THE APPLICATION OF MI PRO IN THE MANAGEMENT OF AIR QUALITY AND NOISE POLLUTION AT CONSTRUCTION SITES

KUNG TECK LI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (Construction Management)

> Faculty of Civil Engineering Univeriti Teknologi Malaysia

> > MAY 2006

Dedicated to my Heavenly Father, and to my beloved parents and family.

ACKNOWLEDGEMENT

This study would not have been possible without the assistance and support from those who guided the author in his course of graduate work. First, the author would like to thank God for His grace and mercy throughout this research. It is by His hands and wisdom in guiding the author to finish his work within the study.

The author would like to extend his thanks to honorable supervisor, Assoc. Prof. Dr. Mushairry Mustaffar, for academic guidance, support, encouragement, and help during the study. Furthermore, the author would like to specially thank him for patience and tolerance, in which his diligence, dedication and working attitudes are good examples to the author.

The author would also like to thank his co-supervisor, Assoc. Prof. Dr. Muhd Zaimi b. Abdul Majid for his ideas and valuable suggestions that allowed the author to gain a broader understanding and improvement in the research.

Besides, the author would also like to address his gratefulness to the technicians in Survey Unit, Environmental Laboratory and Highway & Geotechnical Laboratory in Faculty of Civil Engineering (FKA), together with Development Laboratory in Faculty of Built Environment (FAB) for their willingness to lend the equipments for data collection in this study. Their helps and supports enable the author to collect required air and noise pollution data for this study.

Last but not least, the author appreciates also the love, support and encouragement given to him by his family members and his friends.

ABSTRACT

Good air quality and low noise pollution are two of the many factors that can be considered as contributors to healthy and comfortable living conditions. In the context of their management, the amount of environmental data required for conducting analysis, planning and decision making are abundant and too complex. Hence, a more systematic data handling and analysis deemed necessary. Therefore, this study looks at the application of Geographical Information System (GIS) in solving the problem. This system is designed to provide a cost-effective, efficient and faster way of handling the air quality and noise pollution data for construction sites and also to enhance the data organisation structure. In order to make GIS a useful system and capable of producing good results within a short period, it must first be able to receive and interprete information in an effective manner. Organisations that ultilise environmental infomation for decision making purposes at construction sites must have a thorough understanding of air quality and noise pollution data. The output produced by this system are presented in the form of digital graphics such as thematic maps, graphs, charts and histogram while most textual outputs are displayed as tables and forms. By manipulating the data in GIS database, a user is able to conduct an analysis and implement future plans to manage air quality and noise pollution level on construction sites at a much faster pace. In this study, it is proved that GIS can be used to develop an air and noise pollution database system and it can also be considered as a good decision making tool for air and noise pollution control at construction sites.

ABSTRAK

Kualiti udara yang baik dan pencemaran uadara yang minima merupakan dua faktor yang penting kepada kehidupan yang sihat dan selesa. Dalam konteks pengurusan pencemaran udara dan bunyi, jumlah data yang diperlukan untuk menjalankan analisis, perancangan dan membuat keputusan adalah terlalu banyak dan kompleks. Satu cara pengurusan dan analisis yang lebih sistematik perlu diterokai. Oleh itu, kajian ini mendalami aplikasi Sistem Informasi Geografikal (GIS) untuk menyelesaikan masalah tersebut. Sistem ini direka untuk menyampaikan cara pengurusan data kualiti udara dan pencemaran bunyi di tapak pembinaan yang lebih kos-efektif, efisien dan lebih cepat serta menekankan struktur susunan data yang elok. GIS yang dibina haruslah berupaya menerima dan menyampaikan pelbagai interpretasi maklumat sebelum digunakan. Pemahaman kepada data kualiti udara dan pencemaran bunyi menjadi penting untuk pihak-pihak yang perlu membuat keputusan berdasarkan maklumat kualiti alam di tapak pembinaan. Sistem ini dapat menyampaikan pelbagai persembahan maklumat dalam bentuk peta tematik, graf, carta dan histogram. Kebanyakan tulisan teks disampaikan dalam bentuk jadual dan juga borang. Membuat manipulasi terhadap data yang tersimpan dalam database GIS juga membolehkan seseorang pengguna menjalankan analisis serta mengurus kualiti udara dan pencemaran bunyi di tapak pembinaan dengan lebih cepat. Dalam kajian ini, telah dibuktikan bahawa GIS boleh digunakan untuk membina system database pencemaran udara dan bunyi serta dianggap sebagai alat yang baik untuk membantu pengguna semasa membuat keputusan berdasarkan kawalan pencemaran udara dan bunyi.

