INTERNET COMMUNICATION THROUGH POINT-TO-POINT PROTOCOL ON LINUX OPERATING SYSTEM

ABDOULIE F. BADJIE

UNIVERSITI TEKNOLOGI MALAYSIA

INTERNET COMMUNICATION THROUGH POINT-TO-POINT PROTOCOL ON LINUX OPERATING SYSTEM

ABDOULIE F. BADJIE

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical-Electronics and Telecommunications)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > MARCH 2005

This project is dedicated to my beloved parents, brothers, sisters and friends.

In addition, my thanks go out to the Islamic Development Bank for providing me the opportunity to study this program. Thanks are also extended to the Gambia Civil Aviation Authority for giving me the study leave to pursue this program. Last but not the least a lot of thanks is extended to all my friends at the University Technology Malaysia especially KRP G29 Hostel.

ACKNOWLEDGEMENT

In preparing this thesis, I got a lot of feedback from different people. First I wish to express my sincere appreciation to my main thesis supervisor, Associate Professor Dr. Norsheila bt Fisal, for the encouragement, guidance, critics and advice she give to me to complete this project.

I am also indebted to Mr Adel Ali of the Telecoms Lab for lots of advice and guidance in the preparation of the project. Thanks also to Mr Muladi and all students of the same lab.

ABSTRACT

The growth of the internet has meant that different devices are connected together and data has to be exchanged from one place to another. Since the internet consists of many networks connected together using different protocols, there is the need for a single independent protocol which can transport the data from one end to another irrespective of the type of protocol of the origin or destination of the connection. The Point-to-Point Protocol is such a protocol and is designed for simple links which transport packets between two peers. These links provide full-duplex simultaneous bi-directional operation, and are assumed to deliver packets in order. The use of sockets in the internet communication eliminates the reconfiguration of the link between the server and client. It also enables multiple access of a server by many clients. This project demonstrates the processes that's takes place when accessing a website or doing some client/server computing in the form of a link connecting two computers. The computers communicate through the use of sockets in Point-to-Point Protocol as the Media Access Control in the Data link Layer. Data communication takes place in the form of a Graphic User Interface using text and audio through the two computers.

ABSTRAK

Perkembangan internet juga bermakna pelbagai peranti yang berbeza telah diintegrasikan bersama dan data boleh ditukar daripada suatu tempat ke tempat yang lain. Semenjak internat mengandungi banyak rangkaian yang tersambung bersama dengan menggunakan protocol berbeza, suatu protokol bebas tunggal diperlukan dimana ianya boleh membawa data daripada suatu titik akhir ke suatu yang lain berdasarkan jenis protokol asal atau destinasi sambungan. Protokol titik-ke-titik merupakan suatu protokol yang telah direkabentuk untuk hubungan mudah yang membawa paket diantara dua komputer. Hubungan ini menyediakan operasi duplekspenuh serentak dua-arah, dan diandaikan untuk menghantar paket berdasarkan arahan. Penggunaan soket dalam komunikasi internat menghapuskan pengkonfigurasian semula hubungan diantara pelayan dan pelanggan. La juga membolehkan pelbagai akses pelayan oleh ramai pelanggan. Projek ini telah mendemonstrasikan proses yang digunakan apabila pengaksesan laman web atau sebahagian perkomputeran pelanggan/pelayan dalam format hubungan sambungan dua komputer. Komputer berkomunikasi melalui penggunaan soket dalam Protokol Titik-ke-Titik sabagai Kawalan Akses Media dalam Lapisan Hubungan Data. Komunikasi data mengambil tempat dalam format Pengantaramuka Grafik Pengguna dengan menggunakan teks dan audio melalui dua komputer

TABLE OF CONTENTS

TITLE

CHAPTER

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	\mathbf{V}
ABSTRAK	vi
CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF ABBREVIATION	XV
LIST OF APPENDICES	xvii

1 INTRODUCTION

1.1	Background	1
1.2	Problem Statement	3
1.3	Objectives	4
1.4	Scope	5
1.5	Importance of Research	5
1.6	Research Methodology	6
1.7	Thesis Organization	6

