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ABSTRACT 

 

 

 

 

Micromachining on glass and polymers has been a widely attractive approach 

during the past few decades. In laser micromachining of materials, carbon dioxide 

(CO2) laser is one of the most significant lasers used. This thesis describes direct 

laser writing (DLW) scheme for the fabrication of periodic structures on glass and 

polymers. The periodic structures are important components in diffractive optics and 

microfluidic devices. The DLW technology is a modern day machining tool which 

helps to experimentally investigate the behavior of high power lasers on glass and 

polymers without lithographic and mask-based techniques. The DLW scheme gives 

great advantages, making it an efficient and cost effective approach for inducing 

periodic structures. The experimental observations in this research have urged the 

use of low power (2.5 W) CO2 laser irradiation to obtain narrow and fine patterns. 

The laser power and scanning speed play a vital role in the fabrication process. The 

current investigation focuses on glass and acrylic for the generation of regular and 

tidy periodic structures. The whole DLW process is controlled by a computer 

software program. The structure to be written by the laser is first coded and input 

into the CAD software, before being written on an actual workpiece. The Gaussian 

CO2 laser beam with a maximum power of 2.5 W has been targeted to the workpiece 

which is placed on the moveable xy translational stage. The laser power used in this 

process ranged from 1 to 2.5 W and the scanning speed, from 0 to 5 mm/s. A 

scanning electron microscope (SEM), an optical microscope and a surface profiler 

were used for observing the surface morphology and the channel cross section. A 

632.8 nm HeNe laser was used for observing diffraction patterns of the fabricated 

periodic structures. The formation of periodic structures depends on laser power and 

scanning speed. The depth and width of the formed channels for glass ranged from 

35 to 45 µm and from 15 to 25 µm, respectively. This research has shown the 

potential to fabricate periodic structures with a period of 1.5 µm which is less than 

the laser wavelength of 10.6 µm. These results were analyzed using a high precision, 

non-contact surface profiler technique developed by Taicaan, United Kingdom. In 

the case of polymethyl methacrylate (PMMA), the depth of the channels increases 

with increasing laser power, reaching a maximum value of 2349 µm at a laser power 

of 2.5 W. The formed structure exhibits the properties of diffraction gratings and 

hence can be used for diffraction experiments. The direct laser writing technique for 

the formation of microstructures, proves to be an efficient and effective method. A 

model for heat transfer inside the material is developed using the COMSOL 

Multiphysics software. Results from the simulated model give the temperature 

distribution inside the workpiece and are in good agreement with the experimental 

data obtained. 
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ABSTRAK 
 

 

 

 

Mikropemesinan pada kaca dan polimer telah menjadi pendekatan yang 

menarik secara meluas dalam beberapa dekad kebelakangan ini. Dalam 

mikropemesinan bahan menggunakan laser, laser karbon dioksida (CO2) merupakan 

salah satu laser yang amat penting digunakan. Tesis ini menjelaskan skema penulisan 

laser secara langsung (DLW) bagi pembuatan struktur berkala pada kaca dan 

polimer. Struktur berkala merupakan komponen penting dalam optiks belauan dan 

peranti mikrobendalir. Teknologi DLW muncul sebagai perkakasan pemesinan 

moden yang membantu dalam mengkaji secara amali ciri laser berkuasa tinggi pada 

kaca dan polimer tanpa teknik berasaskan litografi dan topeng. Skema DLW 

mempunyai kelebihan yang besar, menjadikan ia berkesan dan kos efektif untuk 

menghasilkan struktur berkala. Pemerhatian daripada penyelidikan ini 

mencadangkan penggunaan sinaran laser CO2 kuasa rendah (2.5 W) untuk 

mendapatkan corak yang sempit dan halus. Kuasa laser dan kelajuan imbasan 

memainkan peranan penting dalam proses fabrikasi. Kajian terkini memberi 

penumpuan kepada kaca dan akrilik bagi penghasilan struktur yang berkala dan 

kemas. Keseluruhan proses DLW dikawal oleh program perisian komputer. Struktur 

yang hendak ditulis dengan laser dibangunkan terlebih dahulu dalam perisian CAD 

dan kemudian ditulis pada kepingan sebenar. Alur laser CO2 berbentuk Gaussian 

dengan kuasa maksimum 2.5 W, telah disasarkan ke arah kepingan sampel yang 

terletak di atas kepingan bolehalih xy. Kuasa laser yang digunakan dalam proses ini 

berada antara 1 dan 2.5 W dengan kelajuan imbasan antara 0 dan 5 mm/s. Mikroskop 

pengimbas elektron, mikroskop optik dan profiler permukaan telah digunakan untuk 

mencerap morfologi permukaan dan keratan rentas saluran. Sebuah laser HeNe  

632.8 nm telah digunakan untuk memerhatikan corak belauan yang dibentuk oleh 

struktur berkala yang telah dibina. Pembentukan struktur berkala bergantung kepada 

kuasa laser dan kelajuan imbasan. Kedalaman dan lebar saluran yang dibentuk pada 

kaca masing-masing daripada 35 hingga 45 μm dan daripada 15 hingga 25 μm. 

