

ARM MICROPROCESSOR SOFTWARE BASED EMULATOR

SUNIL SHASHIKANT GATHANI

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Electrical - Computer and Microelectronic System)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

JANUARY 2013

iii

Specially dedicated to my family, lecturers, fellow friends and those who have guided

and inspired me through my journey of education

iv

ACKNOWLEDGEMENT

 In preparing this thesis, I was in contact with many people,

researchers, academicians, and practitioners. They have contributed towards my

understanding and thoughts. In particular, I wish to express my sincere appreciation

to my thesis supervisor and mentor, Dr. Usman Ullah Sheikh, for his willing

encouragement, unstinting guidance, and friendship.

I am also indebted to Intel Microelectronics for funding my MSc study and

my fellow postgraduate students who have selflessly supported and enabled the

pursuit of this dream. My sincere appreciation also extends to all my colleagues and

others who have provided assistance at various occasions. Finally, the bedrock of my

success, I am grateful to all my family members.

v

ABSTRACT

 With the recent explosion of devices driving “smart technologies” such as

tablets, phones, in-vehicle infotainment systems, and many such devices, ARM has

taken center stage in being the core of choice for many such device vendors. Thus

the appreciation and workings of the ARM core has become more relevant than ever.

In light of that fact, over the years, many emulators have been designed with the

intent of emulating the ARM core on a software paradigm. Software based emulation

lends itself to many uses, from early application validation to an educational tool for

the masses. Hence, this work has emulated the ARM instruction set based on the

ARM 7 core. With the objective to enable an extensible and modular design, the

framework was developed by designing classes for certain core components which

can be replicated as objects and encapsulating execution based entities into functions.

The final result of this project is the development of a mechanism for updating the

CPSR for each instruction, alongside 16 Data Processing instructions with rotational

and register shifting support, all aspects of single data transfer load and store,

positive and negative branching with and without link alongside 16 conditional code

evaluation, and all User Mode visible registers. The ARM emulator also supports

both normal assembler instruction and conditional code instructions in both 2 and 3

operand format. The emulator was verified using single instructions and the GCD

conditional code instruction as a program.

vi

ABSTRAK

 Dengan perkembangan peranti-peranti baru yang digelar “teknologi pintar”

seperti tablet, telefon, sistem hiburan dalam kenderaan, dan banyak peranti

sedemikian, ARM telah menjadi pilihan pertama untuk kebanyakan pembekal

peranti. Oleh demikian, perhargaan “ARM” telah menjadi lebih relevan berbanding

sebelum ini. Memandangkan kepentingan ARM kini, banyak perisian emulator telah

dibentuk dengan tujuan mencontohi teras ARM. Emulasi berasaskan perisian

mempunyai banyak kegunaan, dari pengesahan awal applikasi-applikasi sistem

kepada alat pendidikan untuk orang ramai. Oleh itu, tujuan penyelidikan ini adalah

untuk membentuk perisian emulator berasaskan teras ARM7. Dengan objektif untuk

membolehkan reka bentuk yang mudah diubah-suai dan modular, rangka kerja ini

dibangunkan dengan kelas-kelas and fungsi-fungsi untuk komponen teras tertentu

yang boleh digunakan sebagai objek atau sebagai entiti modular. Hasil akhir projek