PAGE

1

LITERATURE REVIEW

2.1	Introduction		8
	2.1.1	TCP/IP Model Layers	9
	2.1.2	Network Interface layer	10
	2.1.3	Internet Layer	11
	2.1.4	Host-to-Host Transport Layer	12
	2.1.5	Application Layer	12
2.2	Overv	view of Data Link Functions	13
	2.2.1	Data Link Layer Sublayers	14
	2.2.2	Data Link Layer Functions	14
	2.2.3	Services Provided to the Network Layer	16
2.3	Why '	TCP/IP Needs Network Interface Layer Protocols	18
2.4	TCP/IP Network Interface Layer Protocol: SLIP and PPP		19
2.5	Serial	Line Internet Protocol (SLIP)	20
2.6	Point	-to-Point Protocol	20
	2.6.1	How PPP Negotiate for Connection Setup	24
2.7	7 Socket Programming		25
	2.7.1	Socket types	26
	2.7.2	Socket Connection Principles	28
	2.7.3	Socket Creation	29
	2.7.4	Socket Connection Establishment	31
	2.7.5	Socket Data Transfer	34
	2.7.6	Discarding Sockets	35
2.8	Serial	Communication	36
	2.8.1	Serial Connection	37
	2.8.2	Going with the flow	38

NETWORK SETUP AND CONFIGURATION

3.1	Introduction	39
3.2	Configuring Network Interface For PPP Communication	41

	3.3 GUI with TCL/TK Programming Language	45
	3.3.1 Compiling And Installing Tcl	45
	3.4 Application Services	47
4	RESULTS AND ANALYSIS	50
	4.1 Introduction	50
	4.2 Results	51
	4.3 Analysis	55
5	CONCLUSION AND FUTURE WORK	56
	5.1 Conclusion	56

5.2	Future Work	57

REFERENCES		60
APPENDIX A	PROGRAM CODE FOR SERVER SIDE	62
APPENDIX B	PROGRAM CODE FOR CLIENT SIDE	65
APPENDIX C	PROGRAM CODE FOR THE GUI USING TCL.TK	68

LIST OF TABLES

TABLE NO). TITLE	PAGE
2.1	Comparison between SLIP and PPP	19
3.1	Option parameters in PPP configuration	43

LIST OF FIGURES

TITLE

FIGURE NO.

2.1	TCP/IP in relation to the OSI layer model	11
2.2	General Frame Format for Data Link Layer	13
2.3	Block diagram of virtual and actual communication in TCP/IP	16
2.4	Block diagram of TCP/IP with reference to the OSI model	21
2.5	General PPP frame format	22
2.6	Simplified phase diagram for bringing a line up and down	25
2.7	Client and Server applications connect via sockets across a Netwo	ork
		28
2.8	Client/server TCP socket programming flow	29
2.9	RS 232 pin out diagram	37
3.1	Block diagram of a two way network model and the stages taken t	0
	access the resources of a server from a client	40
3.2	Client and Server Linked by Serial Cable Through Serial port	47
3.3	GUI Frame Format for Both Client and Server	48
4.1	Different Network Interface Cards in the computer	51
4.2	Result from PING COMMAND	52
4.3	GUI data communication results from client to server computers	53
4.4	GUI data communication results from client to server computers w	vhen
	the server is made client and vice versa	54

PAGE

LIST OF ABBREVIATIONS

AF_INET **Open Transport Reference** ATM Asynchronous Transfer Mode ARP Address Resolution Protocol BGP Border Gateway Protocol BSD Berkeley Software Distribution CDDI Copper Distributed Data Interface CLNP **Connectionless Network Protocol** CRC Cyclic Redundancy Check CSMA/CD Carrier Sense Multiple Access/Collision Detection CTS Clear To Sense DCD DCD (Data Carrier Detect DHCP Dynamic Host Configuration Protocol DLL Data Link Layer DNS Domain Name Server DSL Digital Subscriber Line DSR Data Set Ready DTR Data Terminal Ready Data Fiber Distributed Data Interface FDDI FTP File Transfer Protocol GCC GNU C Compiler

