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Abstract. We present an integral equation method for conformal mapping of doubly connected regions onto a unit 
disc with circular slit of radius µ < 1. Our theoretical development is based on the boundary integral equation for 
conformal mapping of doubly connected region derived by Murid and Razali [14]. In this paper, using the boundary 
relationship satisfied by the mapping function, a related system of Fredholm integral equation is constructed, 
provided µ is assume known. For numerical experiment, the integral equation is discretized which leads to a system 
of linear equations. Numerical implementation on a circular annulus is also presented.  
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1. Introduction 

Numerical conformal mapping of multiply connected regions are presently still a subject of interest. Every 
region of connectivity p can be mapped conformally on each of the five canonical regions [2, 3, 15]. They are 
the disc with concentric circular slits, an annulus with concentric circular slits, the circular slit region, the radial 
slit region and the parallel slit region. In particular, if Ω is a multiply connected regions of connectivity (p + 1) 
inside the unit disc |z| < 1 where Γ = |z| = 1 is the boundary component of Ω, then there exists a univalent 
analytic function w = f(z) in Ω such that (i) it maps Ω conformally onto a region G inside the unit disc |w| < 1 
which has p circular slits centered at w = 0 and (ii) it maps the unit circle |z| = 1 conformally onto a unit circle 
|w| = 1. The images of the circular slits are traversed twice [5,10]. 

Several methods for conformal mapping of multiply connected regions have been proposed in the literature 
[4, 7, 9, 12, 14, 18, 19, 20, 22, 23]. One of the methods is the integral equation method. Some notable ones are 
the integral equations of Warschawski, Gerschgorin, and Symm. All these integral equations are extensions of 
those maps for simply connected regions. However, there are two recently derived integral equations for 
conformal mapping of simply connected regions which have no analogue for the doubly connected case. These 
are the Kerzman-Stein-Trummer integral equation and the integral equation for the Bergman kernel as derived 
in Kerzman and Trummer [8], Henrici [5] and Razali et al. [21]. An effort for such extension has been given by 
Murid and Razali [14] but without any numerical experiment. Conformal mappings of doubly connected regions 
onto an annulus involving the Kerzman-Stein kernel are also encountered in [13, 16, 17].  

In this paper, we adapted the works in [14, 16] to construct an integral equation involving the Kerzman-
Stein kernel for conformal mapping of doubly connected regions onto a unit disc with circular slit of radius µ < 
1. For numerical experiment, the integral equation is discretized which leads to a system of linear equation 
provided µ is known. A numerical example is reported for a circular annulus as a test region. 
 
2. The boundary integral equation for conformal mapping of doubly connected regions 

involving the Kerzman-Stein kernel 
Let Γ0 and Γ1 be two smooth Jordan curves in the complex z-plane such that Γ1 lies in the interior of Γ0. 

Denote by Ω the finite doubly connected regions with boundary Γ = Γ0 ∪ Γ1. Let w = f(z) be the analytic 
function which maps conformally Ω onto a unit disc with a circular slit of radius µ < 1. The mapping function f 
is determined up to a factor of modulus 1. The function f could be made unique by prescribing that 

 0)( =af , 0)(' >af ,  

where Ω∈a  is a fixed point. 
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The boundary value of f can be represented in form 
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where θ0(t) and θ1(t) are the boundary correspondence functions of Γ0 and Γ1 respectively.  

The unit tangent to Γ at is denoted z(t) by T(z(t)) = z′(t)/|z′(t)|. Thus it can be shown that  
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The boundary relationships (3) and (4) can be combined as 
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where Γ = Γ0 ∪ Γ1. Based on Murid and Razali [14], it can be shown that the mapping function f of a doubly 
connected region satisfies the integral equation 
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The kernel A is known as the Kerzman-Stein kernel [8], and is smooth and skew-Hermitian. The kernel H is 
usually referred to as the Cauchy kernel. The uniqueness of the solution for the integral equation is guaranteed 
from the fact that the kernel A(z, w) is skew-hermitian on Γ × Γ and therefore has a purely imaginary spectrum. 
However, no numerical experiments are reported in Murid and Razali [14] because the integral equation is not 
in the form of Fredholm integral equation and evaluation of the right-hand side is yet undetermined. 

Since 0)( =af and 0)(' >af , by means of residue theorem [6, 11], we have  

)()(

)('
Res

wfzw

wf
aw −=

 = 
)(')(

)('

afza

af

−
= 

)(')(

1

afza −
      (9) 



 

 

Thus integral equation (6) becomes 
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Multiply (10) by )(' af , we get 
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The single integral equation in (11) can be separated into a system of two integral equations given by 

||'' ),( )(')(' 00 dw(a)(w)ffwzAafzf ∫+ Γ  

= ),(|)(|2 00 zaHzfπ  

−









∫ Γ− −

−−
1 

0

0 )()(

)(')('
 

2

1
)1( )(  dw

wfzw

afwf

i
zTi

π
µ ,   00 Γ∈z ,  (12) 

||'' ),( )(')(' 11 dw(a)(w)ffwzAafzf ∫+ Γ  

= ),(|)(|2 11 zaHzfπ  

−









∫Γ −

−−
0  

1

1 )()(

)(')('
 

2

1
)1( )(  dw

wfzw

afwf

i
zTi

π
µ ,   11 Γ∈z .  (13) 

