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ABSTRACT 

 

 

pH sensor and humidity sensor have received much attention since their 
application is of great importance in many fields.  Due to their advantages, optical 
fiber sensors have been introduced and investigated to overcome the limitation of 
conventional pH and humidity sensors.  However, there are some drawbacks, such as 
low sensitivity, low accuracy and low multiplexing capability of the current optical 
sensors.  This thesis presents the design and development of new optical fiber sensors 
for pH and humidity measurement by adopting fiber Bragg grating (FBG) technique.  
Three types of sensor design which are hydrogel coated-unetched FBGs, hydrogel 
coated-etched FBGs and elastomer-hydrogel coated FBGs are proposed for pH 
measurement.  FBG based-Fabry-perot (FBG-FP) was proposed as humidity sensor 
with temperature compensation.  The coating thickness on the cavity is higher than 
that on the FBGs to obtain different humidity response and temperature response.  
The working principle of both FBG pH sensors and humidity sensors relies on stress 
induced on the fiber due to mechanical expansion of swelling sensing materials coated 
on the FBG.  The swelling sensing material used to construct FBG pH sensors is pH 
sensitive hydrogel synthesised by Hydroxyethyl Methacrylate (HEMA), acrylic acid 
and ethylene glycol dimethacrylate as crosslinker.  Meanwhile, the swelling sensing 
material used to construct FBG humidity sensors is polyimide.  Optimisation of the 
FBG pH sensors was done by analysing the strain induced in the FBG due to swelling 
of the coating material.  The swelling of pH sensitive hydrogel was modeled using 
free energy function and was solved using finite element method by adopting 
ABAQUS software.  Theoretical analysis of the FBG-FP response to humidity and 
temperature change was done using coupled mode theory.  For FBG-FP humidity 
sensor, calculation results show that the humidity sensitivity and thermal sensitivity 
are 1.92pm/%RH and 8.87pm/ oC, respectively, for polyimide coating thickness of 
10µm on the FBG and 15µm on the cavity.  Fabrications were done for both pH 
sensor and humidity sensor.  For pH sensor, hydrogel coated-etched FBG with 
hydrogel coating thickness of 90µm and etched fiber diameter of 40µm was fabricated 
and characterised.  Results indicate that the sensor has a good reversibility and 
provides linear response in pH range of 4.97 to 7.17 with sensitivity of 0.056nm/pH 
unit and 0.195nm/pH unit at pH of 4.97 and 7.17, respectively.  For FBG-FP humidity 
sensor with recoated diameter of 145µm on the FBG and 157µm on the cavity, the 
experimental results show that the humidity sensitivity and thermal sensitivity are 
1.75×10-3nm/%RH and 1.52×10-2nm/oC, respectively. 
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ABSTRAK 

 

 

