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ABSTRACT 

 

 

 

 

Amongst design challenges in designing Complementary Metal-Oxide-

Semiconductor (CMOS) active inductors are to produce high inductance and high 

tune-ability within an acceptable quality factor in a specific frequency range. The 

need for these design qualities is apparent in Radio Frequency (RF) circuits such as 

filters, Low Noise Amplifiers (LNAs) and Voltage-Controlled Oscillators (VCOs). 

This thesis focuses on the above issues to design tunable active inductor circuits and 

offers a design approach which partially solves some of the design challenges. Three 

active inductor circuits with comparable or better performance in terms of high 

inductance and tune-ability are produced from this research work. These active 

inductors which have been designed using Cadence Spectra based on CMOS 0.18 

µm Silterra process have high tune-ability, high quality factor and wide tuning range. 

Their inductance tune-ability ranges from 5 nH to 500 nH with a frequency range of 

1 GHz to 7 GHz and the quality factor range of 30 to 700. The power dissipation is 

from 1.9 mW to 6.5 mW from a 1.8 V DC power supply. The inductance can be 

tuned by tuning the variable resistance within the active inductor itself. The active 

inductors have been employed in LNA and VCO circuits where their output 

frequency range is changed by tuning the variable resistor. The simulation result for 

the LNA shows a frequency range of 1 GHz to 2.5 GHz with high gain ( ���), low 

input return loss ( ���), low output return loss ( ���) and low noise figure. For the 

VCO, the oscillating frequency ranges from 0.5 GHz to 2.2 GHz with low chip size, 

high ���� and high output power. 
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ABSTRAK 

 

 

 

 

Antara cabaran dalam reka bentuk Pelengkap Semikonduktor-Oksida- Logam 

(CMOS) pengaruh aktif adalah untuk menghasilkan kearuhan dan keboleh talaan 

yang tinggi bagi faktor kualiti yang boleh diterima dalam julat frekuensi yang 

tertentu. Keperluan untuk kualiti reka bentuk ini dapat dilihat jelas dalam litar 

Frekuensi Radio (RF) seperti penapis, Penguat Rendah Bunyi (LNAs) dan Pengayun 

Voltan-Kawalan (VCOs). Tesis ini memberi tumpuan kepada isu-isu di atas dan 

menawarkan  sebahagian penyelesaian  kepada cabaran reka bentuk. Tiga litar 

pengaruh aktif dengan prestasi yang setanding atau lebih baik dari segi kearuhan dan 

talaan yang tinggi dihasilkan dari kerja-kerja penyelidikan ini. Pengaruh aktif ini 

telah direka dengan menggunakan Cadence Spectra berdasarkan proses Silterra 

CMOS 0.18 µm. Pengaruh aktif ini mempunyai keupayaan talaan dan faktor kualiti 

yang tinggi disamping julat talaan yang lebar. Keupayaan talaan kearuhan litar ini 

adalah dari 5 nH hingga 500 nH dengan julat frekuensi dari 1 GHz hingga 7 GHz dan  

faktor kualiti diantara 30-700. Pelesapan kuasa adalah dari 1.9 mW hingga 6.5 mW 

dari bekalan kuasa DC 1.8 V. Kearuhan boleh ditala dengan penalaan rintangan 

boleh ubah dalam pengaruh aktif itu sendiri.  Pengaruh aktif ini telah digunakan 

dalam litar LNA dan VCO di mana julat frekuensi keluaran boleh diubah deang 

penalaan perintang bolehubah. Hasil simulasi menunjukkan keupayaan julat 

frekuensi dari 1 GHz hiagga 2.5 GHz dengan gandaan yang tinggi ( ���), pekali 

pantulan voltan masukan ( ���), dan pekali pantulan  voltan keluaran  ( ���) yang 

rendah dan nilai bunyi yang rendah. Untuk VCO, julat ayunan frekuensi adalah dari  

0.5 GHz hingga 2.2 GHz dengan saiz cip yang kecil, ����  dan kuasa keluaran yang 

tinggi. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Wireless communication systems are changing fast due to the increasing the 

demands for high quality wireless devices. Nowadays, the feature sizes of the CMOS 

devices are decreasing while the operating frequencies of the CMOS devices are 

increasing. And for CMOS designers, the cost and integration of chip regarding 

higher performance, small chip area and lower power consumption are challenging 

task. The expansion of wireless communication systems demands for low cost, high 

performance and small chip size RF transceivers. 

