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ABSTRACT 

The scaling of Field Effect Transistor (FET) at nanoscale assures better 

performance of the device. The phenomenon of downsizing the device dimensions 

has led to challenges such as short channel effects, leakage current, interconnect 

difficulties, high power consumption and quantum effects. Therefore, new materials 

and device structures are needed as alternatives to overcome these challenges. In this 

research, an analytical model for Trilayer (ABA-stacked) Graphene Nanoribbon 

carrier statistics based on quantum confinement effect is presented. To this end, 

density of states, carrier concentration and ballistic conductance of Trilayer 

Graphene Nanoribbon (TGN) as an FET channel are modeled. Besides that, scaling 

behaviors of p-n junction, Homo junction, Schottky-barrier diode and Schottky-

barrier FET based on the Graphene Nanoribbon application are analytically studied. 

This is demonstrated in the proposed structure of TGN Schottky-barrier FET that 

exhibits negligible short channel effects, improved on current, pragmatic threshold 

voltage, very good subthreshold slope, and fast transient between on-off states to 

meet the International Technology Roadmap for Semiconductors (ITRS) near-term 

guidelines. Therefore, the proposed model is suitable for a high speed switching 

application because the value of subthreshold slope for the proposed transistor is less 

than the ideal value of 60 mV/decade. A small value of subthreshold slope denotes a 

small change in the input bias which can modulate the output current and would lead 

to less power consumption. Finally, an analytical modeling of Graphene-based NO2 

gas sensor is proposed. MATLAB software was used to implement the numerical 

methods for modeling and data analysis. Observations of the presented models 

showed acceptable agreement with the published data.  
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ABSTRAK 

Pengskalaan Transistor Kesan Medan (FET) pada tahap nanometer menjamin 

prestasi yang lebih baik untuk peranti berkenaan. Fenomena pengecilan dimensi 

peranti membawa beberapa cabaran seperti kesan saluran pendek, arus kebocoran, 

kesukaran penyambungan, penggunaan kuasa yang tinggi dan kesan kuantum.Oleh 

itu bahan-bahan baru dan struktur peranti diperlukan sebagai alternatif untuk 

mengatasi cabaran ini. Dalam penyelidikan ini model analisis statistik pembawa tiga 

lapisan (susunan ABA) Nanoribbon Grafin berdasarkan kesan berpantang kuantum 

digunakan. Untuk maksud ini ketumpatan keadaan, kepekatan pembawa dan kealiran 

balistik Nanoribbon Grafin tiga lapisan (TGN) sebagai saluran FET dimodelkan. 

Selain itu perilaku berskala simpang p-n, simpang Homo, diod halangan-Schottky 

dan FET halangan-Schottky berdasarkan applikasi Nanoribbon Grafin dianalisis 

secara analitikal. Ini menunjukkan bahawa struktur cadangan TGN FET halangan-

Schottky mempamerkan kesan saluran pendek yang boleh diabaikan, memperbaik 

arus voltan ambang pragmatik, sub-ambang cerun yang sangat baik, cepat bertukar 

antara keadaan hidup-mati untuk memenuhi garis panduan International Technology 

Roadmap for Semiconductors (ITRS) dalam jangka masa terdekat. Dengan itu model 

yang dicadangkan sesuai untuk aplikasi pensuisan berkelajuan tinggi kerana nilai 

cerun sub-ambang untuk transistor yang dicadangkan adalah kurang daripada nilai 

ideal 60 mV/dekad. Satu nilai yang kecil cerun sub-ambang menandakan perubahan 

kecil pincangan input yang boleh memodulasi output semasa dan mengurangkan 

penggunaan kuasa. Akhirnya, pemodelan analitikal Grafin berasaskan pengesan gas 

NO2 telah dicadangkan. Perisian MATLAB digunakan untuk melaksanakan kaedah 

berangka untuk pemodelan dan penganalisisan data. Pemerhatian terhadap model 

yang dibentangkan menunjukkan persamaan yang boleh diterima dengan data yang 

diterbitkan. 
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CHAPTER 1  

1 INTRODUCTION 

1.1 Background Study 

The approaching scaling of Field Effect Transistors (FETs) in nanometer 

scale assures the smaller dimension, low-power consumption, very large computing 

power, low energy delay product and high density as well as high speed in processor. 

The downscaling phenomena of device dimensions lead to some problems such as 

short-channel effects, gate-leakage current, and so forth. Therefore, novel device 

structures and materials like graphene, carbon nanotube (CNT), nano scroll, and 

nano wire are explored for experimentation; more challenges as well as opportunities 

emerge to expand the vision encountered in the International Technology Roadmap 

for Semiconductors (ITRS).  