Penyelidikan ini telah menunjukan keupayaan membentuk struktur berkala dengan 

tempoh 1.5 μm, iatu kurang daripada panjang gelombang laser 10.6 μm. Keputusan 

ini telah dianalisis mengunakan satu teknik profiler permukaan tanpa-sentuh 

berketepatan tinggi yang telah dibangunkan oleh Taicaan, United Kingdom. Dalam 

kes polimetil metakrilat (PMMA), kedalaman saluran meningkat dengan peningkatan 

kuasa laser, mencapai nilai maksimum 2349 μm pada kuasa laser 2.5 W. Struktur 

yang terbentuk mempamirkan sifat parutan belauan dan dengan itu boleh digunakan 

untuk eksperimen pembelauan. Teknik penulisan laser secara langsung untuk 

penghasilan mikrostruktur, terbukti sebagai satu kaedah yang  cekap dan berkesan. 

Model bagi pindahan haba di dalam bahan kajian telah dibangunkan menggunakan 

perisian COMSOL Multiphysics. Keputusan daripada model simulasi memberikan 

taburan suhu dalam kepingan sampel dan ianya sepadan dengan keputusan ujikaji 

yang diperoleh. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Laser systems are pre-dominantly employed nowadays in micro system 

technologies for the applications involve in biomedical engineering, automotive 

industry, telecommunication and advanced optical instrumentations for not only 

basic research purposes but also for advanced production environment. With this 

reference of diverse applications the current era can be renamed as an era of modern 

technological advancement where every day brings new developments especially in 

the field of optics. The requirements of lasers in the production industry lead the 

researchers to work on such key area where they can improve laser techniques for the 

refinement of the modern needs. The micro and nano fabrication of optical 

components is gaining considerable importance therefore the perfection in the 

formation of optical microstructures by lasers is going on for many decades. This is 

right after the advent of lasers in 1960s; when the research was primarily focused on 

laser damage in material rather than using the laser light for material processing. The 

word LASER literally means light amplification by stimulated emission of radiation 

and in other words it is the ability of light to stimulate the emission of light that 

creates the situation in which light can be amplified. The invention of lasers in the 

20
th

 century is not less than a revolution in the field of optoelectronics. According to 

an estimate in 2007, the sales of lasers in world market have gone up to 8.6 billion 

USD with Europe as a leading partner. The most important aspect in laser 
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applications is that laser engraving and marking contributes 43% of total world’s 

market which is quite remarkable in overall lasers applications. 

Among lasers and its applications, the formation of microstructures is 

essential due to the growing wide range applications. The laser surface treatment of 

the materials is important which may lead to the production of micro components 

and devices for wide applications like micromechanics, micro-electronics and micro-

optics. Laser induced periodic surface structures (LIPSS) were first fabricated on 

semiconductor surfaces in 1965 (Zheng et al. 2009). Most of the research was 

primarily done to investigate the diffraction effects of formed grooves. Among these 

components diffractive optical elements are of huge significant in beam shaping and 

pattern production (Schulz-Ruhtenberg et al. 2005). It has been significantly reported 

that the production of advance micro-components are having an edge in comparison 

with the conventional machining methods. The laser beams are widely used in many 

applications including cutting, welding, marking and surface treatment of different 

materials (Dubey and Yadava, 2008). This chapter presents a brief introduction and 

overall view of lasers evolution in the past decades and its relation with the current 

on-going objectives and scope of research. 

