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ABSTRACT 

 

 

 

 

Soliton is the solution of nonlinear partial differential equation that exists due to 

the balance between nonlinearity and dispersive effects. The existence of these two 

effects in Korteweg de Vries (KdV) equation enables us to obtain solitons solutions. The 

purpose of this research is to obtain the multi soliton solutions of KdV equation by using 

Hirota bilinear method. This method can produce the explicit expression for soliton 

solutions of KdV equation. From these solutions, a general pattern of F function in 

Hirota bilinear method is revealed. The amplitude of interacting soliton will determine 

the phase shift pattern. Various interactive graphical outputs produced by MAPLE 

computer programming can illustrate the solutions of these multi soliton up to eight-

soliton solutions of KdV equation. 
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ABSTRAK 

 

 

 

 

Soliton adalah penyelesaian bagi persamaan pembezaan separa tak linear yang 

wujud akibat keseimbangan di antara kesan tak linear dan penyelerakan. Kewujudan dua 

kesan ini dalam persamaan Korteweg de Vries (KdV) membolehkan kita untuk 

mendapat penyelesaian soliton. Tujuan kajian ini adalah untuk mendapatkan 

penyelesaian multi soliton bagi persamaan KdV dengan menggunakan kaedah Hirota 

bilinear. Kaedah ini boleh menghasilkan ungkapan eksplisit bagi penyelesaian soliton 

dalam persamaan KdV. Daripada penyelesaian ini, corak umum bagi fungsi F 

didedahkan. Amplitud bagi soliton yang berinteraksi akan menentukan corak anjakan 

fasa. Pelbagai paparan grafik yang interaktif dihasilkan melalui pengatucaraan komputer 

MAPLE dapat memberi ilustrasi penyelesaian multi soliton sehingga lapan soliton 

dalam persamaan KdV. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.0 Introduction 

 

 

This chapter introduces the topic chosen for the study. It presents the background 

of study followed by the problem statement. The objectives of the study are listed and 

the scope of the study is also discussed. The chapter ends with the significance of the 

study. 

 

 

 

 

1.1 Preface 

 

 

 The existence of solitary waves was first discovered by Scottish engineer, John 

Scott Russell in year 1834 (Miin, 2012).  It is called as solitary waves as it often occurs 

as this single entity and is localized. He was observed this solitary wave phenomenon on 

the Edinburgh Glasgow canal and called it ‘great wave translation’.  Throughout this 

phenomenon, he had performed some laboratory experiments and found that taller 

waves travel faster and are narrower (Drazin and Johnson, 1989). 

 

 

A breakthrough came later in the 19
th

 century, when Diederik Korteweg and 

Gustav de Vries in year 1895 starting a hydrodynamic description, derived from a 

nonlinear partial differential equation which had solutions in which the nonlinearity 
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is counterbalanced by a dispersive term which stabilizes the shape of solitary wave, 

thereby vindicating John Scott Russell’s observations. The partial differential equation 

arrived by Korteweg and de Vries’s reasoning had the same form as one previously 

studied by Joseph Boussinesq in year 1871 (Riseborough, 2010).  

 

 

 In addition, Riseborough (2010) also stated that Zabusky and Kuskal had found 

an amazing discovery in year 1965 by showing that, in continuum limit, the experiment 

conducted by Fermi-Pasta-Ulam in year 1955 yielded the Korteweg de-Vries (KdV) 

equation. They had found that although the equation was nonlinear, the solitary waves 

described by Korteweg de Vries (KdV) equation appeared as if they did not interact with 

each other. That is, after two solitons collide, they emerge with their shape and velocities 

unchanged. The only signature of the collision was phase shift. Due to this particle-like 

attributes of the wave pulse excitations of the Korteweg de Vries (KdV) equation, 

Zabusky and Kuskal first introduced the term “soliton” to describe them. 

 

 

 As solitons can be interacting with each other, thus the study on these interacting 

solitons had been conducted extensively by researchers since 1970s. According to Zhao 

(2012), the sign and absolute value of velocity determine the propagation direction and 

speed of soliton.  He found that the propagation direction and behavior of these 

interacting solitons followed the asymptotic forms. 