According to the Moore's law, the number of transistors per square inch on 

integrated circuits doubles approximately every two years (Gordon, 1965). It is 

noteworthy that the capabilities of many digital electronic devices such as processing 

speed, memory capacity, sensors and even the number and size of pixels in digital 

cameras are strongly linked to Moore's law. All of these are 

improving exponentially rates as well, which has dramatically enhanced the impact 

of digital electronics in nearly every segment of the world economy. In future, 

nanoelectronic devices will be scaled down to nanoscale size to meet the Moore’s 

law, and therefore, will operate in the degenerate limit, which makes the degenerate 

approximation more dominant in the future nanoscale device modeling. 

http://en.wikipedia.org/wiki/Clock_rate
http://en.wikipedia.org/wiki/Clock_rate
http://en.wikipedia.org/wiki/Clock_rate
http://en.wikipedia.org/wiki/RAM
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Digital_camera
http://en.wikipedia.org/wiki/Digital_camera
http://en.wikipedia.org/wiki/Digital_camera
http://en.wikipedia.org/wiki/Exponential_growth
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Diamond and graphite are the materials which are extensively investigated in 

nanoelectronic. Since diamond’s unusual bonding attributes makes it hard to be 

naturally created, the lately discovered allotropes like fullerenes and nanotubes are 

taken into consideration closely by scientists researching in the fields of biology, 

chemistry, physics and material science (Gogotsi et al., 1999; Irifune et al., 2003). 

All the structural studies on graphite, fullerenes and nanotubes start with graphene. 

Graphene is the name given to a single layer of carbon atoms in form of honeycomb 

lattice which is the basic structure of the graphite based materials such as nanotubes 

and fullerenes contain pentagons (Entani et al., 2010; Zhang et al., 2010b; Castro 

Neto et al., 2009b). 

Due to its unique structure, excellent electronics (McEuen et al., 2002), 

optical (Misewich et al., 2003; Chen et al., 2005) and  physical properties, graphene 

nanoribbon (GNR) has recently been considered for new device applications in the 

future. Consequently, prototype structures indicating excellent performance for 

transistors (Javey et al., 2003), interconnects (Li et al., 2003), electromechanical 

switches (Jang et al., 2005), infrared emitters and biosensors (Kong et al., 2000) 

have been demonstrated.  

It is reported that neither the velocity of the charge carriers at the upper part 

of the valence band, nor the velocity at the lower part of the conduction band is 

reduced, which is a common attribute of most materials. In fact, it stays constant 

throughout the bands (Geim and Novoselov, 2007). The low scattering rates and the 

electronic structure of GNR result in an excellent electronic transmission which is 

adjustable by doping or using electrostatic field. It can serve as interconnects due to 

its high conductivity. Since it can be gated, it could be used as a channel in novel 

transistors. Because of the stable and inert properties of GNR, it could be adopted to 

make big areas that have low defect densities and low electronic scattering rates 

(Geim and Novoselov, 2007).  

A significant contributing reason to GNR’s importance is the specific nature 

of its charge carriers, which is related to the fact that its charge carriers mimic 

relativistic particles, and is simply described using the Dirac Equation rather than the 
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Schrödinger Equation (Wehling et al., 2008; Novoselov et al., 2005). The 

Schrödinger Equation contributes in giving an illustration of  electronic properties of 

materials in condensed matter physics (Wehling et al., 2008; Novoselov et al., 2005). 

GNR’s high electron propagation is essential in creating high speed and high 

performance transistors. A GNR Metal Oxide Semiconductor Field Effect Transistor 

(GNR MOSFET) is an appliance, in which  a GNR can be applied  as the channel of 

a FET-like device (Schwierz, 2010). However, for GNR MOSFET’s being used in 

realistic IC applications, material properties such as the energy band gap (EG) should 

be closely controlled. The method of preparing multilayer GNRFET is both 

appealing and amazing. Trilayer graphene nanoribbon (TGN) as a multilayer GNR 

can be piled up independently relying on the horizontal shift between consecutive 

graphene planes, which results in a variety of electronic properties and band 

structures. 

The outcome of this study suggests that graphene based devices have 

potential to replace conventional silicon MOSFETs in driving the technology 

forward. It can also be used to evaluate the potential of GNR in integrated circuits 

incorporating both analog and digital functions which are recognized to exceed 

CMOS capabilities in term of scalability, speed and power consumption. 