 

 

 CMOS spiral inductors have effective applications in RF circuits, signal 

processing and data communications. These applications include Voltage Controlled 

Oscillator (VCOs), Low Noise Amplifier (LNAs), filters, Phase Locked Loops 

(PLLs), RF phase shifts and so many applications. But these inductors have some 

disadvantages. The most important disadvantages are: 

 

 

1- Low Quality Factor: 

 

 

The inductance of a spiral inductor is fixed and depend on the number of the 

turns of spiral is set. The only way to increase the inductance of the spiral inductor is 

to increase the number of the turns of the spiral or use a stacked configuration. By 
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increasing the number of turn the chip size and spiral substrate capacitance will be 

increased dramatically. 

 

 

2- Large silicon area: 

 

The inductance of a spiral inductor is directly proportional to the number of 

turns of the spiral of the inductors. For high value of inductor we have to increase the 

number of turn, and it increases that the chip size. For example, for 8 nH inductance 

we need 6 turns with ����= 400 µm. The chip area is larger than 400×400 

µ��.CMOS active inductors composed of CMOS transistors in special topology that 

have the inductive characteristic in a specific frequency range. 

 

 

Active Inductors (AI) in comparison with spiral inductors have advantages 

such as low chip size, tunable inductance and tunable Q factor. Designing high 

inductance and high Q factor AI is a challenging task.  

 

 

If these design issues are solved, the applications of active inductor will be 

expanded in CMOS RF circuit such as: VCO, LNA, PLL, RF band pass filters, and 

in many other applications. The applications of active inductors are affected by 

problems that come from the intrinsic characteristics of MOS devices. The most 

important of these problems is high sensitivity to noise. It should be considered that 

this limitation is related to all CMOS devices. 

 

 
 

 

1.2 Problem Statement 

 
 

The most challenging tasks in designing active inductors are high inductance, 

high tune ability and reconfigure ability within an acceptable Q factor in specific 

frequency range. Tune ability of active inductors is the main advantage of active 

inductors that qualified it to be used in RF circuits. This is because most of the RF 

circuits such as filters and VCOs need to use a tunable inductor for frequency band 

selections. This issue is apparent as some of recently published active inductor 
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circuits do not have a capability of tune ability and reconfigure ability. This is clearly 

the weakness of these active inductors circuits. Some research work may have 

improved Q, but circuits do not have tune ability and reconfigure ability. In this case, 

this active inductor circuit can be used just in specific applications for a fixed value 

of Q factor and inductance value.   

 
 

The other important characteristic of active inductors is designing active 

inductor with high inductivity. In some circuit such as LNA, filter and VCO, using a 

high inductance inductor is necessary. In designing LNA, the gain is directly related 

to output inductance. By using active inductor with a high inductance, the total gain 

will be high and also the frequency range will be reconfigurable. For example, the Q 

factor could be around 40, but the inductance is low (around 2 nH). In another work, 

the Q factor is high (around 340), but the inductance is also low (around 1.5 nH). In 

this case, these active inductor circuits cannot be used in an application such as 

LNA. Because in some LNA circuit, we need high inductance value. (For example  

higher than 10 nH).  

 
 

Q factor is another important parameter in active inductors circuit. In some 

case, there is a trade of between high Q factor and high inductance value. But the 

most important aims are high inductance and high tunable active inductors with 

acceptable Q factor.  

 
 

The low power dissipation is the another characteristic of the active inductor 

that should take it to account in designing active inductor circuit. Because, the active 

inductor power dissipation will be added to the applied circuit power consumption 

and caused that the total power dissipation to increase. The power dissipation of  the 

active inductor circuit is depended on the structure of the active inductor and 

designing process. In some topologies because of structure, the power dissipation is 

high and in some cases it is low. By designing  active inductor circuit based on low 

power dissipation, it is possible to decrease active inductor's power consumption. 
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Based on the above design issues, the problem statement of this research can 

be summarized as: Designing  high inductance, high tune ability, high Q factor and 

low power active inductor circuit. 

