THE APPLICATION OF HOUGH TRANSFORM FOR CORNER DETECTION

MOHAD FUAD BIN JAMALUDIN

A dissertation submitted in fulfilment of the requirements for the award of the degree of Master of Science (Mathematics)

> Faculty of Science Universiti Teknologi Malaysia

> > **APRIL**, 2006

To my loving parent, *Jamludin Bidin* and *Siti Lilah Juraimi* also my lecturers Assoc. Prof. Dr. Shaharuddin Salleh and Dr. Habibullah Haron

Thanks for your support, sacrifices and blessings

ACKNOWLEDGMENT

Firstly, I would like to thank Allah S.W.T for giving me the health, strength and patience to complete this dissertation. My deepest gratitude and appreciation to my supervisor, Assoc. Prof. Dr. *Shaharuddin Salleh* also Dr. *Zaitul Marlizawati Zainuddin* for they invaluable and insightful guidance, and continuous support offered throughout the length of this study. Also special thanks to Dr. *Habibullah Haron* for his helpful suggestions and ideas.

My sincerest appreciation to all my friends and course mates of MSc. Mathematics in the Faculty of Science, who have support and help me during my study in UTM. I 'm also grateful to my family for their endless blessings, support and understanding.

ABSTRACT

Corners are very attractive features of many applications in human perception and computer vision. The problem of detecting corners is simplified into detecting simple lines in a local coordinate system. As simple lines can be expressed using only one parameter, Hough Transform can detect them quickly. Other edge detectors have some problems when marking edge points around corners. Based on both gradient magnitude threshold and grey level analysis, the edge points can be detected. Using the Sobel and Kirsch Operator, an image can be extracted and provide the edge points for Hough Transform. Mean while, the Zhang Suen Thinning Method can be used to reduce the edge points into minima points to speed up the algorithm. To illustrate the problem, the interface program is developed by using *Microsoft Visual C++ 6.0*.

ABSTRAK

Titik simpang merupakan salah satu sifat-sifat objek yang penting dalam perspektif visual manusia dan komputer. Masalah di dalam mengesan simpang dipermudahkan kepada mengesan sifat-sifat garisan di dalam sistem grid atau koordinat. Kebiasaannya, ciri-ciri garisan dapat ditunjukkan di dalam parameter *Hough Transform* dengan lebih cepat. Sesetengah pengesan pinggir (*edge detector*), mempunyai masalah dalam menandakan titik pinggir di sekitar titik simpang. Berdasarkan nilai penentu kecerunan dan analisa *grey-level*, titik-titik pinggir boleh dikesan. Operator *Kirsch-Sobel* telah digunakan untuk mengekstrak imej dan membentuk pinggiran sebelum melalui proses seterusnya menggunakan Teknik *Hough Transform*. Sementara itu, Teknik Penipisan iaitu Kaedah *Zhang-Suen* digunakan untuk mengurangkan ketebalan garisan pinggir supaya menjadi lebih nipis (pinggir minima). Penggunaan kaedah tersebut adalah untuk mempercepatkan proses pengesanan simpang di dalam Teknik *Hough Transform*. Bagi menunjukkan proses pengesanan simpang, satu rekabentuk program antaramuka telah dibangunkan dengan menggunakan *Microsoft Visual C++ 6.0*.

TABLE OF CONTENTS

TITLE

CHAPTER

	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGMENT	iv
	ABS	ГКАСТ	v
	ABS	vi	
	CON	TENTS	vii
	LIST	COF FIGURES	Х
	LIST	COF TABLES	xii
	LIST	OF APPENDICES	xiii
Ι	RESI	EARCH FRAMEWORK	1
	1.1	Introduction	1
	1.2	Problem Statement	2
	1.3	Objectives of Study	3
	1.4	Scopes of Study	3
	1.5	Dissertation Organization	4

