whole processes 

give rise to the radiation force on the trapped particle. This force can be separated 

into two components which are known as gradient and scattering forces [20, 21]. 

Second type of optical trapping is known as Mie regime. This kind of approximation 

applied when the wavelength of laser beam much greater than the size of the particle. 

In this case, ray optic approach is used to evaluate the trapping force on particle. 

When light is illuminated on the particle, there are photons that being refracted or 

reflected from the surface. This process shows that there is a momentum being 

transferred between the incident photons and the particle, thus providing forces to 

generate the optical trap [22, 23]. 

 

 

Optical tweezers also known as “single-beam gradient force trap” uses a 

highly focused laser beam to create a large gradient in the intensity of the incident 

electromagnetic field to trap dielectric objects or biological samples [24]. 

Technically, this phenomenon occurs by sending the laser beam through an objective 

lens. Laser beam will be focused to the narrowest point which is known as the beam 

waist. This is the tiny area that contains a very strong electric field gradient capable 
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of trapping a particle. In conventional optical tweezers set-up, the most essential 

elements are trapping laser, trapping chamber, beam expander and objective lens 

with high numerical aperture NA to enhance trapping efficiency. Due to its 

popularity in increasing number of studies, this technique requires improvements and 

innovations in all area of instrumentation and technique.  

 

 

 Technical development of such instrument plays a significance role in 

expanding the use of optical tweezers especially in the fields of nano-biotechnology. 

Thus, this study focuses on the refinement of the conventional optical tweezers 

methods and directly provides a novel attempt on constructing optical trapping 

mechanism/tools by a simpler and smaller practical device which is known as optical 

microring resonators. An optical microring resonator can be viewed as a set of 

ordinary waveguide capable of channelling light in a closed loop with specific 

conditions that allow light to be transmitted inward or outward of the system. This 

closed geometry formed by the optical waveguide simply forms a resonant cavity 

that support both transverse and longitudinal mode [25, 26]. Generally, the closed 

loop waveguide is not necessarily circular shape. It can be designed to have any other 

closed loop geometry such as eclipse, disk or racetrack [27-30]. Theoretically, the 

confinement of light and its propagation within the resonant cavity of optical ring 

resonator can be explained by using total internal reflection (TIR). This unique 

phenomenon arises due to the different in refractive index of optical fiber. 

 

 
Microring resonator consists of two main components which are straight and 

ring waveguides. Those components interact with each other via unidirectional 

coupler which allow light to be channelled in both direction in the coupling region. 

Under specific conditions where the optical path length of light roundtrip is a 

multiple of its effective wavelength, the component of light is said to have resonant 

with the cavity [31-33]. This spectral component of light is having an intensity 

“built-up” due to the constructive interference process during propagation inside the 

ring. This circulating resonant signal can be extracted by using the other straight 

waveguide that are coupled to the ring [34-36]. Other components of wavelengths 

that are not in resonance state will bypass it altogether. Thus, by using different 



4 
 

 

coupling configuration on different system, response from the ring resonator can be 

customly designed. Due to this special characteristic, integrated optical microring 

resonators have found their way into many interesting applications in various fields 

of studies. 

 

 

To date, optical microring resonator has been successfully implemented in 

optical network as an add-drop filter. Tuneability showed by this filter becoming the 

main reasons in development and realization of these devices in polymer, 

semiconductor, active and purely passive material [37-41]. In optical signal 

processing (OSP) area, microring resonator has been used in the construction of all-

optical logic gates system. This device operates based on nonlinear switching 

mechanism in microring resonator which can be described by changing refractive 

index of material near critical coupling value [41-44]. This process will induce 

change in transmission of signals that passing through it. Different transmission 

properties can be generated by different conditions, thus allowing various logic gates 

operations [45, 46]. For example, AND and NAND logic gates operations can be 

performed by using racetrack-shaped resonator [47]. Examples of on-going 

researches in biological field based on microring resonator are bio-detection and bio-

sensing of nanoparticles [48-51]. For instance, semiconductor nanoparticles are 

usually exploited as fluorescent markers in biomolecule sensing while polymer 

nanoparticles act as a probe in biological imaging process [52-54].  

 

 

The primary contribution of this study is on the development of an alternative 

optical trapping mechanism by introducing the concept of optical microring 

resonator. This work involves different configurations of optical ring resonator 

comprises of microring and nanoring resonator integrated together in a single 

structure. Analytical formulation for each models are derived based on photonics 

circuit method to produce the signal transfer functions. Such a system can be 

performed when the input dark soliton and the Gaussian pulse are fed into the 

specific ports of the microring resonator. Results obtained have shown that output 

signals generated in the form of dark soliton valley can be configured as 

molecule/atom trapping potential well. This signal are controlled and tuned to be an 
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optical probe which is known as the optical tweezers. Gradient of intensities from the 

tweezers signal provides the optical forces to build up the trap. It is shown that field 

intensity can be altered, in which the desired gradient and scattering forces can be 

achieved. Analysis shows that change in physical parameters of the system induced 

the changes in the tweezers characteristics, thus providing a dynamic optical 

tweezers where the balancing conditions are achieved. Owning to its constitutional 

small size (micrometer scale) and compact design, this device is very suitable to be 

built in tiny and complex system especially in nano-bioscience and nano-medicine 

processes. Directly, this study describes a new concept of developing an optical 

tweezers source using a dark soliton pulse and leads to expanding of the optical 

trapping capability into the next level for some practical applications. 