Graphical User Interface

GUI

HomePNAHome Phoneline Networking AllianceHTTPHyperText Transfer ProtocolICMPInternet Control Message ProtocolIDPIntrusion Detection and PreventionIEEEInstitute of Electrical and Electronics EngineersI/OInput/OutputIPInternet ProtocolIPCInterprocess CommunicationIPXInternetWork Packet eXchangeIRQInterrupt Request
ICMPInternet Control Message ProtocolIDPIntrusion Detection and PreventionIEEEInstitute of Electrical and Electronics EngineersI/OInput/ OutputIPInternet ProtocolIPCInterprocess CommunicationIPXInternetwork Packet eXchangeIRQInterrupt Request
IDPIntrusion Detection and PreventionIEEEInstitute of Electrical and Electronics EngineersI/OInput/ OutputIPInternet ProtocolIPCInterprocess CommunicationIPXInternetwork Packet eXchangeIRQInterrupt Request
IEEEInstitute of Electrical and Electronics EngineersI/OInput/ OutputIPInternet ProtocolIPCInterprocess CommunicationIPXInternetwork Packet eXchangeIRQInterrupt Request
I/OInput/ OutputIPInternet ProtocolIPCInterprocess CommunicationIPXInternetwork Packet eXchangeIRQInterrupt Request
IPInternet ProtocolIPCInterprocess CommunicationIPXInternetwork Packet eXchangeIRQInterrupt Request
IPCInterprocess CommunicationIPXInternetwork Packet eXchangeIRQInterrupt Request
IPXInternetwork Packet eXchangeIRQInterrupt Request
IRQ Interrupt Request
ISDN Integrated Services Digital Network
ISP Internet Service Provider
LAN Local Area Network
LCP Link Control Protocol
LLC Logical Link Control
MAC Media Access Control
NCP Network Control Protocol
NIC Network Interface Card
OSI Open System Interconnect
PEX Xerox's Packet Exchange Protocol
PPP Point-to-Point protocol
PPPoA PPP over ATM
PPPoE PPP over Ethernet
RFC Requests for Comments
RIP Routing Information Protocol
RTS Ready To Sense
SLIP Serial Line Internet Protocol
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
SONET Synchronous Optical NETwork
SPP Standard Parallel Port
Tcl Tool command language
TCP Transmission Control Protocol

Tk	Toolkit
TTL	Time To Live
UART	Universal Asynchronous Receiver/ Transmitter
UDP	User Datagram Protocol
UUCP	Unix-to-Unix CoPy
XNS	Xerox Network Systems
Wi- Fi	Wireless Fidelity
WAN	Wide Area Network
WWW	World Wide Web

CHAPTER 1

INTRODUCTION

1.1 Background

Before the advent of the Internet, the only way to connect to the outside world using a modem was to talk directly to the modem. This was a confusing and complex mess. For an idea of all the settings one had to have, just look at a serial control. Though there was a lot one could do with a modem, there were still a few things that were impossible, like being connected to two places at once.

The internet changed all that. Now, any person can have multiple connections open at the same time. And as an extra bonus, one does not have to fiddle with all those cryptic settings. Simply transmitting data is pointless though. One have to send it in some type of format in the form of 0s and 1s which are then transported through the physical layer such as an RS 232 by using serial cable, through wireless connection or through the telephone cable using an Ethernet card.

TCP/IP (Transmission Control Protocol/ Internet Protocol) is the basic communication language or protocol of the internet. It can also be used as a communications protocol in a private network (either as intranet or an extranet).

When you are set up with direct access to the internet, your computer is provided with a copy of the TCP/IP program just as every other computer that one may send messages or get information, also has a copy of TCP/IP.

TCP/IP is a two layer protocol. The higher layer, Transmission Control Protocol manages the assembling of a message or file into smaller packets that are transmitted over the internet and received by a TCP layer that reassembles the packets into the original message. The lower layer, Internet Protocol, handles the address part of each packet so that it gets to the right destination. Each gateway computer on the network checks this address to see where to forward the message. Even though some packets from the same message are routed differently than others, they will be reassembled at the destination.