1.2 Problem Statement 

The GNR (Monolayer, bilayer and trilayer) can be used as a transistor 

channel in the future. It has unique electronic characteristics such as symmetrical 

band structures, ballistic transport, and high current. In fact, the development of 

GNRFET is possible. The aim of this study is to analytically model the p-n and homo 

junctions of Monolayer GNR, bilayer graphene nanoribbon (BGN) schottky diode, 

the carrier concentration, ballistic conductance, and ballistic carrier transport of 

TGN, TGN schottky-barrier (SB) FET, graphene based NO2 gas sensor and 

compared with published data. Despite all the research work, at the present moment, 

the following characteristics of GNR are not clear: 
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i. Short channel effect in nanoscale devices  

The downsizing of channel length in a planar MOSFET causes short channel 

effect, leakage current, interconnect difficulties, high power consumption and 

quantum effect. When the channel length reaches nano meter scale, the conventional 

device modeling is no longer precise due to some parameters. Therefore, new device 

structures and materials such as GNRs are discovered as an alternative to overcome 

the challenges. 

ii. P-N and homo junctions of monolayer GNRFET modeling 

The p-n junction is an essential building block for electronic components. It is 

expected that GNR p-n and homo junction properties will be different from the 

traditional semiconductor p-n junctions. Developing a quantitative understanding of 

GNR p-n and homo junctions is a significant step towards developing novel devices 

such as GNR transistors and filters. Monolayer GNR p-n and homo junction has 

turned out to be of significant attention due to the fact that it presents better 

performance over conventional semiconductor p-n junction diodes in terms of 

electrical parameters such as turn-on voltage. In this research, a quantitative study of 

the near equilibrium I-V characteristics of GNR p-n and homo junctions is presented. 

iii. Carrier statistics for TGN in Degenerate and Non-degenerate 

regimes  

In previous models, most of the works are based on the charge or non-

equilibrium Green Function calculations and three dimensional (3D) modes for the 

carrier statistics modeling of nanoscale transistor are explored. However, in this case, 

a one dimensional (1D) calculation for nanoscale devices will be adopted. Majority 

of the models calculated carrier concentration of monolayer GNR and BGN using the 

Maxwell Boltzmann approximation (non-degenerate regime). In this study, 1D 

visualization of carrier movement based on the band structure of TGN in the 

presence of a perpendicular electric field is employed. Here, an analytical model of 

TGN carrier statistics as a fundamental parameter on FET in corporation with a 
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numerical solution is proposed in the degenerate and non-degenerate limits. 

Furthermore, the efficiency of electron transport is the important quantity that 

defined as conductance (Datta, 2002). In this research, an introduction of the 

analytical model and numerical solution of TGN ballistic conductance is also 

presented. The conductance model can be adopted to derive current-voltage 

characteristic of TGNFET modeling. 

iv. Ballistic carrier transport model for GNRFET structure in 

Degenerate and Non-degenerate regimes 

The carrier transport features for long channel MOSFET model are no longer 

capable of describing carrier transport perfectly even for sub-100nm MOSFETs. The 

scattering-dominant transport mainly phonon, coulomb and surface roughness 

scattering usually occurs in the classical devices. The model is basically obtained 

from the Boltzmann Transport Equation (BTE) in a classical manner by invoking 

many simplifying closure approximations. To incorporate the quantum-mechanical 

effects into classical device simulation, BTE can be coupled to the Schrödinger or 

Wigner equations. Consequently, it is necessary to take the quantum transport into 

consideration when describing non-classical current transport models for nanoscale 

transistors such as GNRFET which operates in the quasi-ballistic transport regime. 

Therefore, simulation studies that depend on conventional models may incorrectly 

forecast device performance and physics. It is notable that the ballistic carrier 

transport model can be utilized to derive current-voltage characteristic of nanoscale 

GNRFET modeling. In this study, analytical models of monolayer GNR p-n and 

homo junction diodes, BGN schottky diode and TGN SB FET are developed, which 

can be adopted for the GNRFET optimization. 

v. The monolayer graphene FET based gas sensor modeling 

In order to higher accuracy, faster response time and increased sensitivity, 

sensor technology needs to be developed. Therefore, carbon based materials as a 

future candidate on sensor technology is promising to response to the huge demand 

for higher accuracy, faster response time, and increased sensitivity of a sensor. Due 
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to the unique electronic and elasticity properties such as large surface–to–volume 

ratio, high conductivity, high mobility, strong mechanical, low energy dynamics of 

electrons with atomic thickness and flexibility, graphene can be utilized in the 

creation of nanoscale sensors with low power requirements. In this study, the 

potential of monolayer graphene in generating NO2 gas sensor is investigated. It is 

concluded that graphene has great potential as a material for ultra-sensitive gas 

sensor by optimizing of the device structure. 