 

 

 

 

1.2 Problem Statement 

 

 

Optical microring resonator (MRR) studies are becoming important because 

of the diverse applications ranging from communications to biology. Recently, this 

device has found its role in development of dynamic optical tweezers by employing 

the concept of dark soliton pulse controlled by Gaussian pulse within the resonator 

system. Potential well formed by the gaps of two intensities of the output tweezers 

signals provides forces to confine atoms. The controlling magnitude of these forces 

becomes an important task especially when dealing with biological and living cells. 

During propagation, dark soliton pulse mantains its shape with no observable 

flunctuation in its power. This indicates that the beam can be used as a transporter 

without the risk of losing the particles being transported. This technique also has the 

ability to interact with nano-scaled object in non-invasive manners.  Due to these 

special characteristics offered, development of dynamic optical tweezers by using 

dark soliton pulse has become typically important with many  potential applications. 

Thus, characterizing and optimizing this system through both modeling and 

experiment is a crucial step that need to be considered. Relation between keys 

parameters of the system such as input laser power, coupling coefficients and sizes of 
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the rings with dynamical behaviours of the tweezers signals need to be determined. 

Development of ring resonator models with its analytical derivations and 

optimization of the output transmission are formulated. Analyzing and examining the 

results establish a better understanding on the physics of such system which give a 

significant contribution to our body of knowledge. 

 

 

 

 

1.3 Objectives of the Study 

 

 

The main objective of this study is to develop dynamic optical tweezers using 

a dark soliton pulse controlled by a Gaussian pulse within microring resonator 

system. The specific objectives of this study are:  

 

1. To design a number of different configurations of the PANDA ring resonator 

system consisting of micro and nano-size rings. 

2. To provide an analytical formulation and derivation of the optical transfer 

function of the PANDA ring resonator system. 

3. To analyze the parametric effects on the dynamical behaviour of the tweezers 

signals within MRR. 

4. To simulate and optimize the model on the desired properties. 

 

 

 

 

1.4 Research Scope 

 

 

This study focuses on the design and development of optical ring resonator 

system for generation of optical tweezers pulses. For this purpose, detail examination 

has been made on several arrangements of integrated ring resonator systems 

consisting of micro-size ring resonator as the main component and couples of nano-
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size ring resonators embedded on the structure. The systems consist of a ring 

resonator, fabricated by using the nonlinear material called InGaAsP/InP with 

refractive index, n0=3.34 and the nonlinear refractive index, n2 = 2.2 × 10-13 m2/w 

[55]. The ring and straight waveguide components of the multiple resonators system 

are laterally coupled together. Optical transfers function for the ring resonator 

models are obtained by using Z-transform method. Equations governing the dark 

soliton pulse propagation within optical waveguide and equation of interacting 

signals within the operating system including output and circulated fields are 

derived. During processes, coupling coefficients values are set to be in the range of 0 

to1 and radius of ring resonator varies from 1 to 100 nm for nanorings and 1 to 50 

m for microrings. Input intensity for the dark soliton signals are varied from 0 to 2 

W/m2. Dynamical behaviour of potential well are studied and the corresponding 

optical forces components acting on the trapped particle are measured by using 

Rayleigh’s dipole approximation theory. Some important aspects including the 

waveguide losses, effective core areas, refractive index of medium, wavelength, and 

sizes of trapped particle are tuned to optimize the output tweezers signals. Result are 

simulated and analyzed by using software MATLAB-2010b. 

 

 

 

 

1.5 Significance of the Research 

 

 

Dynamic optical tweezers in the form of potential well can been used in 

frontier research for trapping and transporting dielectric particles, viruses, bacteria, 

living cells, organelles, small metal particles and even strands of DNA. The 

significances of this study mainly contribute towards the establishment of the 

underlying physics of dynamic optical tweezers generation using dark soliton pulses 

which leads to our understanding on the theory of dark soliton behaviour within ring 

resonator system. Output signals from different ring resonator models were simulated 

and parametric influence towards the optical tweezers signals are studied. Thus, these 

models are able to predict accurately the dynamics behaviour of optical tweezing 

process for practical operation. Understanding and quantifying the physics of such 



8 
 

 

system gives an insight into the field of microbiology, biological system and drug 

delivery. This study leaves a direct benefit for scientific awareness of the country, 

and the whole research activities can be used for future references. 
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