1.2 Background 

The study on laser induced periodic structures is going on for many decades 

to not only improve our understanding about diffraction phenomenon but also to see 

the capability of the laser system used for the machining process. Due to the 

advanced lasers systems available in this era of technological advancement, the laser 

induced periodic surface structures (LIPSS) has gained new interests in dealing with 

such rapid micro-processing. The conventional lasers systems have been replaced by 

fast moving, high efficiency and compact lasers which have the ability to do the 

micromachining with great accuracy and precision. Due to the transitions in laser 
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systems, the researchers have again shown interest in dealing with the processing 

efficiency of those systems as well as the physics involved in the overall formation 

of micro patterning. Among these different types of periodic structures, diffraction 

gratings appear to be an essential component in optical instrumentation and having 

various applications in optics, opto-electronics, communication, nano-photonics and 

nano-bioscience due to their unique properties. The importance of grating lies in the 

fact that it is used to disperse light into its constituent spectrum which enables many 

spectroscopic discoveries. The classical diffraction grating consists of one 

dimensional grooves on the surface with fixed period. In the past many ruling 

engines were made to engrave such small structures by diamond tip. The diamond tip 

is used to mark small lines on soft metal surface. In the last century it is reported to 

have said that diffraction gratings have contributed in the field of modern physics to 

such an extent where no other instrument has done. 

The fabrication of these grating like periodic structures is going on for so 

many decades. The interaction of laser beam with metallic and non-metallic 

materials is of same interest. The advent of laser in the formation of gratings have 

not only brought a new vision but also overruled the ruling technology by bringing 

the quality and ease to the overall processing. Initially it was difficult to apply the 

laser optics for such micro cause but later researches have proven it to be worthy tool 

for such applications. At the same time the semiconductor technology has appeared 

to be matured enough to offer transmission grating to manufacturing technologies. 

Not only this, it has also brought the cost effectiveness as well as benefits for the 

production of gratings at high volumes. Hence afterwards this technology was able to 

produce transmission grating in fused silica in contrast to its rivals. 

The formation of grating like periodic a structure by different lasers is going 

on for a long time yet the fabrication of these elements is still remains a challenge 

(Florea et al. 2007). Laser micromachining offers a great speed-advantage over other 

classical micro fabrication techniques and it is starting to be implemented for photo 

mask fabrication as well (Guay et al. 2008). 
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There are many conventional ways of periodic structure formation but the 

introduction of lasers in fabrication process makes it more efficient and convenient. 

In laser matter interaction it has been found that periodic structures on solid surfaces 

can be made by laser irradiation. These structures are formed as a function of laser 

parameters and substrate material which is used for the process. Recently laser micro 

processing has become striking method in glass micromachining. High power UV 

and CO2 lasers are usually employed for glass processing, since glass has low 

absorption in the range of visible wavelength. 

The rapid growth in optics with the emergence of technological advancement 

in science and technology have urged the researcher’s community to develop such 

effective micromachining techniques which not only fulfil the needs of  modern era 

but also serve as a great contribution in the field of photonics. The micromachining 

of borosilicate, fused silica and crystal quartz has been extensively reported (Tseng et 

al. 2007). 

Among all lasers, CO2 was mostly preferred due to the fact that it has very 

high electrical efficiency and absorption in material processing for continuous mode. 

There are various applications of CO2 laser including engraving, cutting, drilling, 

scribing, surface heat treatment and others. Due to prominent properties of laser 

beam such as coherence, spectral purity, monochromaticity and ability to transmit in 

a straight line hence are preferably utilised mostly in laser material processing 

applications. 

In laser material processing the idea of producing periodic structures not only 

appear to be attractive but also give new paths in understanding the trends in laser 

matter interaction. Different properties of laser induce structures are of keen interest 

among the scientific community therefore the use of glass for CO2 laser in processing 

microstructures is remarkably considered to be the most flexible and efficient in 

terms of temperature capability and general factors regarding the overall process. As 
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it is assumed that glass is opaque to laser irradiation so most of the energy from the 

laser source is absorbed on the surface of glass. The glass is then verified to be 

opaque for CO2 laser without causing any major error (Tian and K.S. Chiu, 2004). 

Many researchers have practically demonstrated the applicability of 

micromachining techniques for fabricating microchannels on quartz and polymethyl 

methacrylate PMMA. Since most of the microfluidic devices fabricated so far use 

photolithographic method and wet etching to create a pattern for required 

configuration therefore these methods are not attractive due to time consuming and 

creates much debris due to ablation so these techniques are not considered to be ideal 

for microchannelling in PMMA (Hong et al. 2010). 

Several groups have investigated the fabrication of micro channels for 

microfluidic devices. One of the groups has utilised CO2 laser for inscribing 

microchannels on polymer substrates. Here the power of 0 to 40 W has been utilised 

along with the very high scanning speed (Klank et al. 2002). Another have 

demonstrated the approach for removing the bulges during the micromachining 

process (Chung, 2005). The additional layers of PDMS (photoresist) has been added 

to the substrate which makes it rather complex machining. 