Sensor pH dan sensor kelembapan telah menerima banyak perhatian kerana 
penggunaannya adalah amat penting dalam pelbagai bidang.  Sensor gentian optik 
telah diperkenalkan dan dikaji untuk mengatasi had daripada sensor pH dan sensor 
kelembapan konvensional.  Tetapi, sensor optik semasa memiliki beberapa 
kelemahan seperti sensitiviti rendah, ketepatan yang rendah dan keupayaan 
pemultipleksan rendah.  Tesis ini membentangkan reka bentuk dan pembangunan 
sensor gentian optik yang baru bagi pengukuran pH dan kelembapan dengan 
menggunakan teknik gentian parutan Bragg (FBG).  Tiga jenis reka bentuk sensor 
iaitu FBG bersalut hidrogel-tanpa ukir, FBG bersalut hidrogel-terukir, dan FBG 
bersalut hidrogel elastomer dicadangkan untuk pengukuran pH.  FBG berasaskan 
Fabry-Perot (FBG-FP) telah dicadangkan sebagai sensor kelembapan dengan 
pampasan suhu.  Ketebalan salutan pada rongga adalah lebih tinggi berbanding di 
FBGs untuk mendapatkan tindak balas RH yang berbeza dan tindak balas suhu.  
Prinsip kerja bagi kedua-dua sensor pH dan sensor kelembapan bergantung kepada 
tekanan yang dikenakan kepada gentian disebabkan pengembangan mekanikal dari 
bahan penderiaan pengembangan yang disalut pada FBG.  Bahan penderiaan 
pengembangan yang digunakan untuk membina sensor pH FBG adalah hidrogel peka 
pH disintesiskan dari Hidroksil Metakrilat (HEMA), asid akrilik dan etilena glikol 
dimetakrilat sebagai crosslinker.  Sementara itu, bahan penderiaan pengembangan 
yang diguna bagi membina sensor kelembapan FBG adalah polyimide.  
Pengoptimuman sensor pH FBG telah dilakukan dengan menganalisis tekanan yang 
dikenakan dalam FBG disebabkan pengembangan bahan salutan.  Pengembangan 
peka pH telah dimodelkan menggunakan fungsi tenaga bebas dan telah diselesaikan 
melalui kaedah unsur terhingga dengan menggunakan perisian ABAQUS.  Analisis 
teori tindak balas FBG-FP terhadap kelembapan dan perubahan suhu telah dilakukan 
menggunakan teori mod berganding.  Untuk sensor kelembapan FBG-FP, keputusan 
pengiraan menunjukkan bahawa kepekaan RH adalah 1.92pm/%RH dan kepekaan 
haba adalah 8.87pm/oC, bagi ketebalan salutan polyimide 10μm pada FBG  dan 
15μm pada rongga.  Fabrikasi telah dilakukan untuk kedua-dua sensor pH dan sensor 
kelembapan.  Bagi sensor pH, FBG bersalut hidrogel-terukir dengan ketebalan 
lapisan hidrogel 90μm dan diameter gentian terukir 40μm telah difabrikasi dan 
dicirikan.  Keputusan menunjukkan bahawa sensor mempunyai kebolehbalikan yang 
baik dan memberikan tindak balas linear dalam julat pH bermula 4.97 sehingga 7.17 
dengan kepekaan unit 0.056nm/pH pada pH 4.97 dan kepekaan unit 0.195nm/pH 
pada pH 7.17.  Bagi sensor kelembapan FBG-FP dengan diameter salutan 145μm 
pada FBG dan 157μm pada rongga, keputusan ujikaji menunjukkan bahawa 
kepekaan kelembapan adalah 1.75 × 10-3nm /% RH dan sensitiviti haba adalah 1.52 
× 10-2nm/oC. 
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CHAPTER 1 
 

INTRODUCTION  

 

1.1 Research Background 

 

Routine measurements of chemical parameters are required in wide 

applications such as industrial production, environmental monitoring, biotechnology, 

medicine and agriculture.  Among various types of chemical parameters, pH and 

humidity are of the most essential parameters since their measurement is of great 

importance in many fields.   

 

The measurement of pH, a measure of the acidity or basicity of a solution, is 

one of the parameter used in environmental monitoring such as river water quality 

monitoring, seawater analysis, ground water analysis and wastewater monitoring.  A 

lot of biological and geochemical processes occurring in freshwater, seawater and 

marine sediments involve strong pH changes (Kocincová, 2007).  In water quality 

monitoring, pH is an important indicator since it determines whether the water is 

chemically changing or not.  The change of river water's pH can harm animals and 

plants living in the water.  In wastewater treatment, pH measurement is important to 

ensure that the treated wastewater is suitable for discharge back into the 

environment. The pH measurement is also essential in agriculture, food science, 

process control in industry, and clinical fields.   

 

Whereas, humidity monitoring is a matter of concern in various areas such as 

environmental monitoring, agriculture, weather forecasting, and most importantly in 
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manufacturing factory of chemicals, food products and electronic components where 

air-conditioning control is crucial to ensure good production process.  In 

manufacturing process, moisture in the atmosphere must be controlled below a 

certain level. Textiles, papers and cereals must be dried to a standard storage 

condition in order to prevent the quality deterioration. 