ini ialah pembangunan mekanisme bagi mengemaskini CPSR bagi setiap arahan, di

samping 16 arahan pemprosesan data dengan sokongan putaran dan peralihan, semua

aspek pemindahan data seperti capai dan simpan, percabangan positif dan negatif

dengan dan tanpa penghubung, bersama-sama 16 penilaian kod bersyarat, dan semua

register Mod Pengguna. Emulator ARM juga menyokong kedua-dua arahan ARM

normal dan arahan ARM bersyarat dalam format dua dan tiga kendalian. Emulator

telah disahkan menggunakan arahan tunggal dan arahan program GCD dengan kod

bersyarat.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES x

 LIST OF FIGURES xi

 LIST OF ABBREVIATIONS xii

 1 INTRODUCTION 1

 1.1 Background 1

 1.2 Motivation 3

 1.3 Objectives 4

 1.4 Problem Statement 5

 1.5 Scope of Work 5

 2 LITERATURE REVIEW AND THEORY 6

 2.1 ARM Emulators 7

 2.1.1 QEMU 7

 2.1.2 ARMulator 8

 2.1.3 ARMware 10

 2.2 The Development Language 12

viii

 2.3 ARM Core of Choice 13

 2.3.1 Memory System 15

 2.3.2 Load-store Architecture 16

 2.3.3 Supervisor Mode 17

 2.3.4 ARM Instruction Set 17

 2.3.5 The I/O System 18

 2.3.6 ARM Exceptions 19

 2.3.7 Memory Interface 19

 2.3.8 State 20

 2.3.9 Configuration 21

 2.3.10 Interrupts 21

 2.3.11 Reset 21

 2.3.12 Bus Control 22

 2.3.13 Coprocessor Interface 22

 2.4 Emulator Design Technique 23

 2.4.1 Choosing the right Development Language 23

 2.4.2 Understanding the Hardware Architecture 24

 2.4.3 Emulator Development versus Emulator

 Adoption

 25

 2.4.4 Emulator Design 25

 2.4.4.1 Instruction Set Interpretation 26

 2.4.4.2 Instruction Set Binary Translation 27

 2.4.5 Built in Debugger 28

 2.4.6 Programming techniques 29

 2.4.7 Modularity 29

 3 METHODOLOGY 31

 3.1 Methodology Overview 31

 3.2 Framework 33

 3.2.1 Front-End Framework Design 36

 3.2.2 Data Processing Instructions 38

 3.2.3 Single Data Transfer Load/ Store 39

 3.2.4 Branching 41

 3.2.5 Conditional Code 42

ix

 3.3 ARM Emulator Debuggers Guide 43

 4 RESULT AND DESIGN VERIFICATION 45

 4.1 ARM Emulator Output 45

 4.2 Emulator Single Instruction Output 47

 4.3 Emulator Program Output(GCD) 51

 4.4 Verification Methodology 56

 4.5 Emulator Comparison 56

 5 CONCLUSION AND FUTURE WORK 58

 5.1 Conclusion 58

 5.2 Future Work 58

 REFERENCES 61

x

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 The Main 3 Emulators, Advantages and their

Disadvantages

11

2.2 The general overview of core implementation and key

differences in their attributes.

13

2.3 Low Level Language vs. High Level Language 24

2.4 A comparison of basic interpretation and binary

translation

28

3.1 ARM Emulator Feature set 34

4.1 ARM Emulator Comparison 57

5.1 ARM Emulator Feature Set Comparison 59

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 The ARM emulator would sit on top of system

application software and functionally replicate behavior

of the ARM core.

 4

2.1 ARM’s visible registers 15

2.2 Basic Emulation Flow, Interpretation and Binary

Translation

 27

3.1 AND Instruction Decode 32

3.2 ARM Emulator Software Flow 35

3.3 ARM Emulator Front-End Flow 37

3.4 ARM Emulator Data Processing Flow 39

3.5 ARM Emulator LD/STR Flow 41

3.6 ARM Emulator Branch Flow 42

3.7 ARM Emulator Conditional Code Flow 43

3.8 ARM Emulator Debug Code 44

4.1 ARM Emulator Output Overview 46

4.2 ARM Emulator Output for AND R3, R1, #7 47

4.3 ARM Emulator Output for MOV R3, R1 48

4.4 ARM Emulator Output for ADD R0, R11, #255 49

4.5 ARM Emulator Output for STR R10, [R13, #8]! 50

4.6 ARM Emulator GCD Flow 51

4.7 ARM Emulator GCD Instructions 51

4.8 ARM Emulator GCD CMP 52

4.9 ARM Emulator GCD SUBGT 53

4.10 ARM Emulator GCD BNE & CMP 54

xii

4.11 ARM Emulator GCD END 55

xiii

LIST OF ABBREVIATIONS

ARM - Acorn RISC Machines

CISC - Complex Instruction Set Architecture

CMN - Compare Negative

CMP - Compare

CPSR - Current Program Status Register

FIQ - Fast Interrupt Request

GCD - Greatest Common Divisor

IRQ - Interrupt Request

I/O - Input / Output

LD - Load

OOP - Object Oriented Programming

OS - Operating System

PC - Program Counter

RISC - Reduced Instruction Set Architecture

Rs - Source Register

Rd - Destination Register

Rn - n-Operand Register

SPSR - Saved Program Status Register

STR - Store

TEQ - Test if Equal

TST - Test

X86 - x8086 Intel Instruction Set

.NIX - Unix based OS

1

CHAPTER 1

INTRODUCTION

This project is about the software emulation of the ARM 7 Core processor.

This chapter gives an overview of the whole project, starting with a brief

introduction and the background, followed by the problem statement, project

objectives, scope of work and report outline.