 
 

1.3 Objective of Research 

 
 

The main objectives of this research are three: 

1- Designing high tunable active inductor 

2- Increase the quality factor  

3- Employ the designed active inductors in RF modules, which are VCO or 

LNA 

 

Design and characterize active inductor circuits which high inductance (from 

a few nH up to 100 nH) and high tune ability with acceptable Q factor (Maximum 

value of Q up to 400) and low power dissipation. In the first stage, a study will be 

conducted on methods to design active inductor circuit and analysis will be carried 

out on the active inductor’s performance such as inductance, Q factor, tune ability 

and dc power consumption.  

 
 

For achieving high inductance value active inductor circuit; we should survey 

on active inductor structures that have high impedance value. After designing active 

inductor architecture, we have to set bias condition of active inductor circuit to have 

a high impedance value. 

 
 

The tune ability and reconfigure ability is the other performance that should 

be considered in designing process. The active inductor circuit that has the capability 

of tune ability, can be used in so many applications such as VCO and reconfigure 

able LNA. The high Q factor is the other performance of active inductor circuit that 

should be considered in the design process to achieve acceptable value.  

 
 

By using the designed active inductor circuits in applications such as VCO 

and LNA, we can show the capability of these active inductor circuits and we can 
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prove that these active inductors are employable. For example, in VCO circuit, we 

can explain the tune ability of frequency range by tuning active inductor circuit. In 

the LNA circuit we can show the tune ability of frequency range and reconfigure 

ability of the circuit by tuning the active inductor circuit core. 

 

 
 

 

1.4 Scope of Study 

 
 

The scopes of study are as follows: 

1.        In the first stage of the work, there is a crucial need to make a literature 

review of up to date active inductors. After surveying all previous designed and 

published active inductors, an analysis of major active inductor's performances will 

be carried out, and it is the task of this research to come out with at least comparable 

or better performance in terms of high inductance, tune ability, high Q factor and low 

power dissipation. 

 
 

The review and analysis could be grouped in to 3 categories: 

1- Designing active inductor circuit using reported active inductors topology 

with improve characteristics. This is possible by changing the active 

inductors circuit biasing. Because dc biasing is one of the important parts of 

active inductor design schedules. In active inductor circuit, dc biasing has 

directly an effect on �	 of transistors and �	 of transistors have most effect 

on Q factor and inductance parameters. With this reason, by improving the 

bias condition we can design active inductor circuit with best performance 

with previously published topology. 

 
 

2- Designing active inductor circuit using reported topology but by changing 

or adding some elements to improve the performance of the circuit. By 

changing some part of topology in sometimes it is possible to improve the 

performance.  

 
 

3- Designing new active inductor circuit topology. 
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In some case, after surveying all active inductors topologies, it is possible to 

design active inductor circuit with new topology. By knowing the base of 

active inductor circuit and by respect to the gyrator concept, it is possible to 

build new architecture to work as active inductor circuit. In some case, we 

can conflict two active inductor circuit to make a new architecture with 

improved performance. 

 
 

By using one of this three method the active inductors circuit characteristics can be 

improved. 

2.         Design Active Inductor architecture 

After choosing active inductor design method and architecture, the design 

process will be started. For analysis of the proposed active inductor circuit, the 

Cadence software using 0.18 µm Silterra process was used. During this process all 

the performances of the designed active inductor will be checked to reach the desired 

performance of active inductor circuit. If the desired performance of the active 

inductor is achieved, this step will be finished.  

3.         Apply the designed active inductor in RF modules.  

In this step, the designed active inductors will be applied to the RF modules 

such as: LNA and VCO to evaluate the performance and applicable of active 

inductors circuit. Because some of the active inductors have good performance, but 

they are not applicable in RF modules such as LNA, VCO and filter or other in 

applications of active inductor circuit.  