1.3 Research Objective 

The purpose of this study is on the modeling and simulation of GNRs 

(monolayer, bilayer and trilayer) FET as a 1D device. The objectives of this study are 

as follow: 

i. To analytically model the p-n and homo junctions for monolayer GNR.  

ii. To analytically model the carrier statistics and conductance for TGN. 

iii. To formulate analytical and semi-empirical equations for ballistic 

carrier transport in GNRFET. 

iv. To analytically model GNRFET based devices. 

1.4 Scope of Study 

The implementation of this research includes the following: 

i. The enhancement of the p-n and homo junction analytical models for 

monolayer GNR.  
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ii. The enhancement of the carrier concentration and conductance 

analytical models for TGN.  

iii. The enhancement of the ballistic carrier transport analytical model for 

GNRFET. 

iv. Analytical modeling of GNR based devices such as monolayer 

graphene FET based gas sensor. 

v. Comparison between the proposed models and published data in terms 

of physical structure and electrical performance of the devices.  

1.5 Research Contributions 

There are many challenges in the downscaling procedure of conventional 

MOSFETs, such as short-channel effects, gate-leakage current, and so forth. 

Therefore, new materials and structure similar to multiple gate MOSFETs, 

CNTFETs, GNRFETs and molecular based transistors are significant to overcome 

the downscaling problems. This study mainly focuses on developing a physical 

model based on GNRFET to find out device behavior, which are very important for 

optimizing electronic device performance. This research is basically different from 

other related investigations that are explained as follows: 

i. In this study, the quantum confinement effect for modeling transport 

phenomena in 1D GNRFETs is employed. The energy band structure 

is the start point of all calculations. The carrier statistics in 

corporation with a numerical solution for low-dimensional 

nanostructure is elaborated.  
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ii. The research develops the analytical models of monolayer GNR p-n 

and homo junctions, BGN schottky diode and TGN SB FET as a high 

speed switch. 

iii. A general analysis of recent developments in NO2 gas nanoscale 

sensor based on monolayer graphene is also presented in this research.     

1.6 Thesis Organization 

This chapter briefly shows problem statements, objectives and scope of this 

research. The rest of the thesis is organized to elaborate the key aspects of this 

research. This section gives an outline of the thesis as follow: 

Chapter 2 explains the historical overview of GNR (monolayer GNR, BGN 

and TGN). It presents a comprehensive overview of energy band structure, which is 

the key point to understand transport phenomena in quasi 1D material such as GNR. 

It inclusively reviews the related research in basic geometries of GNR. Furthermore, 

the historical study of monolayer GNR p-n and homo junctions, BGN schottky 

diode, TGN SB FET and monolayer graphene FET based gas sensor is briefly 

presented in this chapter. 

Chapter 3 describes the methodology involve in this research. In general, the 

activities needed for this research is categorized into three phases as described in this 

chapter. At the next, a general description of the system design and development 

process is discussed. Finally, the framework of this research is introduced which 

includes the study in the modeling part and simulation part by MATLAB software. 

In simulation part parallel to the modeling study, MATLAB software programming 

will be used intensively. 

Chapter 4 outlines the proposed methods for modeling and simulation study 

of GNR (monolayer GNR, BGN and TGN) based FET models. This chapter 

proposes analytical modeling of monolayer GNR p-n and homo junction, BGN 
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schottky diode performance. Additionally, quantum confinement effect of TGN 

carrier concentration, the effect of applied voltage on the TGN carrier effective mass, 

the conductance of TGN and also analytical modeling of TGN SB FET for high 

speed switching applications are discussed in this chapter. At the end, the simulated 

results are shown and discussed.  

Chapter 5 presents the monolayer graphene FET based gas sensor application. 

Analytical modeling of monolayer graphene FET based NO2 gas sensor is presented 

in this chapter. The comparison of proposed model with published data is illustrated 

by diagrams and charts, and good agreement is reported. 

Chapter 6 briefly summarizes the thesis with some conclusions. However, the 

proposed models show a promising improvement in obtained results. Furthermore, 

the challenging and emerging trends identified fir future research are also suggested 

in this chapter. 
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