 

Conventional sensors have been widely used for long time such as electronic 

meters (glass electrode) (Ballance, 1996) for pH measurement and capacitance 

sensors (Matsuguchi et al., 1998; Roman et al., 1995) for humidity sensors.  

However, conventional sensors suffer from several drawbacks such as relatively 

large size, not suitable to be used in hazardous environment and not possible for 

distributed and multiplexed sensing system.  

 

Optical sensors have been introduced and investigated recently to overcome the 

limitation of conventional pH sensors (Boisde et al., 1988; Grant et al., 2001; Jones 

& Porter, 1988; Leiner & Hartmann, 1993; Lin, 2000; Mohr & Wolfbeis, 1994) and 

humidity sensors (Akita et al., 2010; Itagaki et al., 2009; Wu et al., 2011).  The 

advantages of optical sensors are freedom from electromagnetic interference, wide 

bandwidth, compactness, geometric versatility, feasibility of miniaturization, and 

possibility of remote sensing and real time measurement.  Optical sensors also offer a 

possibility of deployment of distributed and array sensors covering extensive 

structures and geographical locations with low power loss.  In addition, by 

multiplexing fiber sensors, the cost per sensing point can be reduced and the 

connection of the network can be simplified. 

 

In general, based on modulation technique, optical sensor can be classified as 

an intensity, a phase, a frequency, a polarization sensor and a wavelength sensor.  

Wavelength modulated sensor is attractive since the measurand information is 

wavelength encoded, i.e., the sensed information is encoded directly into wavelength, 

which is an absolute parameter.  Therefore, the output signal of wavelength sensor 

does not depend on the input light level and losses along the optical system. The 

most widely used wavelength based sensor is Fiber Bragg grating (FBG) sensor due 

to its superior multiplexing capability.  The FBGs can be multiplexed on a single 
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optical fiber which allows the measurement of measurand at different places on a 

large structure to be relatively easily implemented.  Utilization of FBG for sensor 

application is done by taking the advantage of the dependence of the grating 

parameter to temperature and strain.  Due to the dependence of the grating parameter 

to temperature and strain, the Bragg wavelength of an FBG can be tuned by applying 

strain or temperature.  FBG-based sensors make use of the shift of the Bragg 

wavelength with respect to the sensing parameter.  The primary interest of FBG 

sensor applications is for strain and temperature measurement (Iadicicco et al., 2006; 

Kerrouche et al., 2008; Rao et al., 2000).  However, FBG sensors are also useful for 

other applications such as chemical sensors, pressure sensors, and accelerometers.  

Due to the above-mentioned attractive properties, FBG technique is a potential 

candidate to be used in the development of pH and humidity sensors with compact 

structure, high accuracy, high sensitivity and high multiplexing capability. 

 

 

1.2 Sensor Performance Parameters 

 

Performance of a sensor is defined by several parameters as follow: 

1. Sensitivity 

Sensitivity of a sensor is defined as the change in output of the sensor per unit 

change in the parameter being measured. The factor may be constant over the 

range of the sensor (linear), or it may vary (nonlinear). 

2. Linearity 

The most convenient sensor to use is one with a linear transfer function.  That is 

an output that is directly proportional to input over its entire range, so that the 

slope of a graph of output versus input describes a straight line. 

3. Accuracy 

The accuracy of the sensor is the maximum difference that will exist between the 

actual value, which is measured by a good standard, and the indicated value at 

the output of the sensor.  Generally, the accuracy represents the largest expected 

error between actual and ideal output signals. 
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4. Range 

The range of the sensor is the maximum and minimum values of applied 

parameter that can be measured.  It represents the highest possible input value 

which can be applied to the sensor without causing unacceptably large 

inaccuracy.  Applied parameters outside of this range are expected to cause 

unacceptably large inaccuracy. 

5. Reversibility and Hysteresis 

Reversibility measures the capability of a sensor to follow the changes of the 

input parameter regardless of which direction the change is made.  In opposite, 

hysteresis determines the characteristic that a sensor has in being unable to repeat 

reversely the measurement results that have been recorded in one direction.  