TABLE OF CONTENTS

CHAPTER SUBJECT PAGE

TITLE PAGE	i
DECLARATION PAGE	ii
DEDICATION PAGE	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF SYMBOLS	xvi
LIST OF APPENDICES	xviii

CHAPTER I INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	3
1.3	Objectives	3
1.4	Scopes of Study	4
1.5	Expectations	4
1.6	Hypothesis	5
1.7	Limitations of Study	5

CHAPTER II LITERATURE REVIEW

2.1.	Air Po	ollution		6
	2.1.1.	Introduc	ction	6
	2.1.2.	Air Poll	utants from Construction Site	7
		2.1.2.1.	Carbon Monocide (CO)	7
		2.1.2.2.	Particulate Matter (PM) or	
			Windblown Dust	7
		2.1.2.3.	Ozone (O ₃)	9
		2.1.2.4.	Nitrogen Dioxide (NO ₂)	10
		2.1.2.5.	Sulphur Oxcide (SO _x)	11
		2.1.2.6.	Hydrocarbons (HC)	12
		2.1.2.7.	Lead or Plumbum (Pb)	13
	2.1.3.	Sources	of Air Pollution	14
	2.1.4.	Effects	of Air Pollution	15
		2.1.4.1	Effects on Health	15
		2.1.4.2	Effects on Plants	16
	2.1.5	Factors	Affecting Air Pollution Level	17
		2.1.5.1	Air Stability	17
		2.1.5.2	Wind Direction and Velocity	17
		2.1.5.3	Rainfall	18
	2.1.6	Air Poll	utant Index (API) in Malaysia	18
2.2	Noise	Pollution		21
2.2	2.2.1		ction to Noise Pollution	21
	2.2.1		on of Sound	21
	2.2.2		ncept of Sound	23
	2.2.3		eristics of Sound	23
	2.2.1	2.2.4.1		21
		2.2.7.1	Period, Frequency and Pitch	24
		2242	Sound Intensity	24
			Sound Pressure	20 26
			Sound Pressure	28
	2.2.5		ement of Sound	28 29
	$\angle. \angle. \Im$	Ivicasult		29

2.2.6	Noise Pollution in Malaysia		
2.2.7	Source of	of Noise Pollution	31
	2.2.7.1	Transportation	31
	2.2.7.2	Human Activities	31
	2.2.7.3	Industrial and	
		Construction Area	32
2.2.8	Effects	of Noise Pollution	33
	2.2.8.1	Health	33
	2.2.8.2	Sleep Interference	34
	2.2.8.3	Communication	34
	2.2.8.4	Work	34
2.2.9 Noise Pollution Control		ollution Control	35
	2.2.9.1	Monitoring Program (OSHA	
		Technical Manual)	35
	2.2.9.2	Protection on Human (OSHA	
		Technical Manual)	36
	2.2.9.3	Employee Training and	
		Education	36

CHAPTER III GEOGRAPHICAL INFORMATION SYSTEM (GIS)

3.1	Introd	uction to GIS	38
3.2	History of GIS		39
3.3	Conce	pt of GIS	41
3.4	Chara	cteristics of GIS	42
	3.4.1	Data Capture	42
	3.4.2	Data Integration	44
	3.4.3	Data Conversion	45
3.5	Comp	onent of GIS	45
	3.5.1	Data	45
	3.5.2	Hardware	46
	3.5.3	Software	47
	3.5.4	People	49

3.6	Subsy	stem of GIS	49
	3.6.1	Data Collection	49
	3.6.2	Data Input	50
	3.6.3	Data Storage and Retrieval	50
	3.6.4	Data Manipulation and Analysis	51
	3.6.5	Data Output and Display	51
3.7	Applie	cation of GIS	51
	3.7.1	Hydrography	52
	3.7.2	GIS in Emergency Respond Planning	52
	3.7.3	GIS in Urban Planning	52
	3.7.4	GIS for Fire Department	53
	3.7.5	GIS in Marketing	53
	3.7.6	GIS in Agricultural Watershed	
		Management	53
3.8	Advantages of Implementing GIS		54
3.9	Problems of Implementing GIS		54

CHAPTER IV METHODOLOGY

4.1	Introd	uction	55
4.2	Preliminary Survey		56
4.3	Data (Collection	56
4.4	Map I	Digitization	58
4.5	Coord	linate Transformation	59
4.6	Database Development		59
	4.6.1	Creating Table	60
	4.6.2	Geocoding	61
	4.6.3	Creating Thematic Maps	61
	4.6.4	Mapping in Layers	62
4.7	Data A	Analysis and Results	62