1.1 Background

 The development of microprocessors with the predictions of Moore Law, has

followed a path with consistency such that no one person predicted the lasting of this

law. Almost a quarter of a century later, the battles at the heart of the microprocessor,

is very much what this project about.

 The heart of any processor is dependent upon the computer architecture

which defines it. Hence drawing further from that, the computer architecture drives

innovation in computing from software and the layers that it comprises off to

hardware and the advancements that it has made from the crude old days of Intel

x8086. Today the most populous instruction set is the x86 Instruction Set which

drives the x86 platform, or the Intel platform as it is known. In most mainstream

computing devices (laptops, desktops and servers), Intel clearly dominates the

market significantly.

2

 But a diminutive company, ARM Holdings, is still the clear leader in the

number of devices that carries its microprocessor. So much so that, the combined

sales of microprocessors of all other companies, still does not match the almost

ubiquitous presence of ARM in portable / mobile and embedded systems.

 While plainly at first sight, the battle of dominance seems very much an

architecture battle between ARM (RISC) and Intel(CISC), the determining battle of

architectures is of the power consumption that each microprocessor sips. ARM Cores

are known to be highly thrifty on their power consumption which is the reason why it

has an overtly dominating presence in embedded markets and portable consumer

device.

 Intel on the other hand comes from a position of computing prowess. Till

recently in its history, very little was made in the way of reducing power

consumption as their markets were power agnostic.

 Moving to an age of portable/mobile devices where battery life is a key

selling matrix, Intel needs to drive innovations to their architecture as to drive power

consumption down. On the other hand, ARM is trying to muscle its way to desktop,

laptop and server products. And in doing so, power consumption for it architecture

clearly would rise. Naturally both grapple with the same physics of power

consumptions.

 Thus with the advent of ARM based devices, understanding the nuances of

the architecture or utilizing the emulator for application development or many such

uses, is tremendously beneficial for product development point of view or as a

learning tool. Unfortunately over the very many years, the most matured platform of

development of ARM based emulators has been the UNIX platform. Moreover, the

Intel Platform based ARM emulators, mostly tends to be non-open source, and thus

limited by the exorbitant licensing fee. In light of this, the cost benefit value of

designing a home grown ARM Emulator, will allow a more cost prudent option for

3

users of this Emulator while providing all the benefits without executing application

on an ARM Core.

1.2 Motivation

 Having laid the groundwork on the perspective and importance of ARM in

the micro-architectural battle, a tool is needed to provide easier access and

understanding of the architecture and a simpler way to build a software stack which

readily runs on ARM cores. That is the development which defines this project.

The heart of this project is to develop an emulator which would readily allow

ARM based applications and OS’es to run above it. The emulator simply, functions

to mimic the behavioral aspect of an ARM core.

While, naturally one expects a significant number of ARM emulators already

present for educational and development purposes; there are significant impediments

for each of currently available emulators. All ARM emulators currently available are

not natively developed in the Microsoft family of OS’es. This manifests itself in a

situation whereby the applications or OS’es running on emulators non-natively

developed in Microsoft OS tend to have significant drawbacks. Hence, the

motivation behind ARM Emulator is that not only does it have to be developed, it

has to be developed natively on Microsoft OS.

This ensures that the ARM development vehicle for application and OS’es

can be natively developed on Windows.

4

1.3 Objectives

The objective of the ARM emulator project is to develop an emulator that

would be able to functionally/behaviorally emulate the function of an ARM core that

would be designed to work natively on Microsoft Windows OS.

Hence the emulator should:

i. Accept assembly set instructions

ii. Decode those instructions

iii. Execute each instruction with the end goal of producing result exactly

per an actual ARM core

The secondary goal would be to enhance the emulator to run in the most adept way

on Windows OS.

Figure 1.1: The ARM emulator would sit on top of system application software and

functionally replicate behavior of the ARM core.

5

1.4 Problem Statement

The current issue at helm is that, ARM emulators which successfully execute

on an x86 Microsoft Windows platforms are very limited. More so, the ones that are

available, are generally not free, and thus require licensing. Thirdly, the freely

available ARM emulators, suffer from limited support on debug and more so in

documentation.

Generally the most mature development platforms for ARM emulators run on

the .NIX OS platforms.

1.5 Scope of Work

There are 5 key considerations which would define the scope of work:

i. Firstly, would be the implementation language of choice. The language

will determine the ease of integration of different modules and the speed

at which the emulation takes place.

ii. Secondly, there are multiple ARM cores in the market today. Choosing

the right ARM core would determine the scope of development without

trivializing or unnecessarily bloating the development phase.

iii. Thirdly would be choosing which instruction set would need emulation.