6. Repeatability  

Repeatability represents the ability of a sensor to repeat a measurement when put 

back in the same environment. It is specified by the maximum difference 

between different measurements when the same procedure is repeated under the 

same condition.  Repeatability is often directly related to accuracy, but a sensor 

can be inaccurate, yet be repeatable in making observations.  

7. Response Time 

Response time is defined as the time required for a sensor to change the output 

from its previous state to 90% of a new final value.  

 

 

1.3 Problem Statement 

 

Most of the current optical pH sensor and optical humidity sensors are intrinsic 

fiber optic sensor based on spectroscopic methods.  Spectroscopic method can be 

realized by applying absorption and fluorescence method.  An attractive feature of 

absorption method is that it is simple and easy to use.  However, it has drawback in 

term of sensitivity.  Also, the absorption method require thick sensing layer and is 

difficult to miniaturize (Lin, 2000).   

 

Other phenomenon such as evanescent wave (EW) has also been used to 

develop pH and humidity sensors.  EW fiber optic sensor (EWFS) exploits the 
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optical absorption at the core-cladding interface of the fiber optic.  EWFS uses 

measurand sensitive dye which is immobilized on the uncladded portion of an optical 

fiber (Gupta & Sharma, 1997).  However, measurement with the above-mentioned 

technique suffer from instabilities resulting from decrease in the concentration of 

indicator due to leaching and photobleaching (Lin, 2000).  Moreover, since the 

methods are optical intensity modulated, measurement is highly affected by 

fluctuations in the intensity of light source and variations in light attenuation through 

the optical fiber due to changes in the degree of bending.  Thus, measurement errors 

may occur. 

 

FBG technique can be adopted to overcome the accuracy limitation of the 

current optical pH sensors.  In designing FBG sensor, it is important to ensure that 

the Bragg wavelength shift per unit of the parameter being measured (sensitivity) is 

large enough to be resolved by FBG interrogation system.  Most of the FBG 

interrogation system currently available in the market provides wavelength resolution 

of ∼ 1pm.  Since the sensing principle of FBG pH sensors relies on mechanical effect 

induced on the fiber, the sensitivity can be improved by increasing the induced 

mechanical response.  However, the increase of mechanical response means the 

increase of stresses on the fiber.  Therefore, optimization should be made by 

considering trade-off between sensitivity and physical reliability. 

 

Triques and co-workers have developed FBG-based pH sensor with sensitivity 

of ∼0.094nm/pH unit (Junior et al., 2007; Triques et al., 2006).  However, the design 

is bulky, complex and not suitable to be multiplexed on a single optical fiber, hence 

limits the multiplexing capability.  Thus, there is a space to develop FBG-based pH 

sensor to obtain optical pH sensor with compact structure, high accuracy, high 

sensitivity and high multiplexing capability. 

 

For humidity sensor application, even though the use of FBG has been studied 

by researchers (David et al., 2012; Huang et al., 2007; Iadicicco et al., 2006; 

Kronenberg et al., 2002; Yeo et al., 2005), temperature cross sensitivity as the main 

problem in FBG sensors still need further investigation to be solved.   
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1.4 Objective 

 

The objective of this work is divided into:  

• To improve the compactness, accuracy and sensitivity of pH sensor by 

means FBG technique. 

• To design and model FBG based humidity sensor with temperature 

compensation.  

• To develop FBG based pH sensor and humidity sensor devices for 

practical performance characterization. 

 

 

1.5 Scope of Research 

 

In order to realize the research objectives, the works to be carried out in this 

research have been identified as follow: 

• Modeling and simulation of pH-sensitive hydrogel swelling behavior. 

• Simulation of strain induced in the FBG due to the mechanical expansion of 

pH-sensitive hydrogel coating. 

• Simulation and analysis the properties of FBG spectrum under the influence 

of hydrodynamic volume change of pH-sensitive hydrogel coating. 