CHAPTER V RESULTS AND ANALYSIS

5.1	Introduction		63
5.2	Data Input		63
	5.2.1	Mapping	63
	5.2.2	Registering Raster Images	67
	5.2.3	Creating Tables	67
	5.2.4	Creating Graphs for Pollution Data	69
	5.2.5	Geocoding	72
	5.2.6	Thematic Mapping	73
	5.2.7	Mapping in Layers	79
5.3	Data N	Manipulation and Data Analysis	79
	5.3.1	Data Integration	79
	5.3.2	Creating Voronoi Polygon	81
	5.3.3	Selection Using Queries	82

CHAPTER VI DISCUSSIONS AND CONCLUSIONS

6.1	Discussions	86
6.2	Conclusions	87
6.3	Suggestions and Recommendations	88

REFERENCES

89

APPENDICES A – I	Ç
APPENDICES A – I	(

LIST OF TABLES

TABLE NO.	TITLE
PAGE	

2.1	Important health effects associated with exposure	
	to different air pollutants	15
2.2	Categories of air quality under API system in Malaysia	20
5.1	Tabular information on air and noise pollution data	80

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Simplified relationship of nitrogen oxides emissions	
	with formation of NO ₂ and other harmful reaction	
	products including O ₃ and PM	10
2.2	Hydrocarbons Chain	13
2.3	Hydrocarbons Ring	13
2.4	Amplitude of sound	24
2.5	Wavelength of sound	25
2.6	Period of a wave	25
2.7	Hearing Protectors	36
3.1	Data layering concept	41
3.2	Scanning paper maps to produce digital data files	
	for input into a GIS	43
3.3	Collecting latitude and longitude coordinates with	
	a Global Positioning System (GPS) receiver	43
3.4	Data integration in different forms through a GIS	44
3.5	Data conversion in GIS	45
3.6	Subsystem of GIS	49
4.1	Operational procedures of study	55
4.2	Anemometer for wind speed	57
4.3	Sling Psycrometer for humidity and temperature	57

4.4	High Volume Sampler for Total Suspended	
	Particulate (TSP)	57
4.5	Toxic Gas Probe for toxic gases	57
5.1	Topographic Map of Mutiara Rini	64
5.2	Vector Image of Mutiara Rini Routes	65
5.3	Vector Image of Construction Sites	65
5.4	Vector Image of Sampling Stations	66
5.5	Combination of Raster Image and Vector Image	66
5.6	Raster Image Registration Dialog	67
5.7	Dialog box for creating table	68
5.8	Base table of air and noise pollution data	68
5.9	3D Graph of Air Pollution Data at Mutiara Rini	69
5.10	Graph of CO Levels at Mutiara Rini	70
5.11	Graph of Noise Pollution Level (dB) at Mutiara Rini	70
5.12	Joining two different tables into single graph	71
5.13	Comparison between Wind Speed and CO Levels at	
	Mutiara Rini	71
5.14	Geocode Dialog	72
5.15	Thematic Map Dialog (Step1 of 3)	74
5.16	Thematic Map Dialog (Step2 of 3)	74
5.17(a)	Original Landuse Map	75
5.17(b)	Thematic Map of Noise Pollution	75
5.18	Thematic Map of Total Suspended Particulate (TSP)	76
5.19	Thematic Map of Carbon Monoxide (CO)	76
5.20	Thematic Map of Ozone (O ₃)	77
5.21	Thematic Map of Sulphur Dioxide (SO2)	77
5.22	Thematic Map of Nitrogen Dioxide (NO ₂)	78
5.23	Thematic Map of Temperature (°C)	78
5.24	Mapping in Layers	79
5.25	Data integration in MI Pro	81
5.26	Voronoi Polygon for sampling stations	82

5.27	Query dialog for API greater than 100	83
5.28	Unhealthy air pollution level	84
5.29	Query dialog sound level greater than 60 Db	84
5.30	Unhealthy noise pollution level	85

LIST OF SYMBOLS

API	-	Air Pollution Index
CAD	-	Computer-Aided Design
СО	-	Carbon Monoxide
CO_2	-	Carbon Dioxide
CPU	-	Central Processing Unit
dB	-	Decibel
DBMS	-	Database Management System
DRT	-	Cathode Ray Tube
EDSS	-	Environmental Decision Support System
ESRI	-	Environmental Systems Research Institute
etc.	-	and so forth
F	-	Force
ft	-	Feet
GBF/DIME	-	Geographic Base File/Dual-Independent-Map-Encoding
GIS	-	Geographic Information System
GPS	-	Global Positioning System
HC	-	Hydrocarbons
HPDs	-	Hearing Protection Devices
Hz	-	Hertz
LAN	-	Local Area Network
MI Pro	-	MapInfo Professional
MPJBT	-	Majlis Perbandaran Johor Bahru Tengah
MRT	-	Malaysian Revised Triangulation
NO_2	-	Nitrogen Dioxide
O ₃	-	Ozone