ARM7 onwards, the ARM cores support the regular instruction set, along

with a condensed instruction set called THUMB which would also be

present in all future revision of ARM cores. The current proposal is to

emulate the regular instruction set.

6

iv. Fourthly, the emulation which would take place can be generically

categorized as either Instruction Accurate [Functional Accurate], Cycle

Accurate or Timing Accurate emulation. The ARM emulator would be

designed as the Functional emulation of an ARM Core.

v. Finally, the question of which parts of the ARM core would be emulated

in the short time frame of development and which can be developed later

and yet be integrated into the ARM emulator is to be determined.

61

REFERENCES

1. Akihiro Suzuki and Shuichi Oikawa. Implementation of Virtual Machine

Monitor for ARM Architecture. 10
th

 IEEE International Conf. On Computer

and Information Technology. June 29, 2010. Bradford : IEEE. 2010. 2244-

2249.

2. Harold W. Cain, Kevin M. Lepak, and Mikko H. Lipasti . A Dynamic Binary

Translation Approach to Architectural Simulation. International Conference

on Parallel Architechtures and Compilation Techniques. Oct. 15, 2000.

Philadelphia. 2000

3. Mingsong Lv, Qingxu Deng, Nan Guan and Yaming Xie, Ge Yu. ARMISS:

An Instruction Set Simulator for the ARM Architecture. The 2008

International Conf. on Embedded Software and Systems (ICESS2008).

August 12, 2008. Sichuan : IEEE. 2008. 548-555.

4. Peter Knaggs and Stephen Welsh. ARM Assembly Language Programming.

Bournemouth University, United Kingdom : 2004

5. F. Bellard, QEMU, A fast and portable dynamic translator. Proceedings of

the annual conference on USENIX Annual Technical Conference, FREENIX

Track, pages 41-46, 2005.

6. “Instruction Set Simulator” Internet :

http://en.wikipedia.org/wiki/Instruction_set_simulator, [Dec. 20
th

, 2012].

7. “C++ Language Tutorial”. Internet : http://www.cplusplus.com/doc/ , [Jan.

8
th

, 2013].

8. Joel Pobar. “Create a Language Compiler for the .NET Framework”. Internet:

http://msdn.microsoft.com/en-us/magazine/cc136756.aspx, February 2008

[Dec. 1
st
, 2012]

9. “Console C++ Video Tutorials”. Internet :

http://xoax.net/cpp/crs/console/index.php [Aug. 10
th

, 2012]

62

10. Stever Furber. System On Chip Architecture. 2
nd

 ed. United Kingdom.:

Addison-Wesley Longman. 2000.

11. Advanced RISC Machines Ltd. (ARM). Realview ARMulator ISS User

Guide. ARM DUI 0207A Version 1.3. United Kingdom. 2002

12. Maray Fayzullin. “How to write a computer emulator?”. Internet :

http://fms.komkon.org/EMUL8/HOWTO.html [Aug. 10
th

, 2011]

13. Richard Danter, “Emulation, Simulation and Native Development”. Internet :

http://www.electronicsweekly.com/blogs/open-source-

linux/2009/03/emulation-simulation-and-native-development.html. March

2009 [Nov. 1
st
, 2011]

14. “Free ARM Emulators“. Internet :

http://www.thefreecountry.com/emulators/arm.shtml [Aug. 5
th

, 2011]

15. Advanced RISC Machines Ltd (ARM). ARM 7TDMI Technical Reference

Manual. ARM DDI 0210C. Revision r4p1. United Kingdom. 2004.

16. Advanced RISC Machines Ltd (ARM). ARM 7100 Preliminary Data Sheet.

ARM DDI 0035A. United Kingdom. (1996),.

17. Bruce Eckel. Thinking in C++. 2
nd

 ed. Vol. 1, Upper Saddle River, New

Jersey. : Prentice Hall Inc. 2000.

18. Walter Savitch. Absolute C++. 5
th

 ed. University of California, California. :

Pearson. 2012.

19. Dr. Usman Ullah Sheikh. Advanced Microprocessor Systems Lecture Notes.

Universiti Teknologi Malaysia (UTM), Skudai, Johor. 2011-12

	SunilShashikantGathaniMFKE2013ABS
	SunilShashikantGathaniMFKE2013TOC
	SunilShashikantGathaniMFKE2013CHAP1
	SunilShashikantGathaniMFKE2013REF