• Simulation and analysis the properties of FBG spectrum under the influence 

of hydrodynamic volume change of moisture sensitive coating material for 

humidity sensor application. 

• Fabrication and characterization of the optimized FBG sensors. 

 

 

1.6 Research Methodology 

 

The first phase in the research methodology of this work is literature review to 

understand the problem, research requirement, and related current technology 

especially FBG sensor technology.  Through the literature review, the related theory 
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and published works were overviewed.  The findings were used to define the 

objectives, scopes, and design requirements for solving the problem of fiber optic 

sensor technology. 

 

For FBG based pH sensor optimization, the first step is to choose the pH 

sensitive hydrogel to be used as coating material.  The mechanical expansion of 

hydrogel coating due to pH change was modeled by investigating the swelling 

behavior of pH using numerical method.  Then, the induced strain in the FBG due to 

mechanical expansion of hydrogel coating was simulated using finite element 

method (FEM) to find the optimum coating dimension.  The wavelength shift of the 

FBG due to the induced strain was then calculated analytically to determine the 

sensor sensitivity to the pH change.  The optimum design (grating length, coating 

thickness and fiber diameter) was then obtained from the simulation results.   

 

Optimization of FBG based humidity sensor was done by design the sensor 

structure so that the sensor can serve as humidity and temperature simultaneously.  

To investigate the sensor response to humidity and temperature, spectral profile of 

the sensor due to the induced strain resulted from volume expansion of the moisture 

sensitive coating material was simulated by employing commercial software 

MATLAB.   

 

Sensor performances of both FBG based pH sensor and FBG based humidity 

sensor which include reversibility, repeatability, accuracy and temperature response 

were then measured to investigate the device characteristics.  The fabrications of the 

devices were done by outsourcing.  The flowchart of the research methodology is 

depicted in Figure 1.1. 
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Figure 1.1 Flowchart of research methodology 
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1.7 Thesis Organization 

 

This thesis is organized into 6 chapters.  The importance of pH and humidity 

measurement has been discussed as introduction in Chapter 1.  The problems and 

drawbacks of the existing optical sensors have been highlighted as problems to be 

solved in this work.  The objective and the scope of the work are identified and 

presented. 

 

Theoretical review of FBG is briefly elucidated in Chapter 2.  The review 

started with discussion about FBG structure and principles of FBG, optical properties 

of FBG and is continued with the coupled mode theory that governs wave 

propagation in gratings.  Solution to the coupled mode theory for uniform gratings 

and non uniform grating are presented.  To gain knowledge about FBG fabrication, 

various FBG fabrication techniques are presented.  Apodization technique to 

eliminate sidelobe in FBG spectrum is also discussed.   

 

Chapter 3 discusses the sensing principle of FBG sensor and FBG chemical 

sensor.  Various optical sensor techniques for pH and humidity measurement are 

briefly reviewed and compared.  The constitutive model that relates the stress and 

strain induced on the optical fiber is presented.  Since the FBG chemical sensor relies 

on the use of swelling sensing material to make the FBG sensitive to chemical 

measurands, theory that model the behavior of the coating materials is discussed.  

The cross sensitivity of FBG sensors and the technique to resolve it is also presented 

briefly.   

 

Simulation and optimization of FBG sensor for pH and humidity measurement 

are discussed in Chapter 4.  Design optimization of FBG pH sensor was done by 

analyzing the hydrogel swelling behavior, stress and strain on the fiber, and the 

Bragg wavelength shift due to temperature change.  The simulation was done for 

three hydrogel coated FBG designs, namely hydrogel coated-unetched FBG, 

hydrogel coated-etched FBG, and hydrogel-elastomer coated FBG.   Optimization of 

temperature compensated FBG humidity sensor is also presented in this chapter.   
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In Chapter 5, fabrication and characterization of the fabricated devices are 

presented.  The characterization includes reversibility, repeatability, accuracy, time 

response and temperature response of the sensor.   

 

Finally in Chapter 6, concluding remarks, contributions and recommendations 

for future prospects for this work are given. 
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