TCP/IP uses the client/server model of communication in which a computer user (a client) requests and is provided a service (such as sending a web page) by another computer (a server) in the network. TCP/IP communication is primarily point- to-point, meaning each communication is from one point (or host computer) in the network to another point or host computer.

TCP/IP and the higher-level applications that use it are collectively said to be stateless because each client request is considered a new request unrelated to any previous one (unlike ordinary phone conversations that require a dedicated connection for the call duration). Being stateless frees network paths so that everyone can use them continuously. For TCP layer the connection remains in place until all packets in a message have been received [7].

Personal computer users usually get to the internet through the Serial Line Internet Protocol (SLIP) or the Point-to-Point Protocol (PPP). These protocols encapsulate the IP packets so that they can be sent over a dial-up phone connection to an access provider's modem. PPP is part of the data link layer of the OSI or TCP/IP model.

TCP is a connection-oriented transport protocol that sends data as an unstructured stream of bytes. By using sequence numbers and acknowledgment messages, TCP can provide a sending node with delivery information about packets transmitted to a destination node. Where data has been lost in transit from source to destination, it can retransmit the data until either a timeout condition is reached or until successful delivery has been achieved. It can also recognize duplicate messages and will discard them appropriately. If the sending computer is transmitting too fast for the receiving computer, it can employ flow control mechanisms to slow data transfer. TCP can also communicate delivery information to the upper-layer protocols and applications it supports.

The use of sockets in TCP/IP communication enables the creation of many clients accessing the server at the same time. The socket layer provides an application with a programming interface to the network that looks like a file. When an application writes to the socket, the socket layer sends data to an application on a remote host. When an application reads from a socket, the socket layer provides data received from a remote host.

The server application is the most important part of a protocol. It will do most of the work, and has to be in near-constant communication with multiple people. Sockets can either listen or connect. If a socket is listening, then it waits for other sockets to connect to it. If they're not listening, then they can connect to any other server that is listening. For a server naturally, all the sockets should be listening. That way, when a client connects, they can respond correctly.

1.2 Problem Statement

The Point-to-Point Protocol (PPP) originally emerged as an encapsulation protocol for transporting IP traffic over point-to-point links. PPP also established a standard for the assignment and management of IP addresses asynchronous (start/stop) and bit-oriented synchronous encapsulation, network protocol multiplexing, link configuration, link quality testing, error detection, and option negotiation for such capabilities as network layer address negotiation and datacompression negotiation. PPP supports these functions and is use more effectively in dialup networking, for example, say home computer to ISP connection for internet access by using Ethernet as the Network Interface Card. So to use in a two way direct cable RS232 connection one has to think of the speed disparity and the method of connecting the serial cable to the Ethernet card in the server for internet access. Also when data is traveling on serial communication lines, it can happen that data arrives faster than a computer can handle it (the computer may be busy doing something else, as, Linux is a multi-user, multi- tasking operating system). In order to ensure that data is not lost (data does not over run in the input buffer and hence get lost), some method of controlling the flow of data is necessary. There are two ways of doing this; either by using hardware signals (Clear To Send/Request to Send -CTS/RTS) or by using software signals (control S and control Q, also known as XON/XOFF). Whilst the later may be fine for a terminal (text) link, data on a PPP link uses all 8 bits - and it is quite probable that somewhere in the data there will be data bytes that translate as control S and control Q. So, if a modem is set up to use software flow control, things can rapidly go berserk. For high speed links using PPP (which uses 8 bits of data) hardware flow control is vital and it is for this reason that we must use hardware flow control.

1.3 Objectives

The objectives of the thesis are:

- To configure the Linux kernel for Point-to-Point Protocol communication
- To create a client/server TCP/IP communication through Point-to-Point Protocol link.
- To augment the TCP/IP link with a Graphical User Interface at both ends.

The Linux kernel will be configured to allow for PPP protocol communication with the various parameters specifying RS232 physical media. For data communication services a GUI is developed with TCL/TK programming language so that text messages can be exchanged from client to server. Audio files will also be sent through the link.