OSHA	-	Occupational Safety and Health Act
р	-	Pressure
Р	-	Power
Pa	-	Pascal
PANs	-	Peroxyacyl Nitrates
Pb	-	Plumbum
PM	-	Particulate Matter
PM_{10}	-	Particulate Matter less than 10 microns in size
RAM	-	Random Access Memory
RGB	-	Red Green Blue
RMG	-	Recommended Malaysian Air Quality Guidelines
RMS	-	Root Mean Square
RSO	-	Rectified Skew Orthomorphic
PSI	-	Pollution Standard Index
SIL	-	Speech Interference Level
SO_2	-	Sulfur Dioxide
SPL	-	Sound Pressure Level
SQL	-	Structured Query Language
SWL	-	Sound Power Level
TSP	-	Total Suspended Particulate
WAN	-	Wide Area Network
WGS	-	World Geodetic System
WHO	-	World Health Organisation
3D	-	Three Dimensional
%	-	Percent

LIST OF APPENDIXES

APPENDIX

TITLE

PAGE

А	API Status Indicator	91
В	API Values from 5 to 500	92
С	Air Pollutant Index Process Flowchart	94
D	Schedule of Permissible Sound Levels	95
E	Malaysian Ambient Air Quality Guidelines	96
F	Specific Air Pollutants and Associated Health Effects	97
G	Data Collection Form	98
Н	Air and Noise Pollution Data	99
I	Topographic Map of Mutiara Rini	100

CHAPTER 1

INTRODUCTION

1.1 Introduction

The rapid growth occurring in Malaysia means more development and construction will take place. But recent studies has encounter that there are less successful examples of air quality and noise pollution data management practices observed at a wide variety of construction sites, including residential, commercial, and transportation sites. According to the survey done on few main cities in Malaysia by Department of Environment Malaysia, high percentage of the urban public was exposed to noise levels exceeding 75dB (Jabatan Alam Sekitar, 1999). Besides, construction projects often stir up dust from unpaved roads, driveways, and bare yards. Dirt tracked or deposited onto paved roads from construction sites can cause airborne or windblown dust, which can be unhealthy for people living nearby. Breathing the small particles in dust can cause lung damage, and worsen conditions such as asthma, bronchitis, and sinusitis (Bela *et. al.*, 1997).

Poorly monitored construction sites can harm not only aquatic environments, but adjacent properties, public roadways and drainage systems as well. These problems stem not only from soil erosion, but also from materials and practices commonly used in construction activities. Construction site air quality and noise pollution control efforts are now emphasizing the most appropriate set of practices for data collecting, data analysis, interpreting, modeling and also publicizing the data to ensure their effectiveness in monitoring processes. This study will illustrate construction site air quality and noise pollution monitoring practices through the use of Geographical Information System (GIS). GIS is an industry that is popular in the western countries and is now thriving in Malaysia. It has been implemented in many agencies and departments in Malaysia for various applications such as Penang Geographic Information System (PEGIS) in 1992 which is now under the control of Penang Development Corporation, Computerized Planning Information System by Malacca City Council in 1994 to convert all land related information with the Council Administrative area into a more efficient and integrated digital format, Darul Ehsan GIS (DEGIS) to promote the sharing of data among the various state agencies and to create the metadata for Selangor, establishment of National Infrastructure for Land Information System (NaLIS) since 1992 to provide timely access to land information, eliminate or reduce duplication of data capture and promote effective data sharing among related agencies.

Among early users of GIS are Department of Survey and Mapping (JUPEM), Malaysia Centre for Remote Sensing (MACRES), Department of Agriculture, the forestry department, Geological Survey Department, Valuation and Property Services Department, Public Work Department and Economic Planning Unit.

GIS is always associated with both computer hardware and software as the means for data input, data analysis, data manipulation, data output and data storage. The implementation of GIS in air quality and noise pollution monitoring can be very useful as it create visual charts showing the attributes of different air quality and noise pollution measurement. Therefore, GIS can be described as a best tool to address spatial data of environmental problems in construction site.