Taking boundary relationship (5) into account, (12) and (13) become  
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Using )(')('|)('| wfwfwf =  and dwdwwT =||)( , the two integral equations (14) and (15) become 
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Since 10 Γ∪Γ=Γ , the equation (16) and (17) can be written as 
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Applying definitions (7) and (8) to ),( 0 wzA  in ∫ Γ− 1
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After some cancellations, we get 
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Rearranging (20) and (21) yields 

||'' ),( )(')('
0 00 dw(a)(w)ffwzAafzf ∫+ Γ ∫ Γ− 








−

−
−

−
1 

00

0 ||)(')('
)(

)(
)(

2

1
dwafwf

zw
wT

zw
zT

i µπ
 

= ),(2 0zaHπ ,   00 Γ∈z ,        (22) 

)(')(' 1 afzf ||''
)()(

2

1   
0  

11

1 dw(a)(w)ff
zw

wT
zw
zT

i∫Γ 







+

−
−

−
µ

π
||'' ),(

1 1 dw(a)(w)ffwzA∫− Γ−  

= ),(2 1zaHπµ ,  11 Γ∈z .        (23) 

Defining 





Γ∈

Γ∈
=

,)( if       ),),((

,)( if       ),),((
)(')('

111

000

tzatzU

tzatzU
afzf  









−

−
−

=
zw

wT

zw

zT

i
wzB

)(

)(

)(

2

1
),(

µπ
, 









−

−
−

=
zw

wT

zw

zT

i
wzD

)()(

2

1
),(

µ

π
, 

(22) and (23) can be written as 
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If µ is assume known, then (24) and (25) form a system of Fredholm integral equations of the second kind that 
has a unique solution. 

 

3. Numerical implementation 
Using parametric representations z0(t) of Γ0 for t : ≤ t ≤ β0 and z1(t) of Γ1 for t : 0 ≤ t ≤ β1, the equations (24) 

and (25) become 
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Thus equations (28) and (29) can be briefly written as 
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Note that the kernel ),( 0000 stK  and ),( 1111 stK  preserve the skew-Hermitian properties. 

Since the functions φ, γ, and K are β-periodic, an appealing procedure for solving (30) and (31) numerically is 
using the Nyström’s method with the trapezoidal rule [1]. The trapezoidal rule is the most accurate method for 
integrating periodic functions numerically. We choose πββ 210 ==  and n equidistant collocation points 
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Applying the Nyström’s method with trapezoidal rule to discretize (30) and (32), gives 
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Equations (32) and (33) lead to a system of (n + m) linear complex equations in n unknowns )(0 itφ  and m 

unknowns )( ~1 itφ .  
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the system of equations (32) and (33) can be written as n + m by n + m system of linear equations 
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The result in matrix form for the system of equations (34) and (35) is 
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the (n + m) × (n + m)  system can be written briefly as Ax = y. Separating A, x and y in terms of the real and 
imaginary parts, the system can be written as 

          Re A Re x – Im A Im x + i (Im A Re x + Re A Im x) = Re y + i Im y.       (37) 

The single (n + m) × (n + m) complex linear system (37) can also written as 2(n + m) × 2(n + m) system matrix 
involving the real (Re) and imaginary (Im) of the unknown functions, i.e., 
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Therefore, the linear system (38) can be solved simultaneously for the unknown functions,  
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The boundary correspondence functions )(0 tφ  and )(1 tφ  are then computed approximately by the formulas 
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4. Numerical results 

For numerical experiment, we have used frame of circular annulus A = {z : r < |z| < 1}, πτ−== eqr , τ > 0 
as a test region. The exact mapping function is given by [24, p. 362]  
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with σµ 2−= e  and θ4 being the Jacobi Theta-functions. We have chosen τ = 0.50 and σ = 0.20. Since   

θ4( 2/iπτ ) = 0 [25], this implies a = σ2−e = µ. Figure 1 shows the region and image based on our method. The 
result for sub-norm error between the exact boundary correspondence functions )(0 tθ , )(1 tθ  and the computed 
boundary correspondence functions θ0n(t), θ0m(t) is shown in Table 1. All the computations are done using 
MATHEMATICA package [26] in single precision (16 digit machine precision). 

 

 

 

 

 

 

 

 

Figure 1. Conformal mapping of a circular annulus to the unit disc with a circular slit : τ = 0.50, σ = 0.20, 
πτ−

= er , 
σ

µ
2−

== ea  

 

Table 1.  Error Norm 
 

n = m 0 0( ) ( )nt tθ θ
∞

−  1 1( ) ( )mt tθ θ
∞

−  

16 1.1 (-03) 1.1 (-0.2) 
32 1.9 (-06) 3.7 (-0.5) 
64 5.2 (-12) 2.0 (-10) 
128 4.0 (-15) 3.6 (-15) 

 

5. Conclusion 

In this paper we have constructed a system of integral equations for numerical conformal mapping from a 
doubly connected regions onto a unit disc with a concentric circular slit. The system involved the Kerzman-
Stein kernel and is Fredholm type provided µ is known. The advantage of this method is that it calculates the 
boundary correspondence functions simultaneously. The numerical example illustrates that the present method 
can be used to produce approximations of high accuracy provided µ is known. 
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