1.4 Scope

The scope of research will include establishing TCP/IP client/server communication through PPP for data communication. As a client/ server network, the communication will be bidirectional, i.e. any computer can be server or client. Using socket programming to write client and server side of the network. A GUI is created as the application layer for text and audio communication. The internet can be accessed through serial port from client with the server acting as the gateway by using Mozilla or any Linux compatible web browser.

1.5 Importance of Research

This project utilizes the Point-to-Point Protocol to communicate through the serial port to access the internet. This will be done in the form of client/server by using a GUI as the application layer. An internet access is done easily by everyone but very few know about sockets and how they operate, for example when a client queries a server to access server resources. Also the creation of the GUI and the different parameters to include in the configuration of the kernel makes it more interesting in knowing the principles of TCP/IP networking.

1.6 Research Methodology

The project is divided into two phases;

• Configuring the Linux kernel

In this part, the commands are written at the Linux prompt to get the desired parameters like speed at which data communication will take place, hardware flow control and how long the line should stay trying to connect if it fails in the initial connection phase. Also the IP addresses are assigned to both the server and client in the kernel configuration. Testing is done to see whether the connection is setup finally before any data communication takes place. Also the internet can be accessed through the client via the RS232 connector

• Programming for Data Communication

In this phase, the socket programs for client and server are written by using C language. The GUI is developed using TCL/TK programming language. Finally data communication services are provided through a client and server. Testing is also done with audio files across the connection.

1.7 Thesis Organization

This thesis consists of five chapters. Chapter 1 serves as an introduction to the thesis. It covers topics such as problem statement, objective of the research, scope of the project and the importance of the project.

Chapter 2 provides the relevant background for Point-to-Point Protocol, Data link Layer Services, How PPP negotiate for a line, Socket Programming, principles of Serial Communication. Chapter 3 describes the implementation process which includes how to configure the network interface for PPP communication, server and client programming with sockets, and how to develop the GUI with TCL/TK language.

Chapter 4 describes the results and analysis of the project.

Finally, Chapter 5 concludes the thesis with a summary of the work that has been done, along with suggestions for future work.

REFERENCES

- 1 S. Hath, Essential Linux, "Boston Digital Press, 1998
- 2. N. Ms and M. ang," *Guide to Linux Installation and Administration*", Australia:Course Technology: 2000
- 3 M. Kofler, "Linux: Configuration, Installation and Use", Helow, Eng: Addison-Wley:1997
- 4 BRent, " Practical Programming in Tcl & Tk ", Prentice H1:1997
- 5 A. S. Tanebaum, " *Computer Networks*", Pearson Education International, 2000
- 6 JCarlson, "*PPP Design and Debugging*", Addison Wley:1998
- 7 C. Metz, " *A pointed Look at the Point-to-Point Protocol*", IEEE Internet Computing:1999
- 8 JRomkey, RFC 105 Non-standard for transmission of IP datagrams over serial lines: SLIP," IETF Network Wrking Goup:1998
- 9 A. Chame, "Integrated Processors in Internetworking Applications", IEEE: 1996
- 10 C.L-Wiams and J Fake *Linux PPP HOWTO*, Commandpromt Inc:2000
- 11 C Hint ," TCP/IP Network Administration", Oreilly 1997
- 12 Cisco Deumentation, " *Point to Point Protocol*", Cisco Systems2002
- 13GMcMillan,"SocketProgrammingHOWTO",http://www.amk.ca/python/howto/sockets/:1997

- 14 C M. Kozierok, " The TCP/IP Guide", http://www.tcpipguide.com:2004
- 15 http://www.sanpeople.com/ support/etherpad_ppp.asp

16 http://www.serial-networking.fsnet.co.uk/linuxroute.htm

- 17Image: S.Sastry," GUIWithTcl/Tk",http://www.agocg.ac.uk/gv/issue@/gui.htm:1995
- 18 http://www.tcl.tk/doc/tclHtory.html
- 19 http://www.actiontecsupport.com/files/pm**6**0lki.pdf