For the development of microfluidic devices for different applications in 

chemical and biological sciences, microchannelling is required for creating unique 

designs for required application. The current prevailing methods of making 

microchannels consist of photo-mask design which consist of many 

photolithographic steps and which increase the processing time considerably (Yen et 

al. 2006). The laser direct writing has been employed for creating plastic 

microfluidic chips as well as polymethyl methacrylate PMMA (Cheng et al. 2004). 

In other studies the micromachining of glass and quartz has been described with high 

energy density using ultrafast femtosecond lasers (Oleschuk et al. 2000). 
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On the other hand these techniques applied above consist of UV lasers which 

are not easily available and of high cost. Although the micro cracking in BK-7 and 

quartz by laser treatment is inevitable (Schilling et al. 2002), hence careful 

consideration in processing which consist of long series of hit and trial is mostly 

adopted. As laser processing is based on heat conduction mechanism, so the thermal 

analysis of laser induced microstructuring is considered to be of high significance 

and has been widely studied experimentally as well as theoretically. However due to 

the different properties of the glass with large temperature gradient of the laser, it is 

yet challenging enough to study those non-equilibrium effects of glass in such cases 

(Zhou and Mahdavian, 2004). 

Laser micromachining is capable for inscribing microchannels on polymethyl 

methacrylate PMMA (Nimai C Nayak et al. 2008). This current study enables the use 

of low power CO2 for the micromachining quartz, BK-7, pyrex glass as well as 

polymethyl methacrylate PMMA to not only fabricate the microchannels but also for 

many laboratory and biochip applications. There are several questions which should 

need to be solved before going into the fabrication process. The system must be 

suitable and capable of undergoing such experiment along with the cost 

effectiveness. These current findings will enhance the experimental technique for 

trench formation which give rise to flexibility, reliability and ease in forming 

complex microstructures. The heat transfer phenomenon in the formation of periodic 

structure is modelled using COMSOL software which is considered to be efficient in 

modelling the various physics processes including laser material interaction. The 

modelling will be ultimately acting as a tool to visualise the physical process by 

considering almost all laser and material parameters. Although the CO2 laser has 

many commercial applications yet the laser matter interaction in terms of laser 

parameters is essential to be explored. 
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1.3 Problem Statement 

The earlier approaches regarding the formation of microstructure and micro 

gratings consists of many photolithographic and photo mask steps. Lately many UV 

and ultrafast femtosecond lasers have been excessively deployed for micromachining 

of quartz and polymethyl methacrylate PMMA which is economically unstable 

approach along with the other issues such as optimization and simplicity. In 

designing micro grating structures, several key issues have been immerged for 

researchers over the past few decades. The earlier methods for fabrication are 

complex and cost of making a simple grating is very high. The previous researches 

have raised lot of questions for example the techniques are costly, including multiple 

processing steps, surface precision, limited flexibility as well as rapid scanning 

speed. The experimental setup given in earlier researches consist of complicated 

optical arrangements which are difficult to illustrate the complete process. Therefore, 

there is an urgent need to develop a direct laser writing method which is at the same 

time cost effective and flexible as well as overcoming the previous hurdles in 

micromachining processes. 

For answering these critical issues, we have introduced the improved method 

of inducing periodic structures by continuous wave CO2 laser system. This technique 

is based on direct laser writing method which is capable of forming microchannels 

configuration and micro gratings which was difficult to achieve by photolithographic 

and mask based processes. The laser beam of 10.6 µm wavelength is directly focused 

on the glass substrate providing optimization, simplicity and flexibility in the overall 

process. The effectiveness of CO2 laser is evident which is lying in the fact that it is 

widely employed in industry, its low cost machining and mostly preferred for fused 

silica glass due to its high absorption coefficient (Okazaki et al. 2010). This study 

encompasses the development of a model for temperature distribution and 

penetrating depth inside the work piece while interacting with the laser and proposed 

the reliable and efficient method of fabricating micro gratings on ordinary plane 

window glass, optical crown glass and fused quartz. 
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1.4 Objectives 

This main objective of this research focuses on the development of effective 

and efficient fabrication system for periodic structures. The main objectives of this 

research are. 

1. To fabricate laser induced periodic microstructures using CO2 laser. 

2. To fabricate the microchannels in polymethyl methacrylate PMMA, Quartz, 

and optical crown glass BK-7 using CO2 laser. 