PAGE

EDG	E AND	CORNER DETECTION PROBLEM	5
2.1	Intodu	uction	5
2.2	Projec	et Framework	6
2.3	Edge 1	Detection Problems	7
	2.3.1	Roberts Cross-Gradient Operator	12
	2.3.2	Prewitt edge detector and Sobel edge detector	13
	2.3.3	Kirsch edge detector	15
	2.3.4	Laplacian Filtering Method	16
	2.3.5	Gaussian Smoothing Filter	19
2.4	Thresh	holding	20
2.5	Thinn	ing Problems	23
	2.5.1	Simple Thinning Method	24
	2.5.2	Zhang-Suen Skeletonizing	26
	2.5.3	Medial Axis Transform	28
2.6	Corne	r Detection Problems	30
	2.6.1	Hough Transform	30
	2.6.2	Wavelet Transform	31
	2.6.3	Chain Code Representation	32
2.7	Summ	nary	34

III THE HOUGH TRANSFORM

35

3.1	Background	35
3.2	Method of Line Detection	36
3.3	Method of Corner Detection	40
3.4	Algorithm for Line and Corner Detection	43
3.5	Summary	48

II

1

IV

CASE STUDY IN CORNER DETECTION

49

63

4.1Intoduction494.2Edge Image504.3Local Minima Image58

4.4Locating Corners60

V SIMULATION MODEL

5.1	Introduction	63
5.2	Model Description	64
5.3	Simulation Model	65
5.4	Summary	70

VI	SUMMARY AND CONCLUSIONS	71

6.1	Observation	71
6.2	Disscussions	73
6.3	Suggestions	75

REFERENCES	76
APPENDIX A	79
APPENDIX B	81
APPENDIX C	84
APPENDIX D	94

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	The main stage of detecting corners	6
2.2	Detection of edges associated with grey-level corresponding	
	first and second derivatives (Seul et al. 2000)	8
2.3	Pixel update at (x, y) for mask 3x3 size in windows template	11
2.4	The Gaussian matrix of 7x7 size	19
2.5	Classification of common thinning algorithm	24
2.6(a)	Illustrate the not deleted pixels that may cause discontinuities	25
2.6(b)	The pixel whose removal will shorten an object limb	25
2.7	The eight-neighbourhood of pixel, P	25
2.8	Example of computing distance transform of binary image:	
	(a) a full region binary image,	
	(b) a distance transform obtained	28
2.9	Medial Axis matrix of the binary image shown in	
	figure 2.8(a) using 8-connected boundary	29
2.10	Direction of boundary segments of a chain code for	
	(a) a 4-connected chain, (b) an 8-connected chain	33
3.1	The line passing two points	36
3.2	The intersection of two lines in the <i>mc</i> -plane correspond to	
	a line in the <i>xy</i> -plane	37
3.3	The illustration of <i>r</i> and θ in the line	38
3.4	An accumulator array	39

3.5	The algorithm of Hough Line Detector	44
3.6	The algorithm of Hough Corner Detector	44
3.7	The points in the <i>xy</i> -plane lying on a line	45
3.8	Sinusoidal functions are associated with points on a line	46
3.9	The two lines crossing at point (3,5) in Cartesian space	46
3.10	The sinusoidal function of point (3,5) lies on two points that	
	corresponds to the high lines crossing.	47
4.1	Kirsch and Sobel Algorithm for computing the edges of an	
	Image.	50
4.2	The original pixel values of an image size of 10x10 matrix	51
4.3	A pixel represented as a 24-bit string (Salleh et al, 2005)	52
4.4	The first 3x3 matrix of the image in Figure 4.2.	55
4.5	The new value of the image in 8x8 matrix after filtering	
	the image in figure 4.1	57
4.6	The binary edge image of Figure 4.5	57
4.7	The Zhang-Suen Thinning Algorithm.	58
4.8	A 3x3 matrix is obtained from Figure 4.6	59
4.9	The minima image after thinning process with Zhang-Suen	
	Algorithm and Hough Line Detector.	59
4.10	The corner candidate using the Hough Corner Detector.	62
5.1	The sample of digital image	65
5.2	The result from the edge detector (the Edge Image)	66
5.3	The result of thinning process (the Minima Image)	67
5.4	The corner candidates produced from the thinning image of	
	Figure 5.3	68
5.5	The accurate corners are obtained from Figure 5.4	69