1.2 Problem Statement

Air quality and noise monitoring is a large scale project which, among the others, includes many processes, such as data collecting, data analysis, interpreting, modeling and also publicizing the data. Decision-making is a complex process, influenced by many factors, both human and non-human. A GIS application cannot make decision for people. However, GIS is able to provide many simulated results, which can help the decision-makers to achieve the decision and answer to problems (Idrus, 1997). The problems which hinder and complicate the air and noise pollution monitoring practices are listed as follow:

- a. Difficulties when too much air and noise pollution monitoring data to be manipulated, comprehended, analysed, interpreted, publicized and defended.
- b. The data are not efficiently handled by manual or conventional methods because the conventional method is too costly, time-consuming and highdemanding of manpower.
- c. Difficulty in data processing and data updating.
- d. It is difficult to use 2D tools to store and to analyse 3D data.
- e. Limitation when working with dissimilar data types.
- f. Difficulty in communicating and presenting thedata to non-technical people.

It is therefore, obvious that there is a need to build up a database system for air quality and noise pollution data with the help of Geographical Information System (GIS) software, MAPINFO (MI Pro).

1.3 Objectives

The objectives of this study are as follow:

i. To apply MAPINFO (GIS software) in developing a database system for air and noise pollution produced by construction activities. ii. To investigate its capability as a management decision making tool related to the control of air and noise pollution at construction sites.

1.4 Scopes of Study

The scopes of study can be outlined as follow:

- i. To collect data and create a user-friendly spatial database system that reflects the air quality and noise pollution level at construction site.
- ii. To develop an air quality and noise pollution management system using tools within MAPINFO.
- iii. To utilise the management system developed as a tool in predicting and mitigating air and noise pollution at construction site.

1.5 Expectations

The following are the expectations from this study:

- i. Implementation of Geographical Information System (GIS) in the monitoring of air quality and noise pollution at construction site will be more efficient and simpler comparing to the conventional methods.
- ii. The practice of building up a database with GIS will be able to help in air quality and noise pollution data management.

1.6 Hypothesis

Geographical Information System (GIS) can provide a cost-effective, efficient and faster way of handling the air quality and noise pollution data at construction site.

1.7 Limitations of Study

Limitations in this study are:

- i. The software used in this research is MapInfo as it is the only easily accessible GIS software available in the faculty.
- ii. The study can only be conducted on selected construction sites in Johor Bahru due to the limitation of resources. It is therefore, the data from the study might not be enough to reflect the overall status of air quality and noise pollution in Johor Bahru.
- iii. Due to unavailability of equipments, the data from all the sampling points can only be taken at separated times. Therefore, no Air Pollution Index (API) can be calculated. Air quality can only be previewed separately by the intensity of each pollutant. The only parameter used to determine the level of noise pollution is Decibel level (dB).

REFERENCES

- Antenucci, J. C., Brown, K., Croswell, P. L. and Kevany, M. J. (1991). "Geographic Information Systems: A Guide to the Technology".
- Bela, G. L. and David, H. F. L. (1997). "Environmental Engineers' Handbook," Boca Raton, New York, Lewis Publishers.
- Bugliarello, G. (1976). "The Impact of Noise Pollution," New York.
- Harris, T. M. and Elmes, G. A. (1993). "The Application of GIS in Urban and Regional Planning: a review of the North American experience. Applied Geography" 13(1), 9-27.
- Ho, W. H. and Lee, G. W. (2000). "Study on Land Use Management with Geographic Information Systems," Geospatial Application Papers.
- Hudson, J. C and Heywood, D. I. (1991). "Geographic Information 1991: The Yearbook of the Association for Geographic Information," Taylor & Francis and Miles Arnold, Great Britain.
- Idrus, M. (1997). "GIS Based Environmental Decision Support System" Geospatial Application Papers.
- Jabatan Alam Sekitar (JAS). "Laporan Tahunan Kualiti Alam Sekeliling, Tahun 1999," JAS, Johor.
- Ji, W. and Mitchell, L. C. (1995). "Analytical Model-based Decision Support GIS for Wetland Resource Management," Lewis Publishers, New York, 31-45.

- Konecny. G (2003). "Geoinformation: Remote Sensing, Photogrammetry and Geographic Information System" Taylor and Francis, London and New York.
- Longley, P. A., Goodchild, M. F., Maguire, D. J. and Rhind, D. W. (1999). "Geographical Information Systems," John Wiley & Sons, New York, Volume 2.
- Occupational Safety and Health Administration (1999), "OSHA Technical Manual (OTM),"
- Saenz, A.L. and Stephens, R.W. (1986). "Noise pollution," John Wiley & Sons, New York.
- WHO (2002), "World health report 2002," Geneva, World Health Organization.
- Zhang, M. Y., Xia Bin, Yingjie, W and Zhuoyuan, Y. (2003). "The Design and Research of Inner Mongolia Tourism Resources Management Information System," Geospatial Application Papers.