 

 
 

1.5 Thesis Organization 

 
 

This dissertation is organized as follows. Chapter 1 discusses the problem 

statement, objective of research. Chapter 2 begins with an overview of the active 

inductor circuit structures by presenting fundamental concepts of active inductor 

circuit and continued with literature review. In this part, we have a quick review of 



7 

 

the active inductor history and advanced active inductors topology. Chapter 3 

introduce proposed active inductor circuit. The analysis and the simulation result will 

be explained in this chapter. In this chapter inductance and Q factor equations will be 

discussed.  In chapter 4, reconfigurable LNA using proposed active inductor circuit 

will be discussed. LNA circuit will be analyzed and the simulation result will be 

compared. The tune-ability of frequency range for proposed circuit will be 

explained.  In Chapter 5 the VCO circuit using proposed active inductor circuit will 

be explained and result will be shown. In chapter 6 the second active inductor circuit 

will be presented and in Chapter 7 the LNA circuit using the proposed active 

inductor circuit will be explained. In chapter 8 the third active inductor (differential 

active inductor) circuit is presented and also it is used in single-to-differential low 

noise amplifier(S-to-D-LNA) to show the application of this DAI circuit. And finally 

in chapter 9 the conclusion and some suggestion for future work will be given.  

 

 
 

1.6 Contribution of the Thesis 

 

 

The main aim of this research is focused on a tune-ability of active inductor 

circuit. Tune ability of active inductors is the main advantage of active inductors that 

qualified to use it in RF circuit. Because most of the RF circuit such as Filters and 

VCOs need to use a tunable inductor for frequency band selections. The 

contributions of this thesis are listed as follows: 

 
 

i.          Propose a first new active inductor circuit topology with wide tuning range 

(from 1 GHz up to 7 GHz) and high tunable inductance (from a few nH to 100 nH). 

The best performance of this circuit architecture is high tune-ability and linearity of 

the inductor for wide frequency range. A feedback resistor is used for tuning the 

active inductor circuit. Instead of a passive resistor, a PMOS transistor can be used 

as a resistor to expand the controlling of the active inductor circuit with voltage. 

 
 

ii.          Propose a second and new active inductor circuit topology with  high 

tunable inductance (from a few nH up to 600 nH). The proposed active inductor 
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circuit uses current mirror circuit to increase inductance in new circuit topology. The 

extracted results show that the proposed active inductor has wide frequency range 

(from 1GHz to 4 GHz), high inductance (few nH up to 600 nH) and low power 

consumption (lower than 5 mW). In this active inductor topology, the power 

consumption is lower than the first active inductor circuit and also inductance value 

is higher than the first one.  

 
 

iii.        Propose a third differential active inductor circuit (DAI). It is designed to 

work in differential mode.  The simulation results show the differential inductance is 

from a few nH to 500 nH and Q factor from 10 to 200 and power dissipation of 2.2 

mW. The proposed DAI circuit is used in single-to-differential- LNA (S-to-D-LNA) 

to show the performance and applicability of DAI circuit.  

 
 

iv.  Design a reconfigurable LNA based on the proposed first active inductor 

circuit. In this circuit, the proposed active inductor circuit is used as an output load 

of the amplifier stage and act as a tunable and reconfigurable inductance. Tuning the 

frequency range of LNA is possible by tuning  the active inductor core. In the active 

inductor core, tuning is done by using variable passive resistor or variable PMOS 

resistor. The flexibility of frequency band selection is one of the advantages of this 

circuit. The other advantages are small chip size and fully inductance-less circuit. 

 
 

v.  Design a wide tuning range VCO circuit using the proposed  first active 

inductor circuit.  

 In this VCO circuit, the active inductor circuit is used instead of a spiral 

inductor in general VCO circuit architecture and in this VCO topology, the coarse 

frequency is achieved by tuning the integrated tunable active inductor circuit. In the 

active inductor circuit, the variable resistor (passive resistor or PMOS resistor) is 

used to tune the active inductor core.   

 
 

vi. Design LNA circuit based on the proposed second active inductor circuit. In 

this circuit, the proposed high tunable active inductor circuit is used instead of the 

spiral inductor. A common source cascode amplifier with RC feedback is used in 



9 

 

LNA circuit topology as an amplifier stage. This circuit shows the application of the 

second active inductor circuit in terms of high inductivity.  
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