LIST OF TABLES

TABLE NO.	TITLE	PAGE
4.1	The accumulator of the Hough Transform	60

4.2	The array of <i>rho</i> [i] and <i>theta</i> [i]	61

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	The sinusoidal graph in Hough space	79
В	The Analysis of the Rate of the Maximum Thresholding	81
С	The Result of Corner Image using different Thresholding	84
D	The Related Source Code	94

CHAPTER I

RESEARCH FRAMEWORK

1.1 Introduction

Feature detection such as edge and corner detection is an essential step in human perception of shapes. Such corner points contain important information about the shape of objects. The extraction of the corner points is useful for computer applications such as image recognition, segmentation, description, matching and data compression.

In human perception of shapes, a corner is not only from the mathematical concept of corners but also from the neighbouring patterns of local features. Human recognize the corners, which are consistent with each other in the description of shapes. They develop this imperfect knowledge empirically.

In industrial applications this can be an essential for safety or for quality control, which require an efficient algorithm for locating specific objects in images with the aims of counting, checking and measuring. Sharp features and well-defined shapes such as corners help considerably with object location. If the corners can be detected computationally, the job such as counting, checking and measuring can be done efficiently.

Recently, corner detection problem is divided into two categories namely boundary-based and region-based approaches (Chen *et al.*, 1995). Boundary-based approaches use chain code to detect the corners on the boundary of an object. While the region-based approaches identify the corners directly on the grey-level image using gradient and curvature measurements.

Conventionally, a corner is defined as the junction point of two or more straight lines. Based on this definition, two characteristics of corners can be generalized (Shen and Wang, 2001). Firstly, a corner point is also an edge point. Secondly, at least two lines pass through the corner point.

1.2 Problem Statement

Given an image in digital form, the problem is to detect the corners in that image. A corner is identified at a point in the image through the non-existent of the first derivative. We apply the Hough Transform method to detect the corners in an image. The Hough Transform is applied to the boundary object of the binary image, which is can be a line or curvature. To produce the binary image also known as an edge image, we apply the Sobel and Kirsch Edge Detector and the Zhang-Suen Thinning Method to the digital image.

1.3 Objectives of Study

The following are the objectives of this dissertation:

- Design and develop a simulation model for detecting corner on the digital image.
- □ Apply the procedure to a real problem.
- Evaluate the performance of Hough Transform by using different threshold values.

1.4 Scopes of Study

The simulation program of corner detection has been developed using the Microsoft Visual C++. It involves an image of size 640 x 480 pixels. The simulation program uses the bitmap format to extract and analyses every pixel points in two-dimensional array. It uses the RGB values of colouring to extract the image and detect some edge lines. Then, the edge lines are used to determine the corners. In this study, the Kirsch and Sobel Edge Detector is used to obtain the edge values in binary image. The Zhang Suen Thinning Method is used to reduce the thickness of the edges. All these methods are used in pre-processing stage. In the post-processing, the Hough Transform is used to detect the corners through the edge lines obtained.

1.5 Dissertation Organization

This dissertation consists of six chapters. Chapter I is the research framework. This chapter includes an introduction of study, the problem statement, objective and scope of the study. This follows by Chapter II that briefly describes about edge and corner detection problems. Chapter III discusses in details about the Hough Transform to detect lines and corners. In Chapter IV, a case study of corner detection using the Hough Transforms is discussed. The experimental results and analyses are described in Chapter V. Lastly, Chapter VI discusses in general the conclusion and future works.