 

 

 

 

1.2 Background of study 

 

 

 As mentioned above, the concept of the soliton was initiated by Zabusky and 

Kuskal in year 1965. As the result, theory of the inverse scattering transform was 

developed. Apart from that, many numerical studies were used to indicate the soliton 

behavior towards nonlinear wave solutions. According to Drazin and Johnson (1989), 

here are three main numerical methods which are finite difference method, finite 

element method and spectral method. 
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 The Korteweg de Vries equation can model the dynamics of solitary waves. The 

KdV equation can be expressed as 

                

This is a nonlinear partial differential equation where        is the amplitude of the 

wave,   is the spatial term and  , is the time evolution. The      term is a dispersive 

term and the     term is a nonlinear term (Druitt, 2005). 

 

 

 Therefore, this research will investigate the analytical solution of KdV equation 

by using Hirota bilinear method for multi soliton solutions. Hirota bilinear method was 

introduced by Japanese researcher, Hirota in year 1971. This new direct method was 

developed to construct multi soliton solutions to integrable nonlinear evolution equation. 

The Hirota bilinear method turned out to be the fastest and easiest way to obtain the 

results of KdV equation solution for multi soliton (Hietarinta, 1997). 

 

 

 Nowadays, most of the researchers applied Hirota bilinear method to further 

revise on the multi soliton solutions. Yang and Mao (2008) had conducted a study on 

soliton solution and interaction property by using the Hirota bilinear method. They had 

found that in two solitons interactions, both solitons display the states before collision, 

exhibit the impacted and superposed states in the interactive area and after collision the 

solitons represent the identical states before collision.  They also argued that from the 

changes of amplitude and velocity, it shows that solitons interactions do not exchange 

their physical quantities but undergo a phase shift. 

 

 

1.3 Problem Statement 

 

 

The Korteweg de Vries equation is a nonlinear partial differential equation that 

can be solved numerically and analytically. However, to obtain the analytical solutions 

of KdV equation is not easy. Several methods had been used earlier to obtain the 

solutions of KdV equation. In this research, we will observe the soliton ladder of 
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solutions. We have to produce the permutation parameters of solitons interactions in 

order to obtain all the eight soliton solutions of KdV equation. As these solutions are 

difficult to calculate manually, thus we need a computer programming tools to derive the 

  function and produce the various graphical outputs for up to eight-soliton solutions of 

KdV equation.  

 

 

 

 

1.4 Objective of Study 

 

 

The objectives of this research are: 

1) to solve KdV equation analytically by using Hirota bilinear method. 

2) to obtain the phase shift pattern in multi solitons solution of KdV equation. 

3) to obtain the general pattern of F function for multi solitons solution of KdV 

equation. 

 

 

 

 

1.5 Scope of Study 

 

 

This study focuses on the multi soliton solutions of KdV equation by Hirota 

bilinear method that transforms the nonlinear partial differential equation into bilinear 

equation via the transformation of dependent variable. Meanwhile, the explicit 

expression of multi soliton solutions for KdV equation is obtained. The solutions will be 

investigated up to eight-solitons and computer programming; MAPLE will be used to 

obtain the graphical outputs of multi soliton solutions for KdV equation. The solution is 

discussed until eight-soliton as KdV equation mostly applied for shallow water waves 

which consist of ripple. Eight-soliton solutions already give a long calculation but it is 

sufficient to be applied for multi soliton solutions. Besides that, the phase shift pattern of 

two-soliton interaction is discussed in order to observe the relationship of amplitude 

towards soliton phase shift. The general pattern of F function is explored as well as to 
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help us in determining the accurate function applied in solving multi soliton solutions of 

KdV equation. 

 

 

 

 

1.6 Significance of Study 

 

 

 In detail, this study will discuss the multi soliton solutions of KdV equation up to 

eight-solitons. The Hirota bilinear method will be used to obtain these solutions of KdV 

equation which developed from the concept of soliton. Thus, it can be applied in many 

areas such as shallow water and deep water waves, fibre optics, DNA and protein, and 

biological model. 

  

 

 The characteristics of KdV equation itself which are nonlinear and dispersive 

could gives important thoughts in solving a critical phenomenon such as tsunami. The 

balancing of the nonlinearity and dispersion effects in tsunami phenomenon is important 

to understand the occurrence of wave’s dispersion near beaches as it travels in a long 

distance. The travelling of tsunami waves which behaves like soliton can be modelled as 

KdV equation. 

 

 

 Through this research, we will able to obtain the solution of multi soliton up to 

eight-solitons which shows the soliton ladders of KdV equation by using Hirota bilinear 

method. The phase shift pattern and general pattern of F function will gives another 

thoughts which convenience others to solve multi soliton solutions. 
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