3. To analyse these microstructure and surface characterization by SEM, 

Surface Profiler and optical microscope. 

4. To develop a model for temperature distribution in workpiece by CO2 laser. 

1.5 Scope of Study 

This research covers a review of grating fabrication techniques and 

introduction to the new method of periodic structure fabrication. This study 

comprises the fabrication of periodic structures using low power CO2 laser. PMMA 

polymer and glass has been utilised in carried out the fabrication process. The study 

revolves around the analysis techniques such as Scanning electron microscopy 

(SEM), Optical Microscope and Taicaan Surface profiler. The last part of scope 

includes the heat transfer modelling of fabrication process using COMSOL 

multiphysics software which determines the time dependent temperature profiles of 

CO2 laser while interaction with glass and PMMA. 
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1.6 Contribution of Study 

In this research an improved method of micro grating fabrication and 

microchannelling has been developed. The proposed technique is successful in 

enabling the fabrication of microchannels and micro gratings using CO2 laser. This 

technique is able to develop the plastic microfluidic chips on polymethyl 

methacrylate PMMA. This study unfolds the understanding of CO2 laser system for 

the micromachining of microfluidic devices. Specifically it focuses on the 

investigation of optical crown glass BK-7, quartz and polymethyl methacrylate 

PMMA. The outcome of this research will be a prototype used in microfluidic 

devices and laboratory applications. Carbon dioxide laser fabrication for such 

microfluidic devices and micro gratings is a promising technique which is competent 

with other methods available for fabrication. Some points of major contributions of 

this research are described as follows: 

1- The development of micromachining system utilising CO2 laser. 

2- The design and development of such process which is dynamic especially in 

micromachining of non-metallic materials. 

3- Careful consideration of important input parameters including laser power, 

scanning speed of translational xy-stage. 

4- This research identifies the factors that affect the laser micromachining 

process while using low power CO2 laser system. 

5- This technique will help to improve the current study for the production of 

microfluidic devices on polymethyl methacrylate PMMA. 

6- The successful results show the production capabilities of the CO2 laser 

system which was a challenge in the past. 

In the particular area of laser micromachining, direct laser writing method is 

carrying significance where either the laser or the workpiece is moving. In such cases 

there have been novel application extensions to the fundamental idea (Sugioka, 

2010). 
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1.7 Organization of the Thesis 

Chapter 1 describes the outline of thesis. This chapter starts with the 

introduction of the specific problem under consideration. This chapter describes the 

objectives of the research, justification, and contribution of the study. This chapter 

acts as a brief summary to the whole thesis. 

Chapter 2 presents the literature review of the techniques for inscribing the 

microchannels and gratings. This chapter briefly explains how different researchers 

have look to the problem that we are trying to tackle. The literature survey also helps 

in the formalising the problem statement and also give ways to introduce the new 

method which will help to define the boundaries of the current research. 

Chapter 3 explains the theory behind the laser material interaction. Different 

models explaining the theory of laser mater interaction has been mentioned in this 

chapter. This chapter further elaborates the physics involved in the formation of 

microstructures with the help of existing contributions. 

Chapter 4 provides the detailed methodology involved in the micro-

fabrication system. This chapter described the apparatus for experimentation. This 

chapter discusses the detailed methods and techniques that are involved to generate 

micro gratings and microchannelling on non-metallic materials. Low power CO2 

laser system is used to inscribe periodic structures. The analysis has been carried out 

by Scanning electron microscope SEM, Optical microscope and Taicaan surface 

profiler. 

Chapter 5 consists of two parts. First part presents the data collection and 

experimental analysis of laser induced periodic structures using glass, optical crown 

glass BK-7 and Quartz. The second part of this chapter represents the experimental 
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analysis of laser induced microchannelling for microfluidic devices and laboratory 

applications. The results are critically analysed using surface morphology techniques 

such as surface profiler, SEM and optical microscope. 

Chapter 6 enlightens the theoretical analysis of laser induced periodic 

structures and laser induced microchannelling. COMSOL multiphysics have been 

used for modelling. In this chapter the experimental results have been theoretically 

analysed. The heat transfer in laser material interaction has been simulated along the 

laser path. The temperature distribution for gaussian distribution has been calculated 

by simulation. 

Chapter 7 concludes the whole thesis with summary of all the study carried 

out in the formation of periodic structure. The recommendations for future work are 

also stated in this chapter. Finally the thesis ends up with references and appendices 

as well as list of publications and presentations. 
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