REFFERENCES

- Anton, H, Bivens, I. And Davis, Stephen (2005). Calculus 8th Edition. Singapore: John Willey & Sons (Asia) Pte. Ltd.
- Awcock, G. W. And Thomas R. (1996). *Applied Image Processing*. New York: McGraw-Hill Inc.
- Castleman, K. R. (1996). Digital Image Processing. New Jersey: Prentice Hall.
- Chanda, B. And Majumder D. D. (2000). *Digital Image Processing and Analysis*. New Delhi: Prentice Hall of India.
- Chen, C.H, Lee J. S. and Sun Y. N. (1995). *Wavelet Transformation for Gray Level corner detection*. Tainan University: Elsevier Science B.V.
- Davies, E.R. (1988). Application of the generalised Hough Transfrom to corner detection. IEE Proceedings, vol 135.
- Engkamat, A (2005). Enhancement of Parallel Thinning algorithm for Handwritten Characters using Neural Network. Universiti Teknologi Malaysia: Master Thesis.
- Freeman, H. (1961). *On the encoding of arbitrary geometric configurations*. IRE Trans. Electron Comp. EC-10, June 1961, 260-268.

- Gonzalez, R. C. and Woods, R. E. (2004). *Digital Image Processing using Matlab*. New Jersey: Prentice Hall.
- Haron, H., Shamsuddin, S. M. and Mohamed, D. (2005). A New Corner Detect algorithm for Chain Code representation. Loughborough University: Taylor & Francis Group.
- Jones, R. M. (2000). *Intoduction to MFC programming with Visual C++*. New Jersey: Prentice Hall PTR.
- Lee J. S., Sun, Y. N. and Chen, C. H. (1995). *Multiscale Corner Detection by using Wavelet Transform*. IEEE Transactions on Image Processing: no.1 vol.4.
- Manohar V. (2004). Digital Image Processing-Basic Thresholding and Smoothig. University of South Florida at http:Marathon.csee.usf.edu/~yqiu2/Basic_ Thresholding_and_Smoothing.doc.
- Matteson, R. G. (1995). *Introduction to Document Image Processing Techniques*. Boston, London: Artech House Publishers.
- Pappas, C. H. and Murray III W. H. (1998). *Visual C++ 6: The Complete Reference*. Osborne: Mc Graw Hill.
- Parker, J. R. (1997). Algorithms for Image Processing and Computer Vision. Canada: Wiley Computer Publishing.
- Pitas, I. (1993). *Digital Image Processing Algorithms*. UK: Prentice Hall International Ltd.
- Raji, A. W. M. et al. (2002). Matematik Asas. Universiti Teknologi Malaysia: Skudai.

- Ritter, G. X. and Wilson, J. N. (2001). *Handbook of ComputerVision Algorithms in Image Algebra*. Boca Raton: CRC Press.
- Salleh, S. *et al.* (2005). *Numerical Simulations and Case Studies using C++*.*Net*. USA: Tab Books.
- Seul, M. et al. (2000). Practical Algorithms for Image Analysis Description, Examples and Code. UK: Cambridge University Press.
- Shen, F. and Wang, H. (2002). *Corner detection based on modified Hough Transfrom*. Nanyang Technological University: Elsavier Science B.V.

The Hough Transform at http://en.wikipedia.org/wiki/Hough_transform.

The Hough Transform at *http://planetmath.org/encyclopedis/HoughTransform.html*.

- Yaakop, M. H. (2004). Sistem Bantuan Pengesanan Simpang bagi garisan tidak sekata dengan menggunakan Teknik Wavelet Transform. Universiti Teknologi Malaysia: Bachelor Thesis.
- Zhang, T. Y. and Suen, C. Y. (1984). A Fast Parallel Algorithm for Thinning Digital Patterns. Comm. ACM. 27(3): 236-239.