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ABSTRACT 
 
Due to the increase of the complexity of customer demand on products and services, monitoring process quality is becoming multivariate in nature. In this 
setting there are two important parameters to be monitored, i.e., the mean vector and the covariance structure which determines the variability of the 
process. This paper deals with process variability monitoring of beltline moulding process at an automotive industry where the process is in multivariate 
setting and monitoring process is based on individual observations. Our approach is based on Wilks’s statistic. A real application will be presented and the 
strength of that statistic, as well as its limitations, will be discussed.  
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1. INTRODUCTION 

 
The recent growth of research interest and 

developments in multivariate control charting technique has 
been significantly contributed to the field of multivariate 
statistical process control (SPC). In many industrial 
applications, there is an increasing demand to implement 
multivariate SPC in a production process for quality 
improvements. This is because, in many situations quality 
of a product is determined by two or more correlated 
process variables. Thus, the multivariate control charting 
technique plays an important role in any multivariate 
process quality improvement initiative where monitoring 
simultaneously several correlated process variables is 
required. The univariate control chart could still be used for 
monitoring these process variables individually. However, 
ignoring the interrelationship will be inappropriate. 
Although, the multivariate control charting opens up 
opportunity in considering the correlation among process 
variables, the complexity in the applications of multivariate 
SPC charting technique in terms of understanding the 
multivariate process properties itself is a challenging job to 
practitioners.  

The application of multivariate SPC requires an 
understanding of two different phases in control charting 
procedures that is phase I and phase II operations. 
According to Woodall [1], it is important to distinguish 
between the applications of those two phases. The objective 
of phase I is to determine whether a process was in-control 
when historical data set (HDS) is collected.  
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In this phase, the initial control limits are established 
and, if needed, recalculated in order to bring the process to 
the in-control state. In addition, if there is no information 
about the in-control process parameters 0µ  and 0∑ , both 
parameters could be estimated from the HDS. Meanwhile, 
in phase II, the objective is to investigate whether the 
process remains in-control when a future observation is 
drawn. In this phase, the control charts are used for 
monitoring and detecting any changes in the process mean 
vector or covariance matrix from the in-control process 
parameters.  

In this paper we focus only on monitoring the 
process variability which is, see e.g. Alt [2], equivalent to 
performing repeatedly the hypothesis testing 00 : ∑=∑H  
against 01 : ∑≠∑H  where 0∑ is the in-control process 
covariance matrix. More specifically, on monitoring the 
process variability based on individual observations. In this 
case, many control charting procedures are available. For 
example, Khoo and Quah [3] proposed a test statistic which 
is the successive differences between multivariate 
observations with an assumption that 0∑  is known. They 
showed that the test statistic is distributed as pχ when the 
process is in-control. One of the advantages of their control 
charting procedure is that it could be readily used since the 
control limits is easily obtained from that distribution. 
However, the statistic at one sample point tM  and that at 
the next sample point 1+tM  are not independent which can 
lead to inappropriate interpretation of the source of an out-
of-control signal.  
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Tracy et al. [4] proposed a multivariate control chart based 
on Hotelling 2T statistic for monitoring process in start-up 
stage when only individual observations are available. The 
proposed statistic iQ  is used to detect any shift in mean 
vector. This statistic is also sensitive to the change in 
process covariance matrix. The iQ  statistic (times a 
constant) follows a Beta distribution with 2/p  and 

2/)1( −− pn degrees of freedom if the observation vector 

x is not independent of  x  and S  in which x  and S are 
the estimated values of parameters 0µ  and 0∑  respectively. 
For phase II operation where the future observations are 
independent from phase I, the iQ  statistic (times a constant) 
follows an F distribution with p and )( pn − degrees of 
freedom. Sullivan and Woodall [5] demonstrated 
comparison of multivariate control charts for individual 
observations case. Several alternative approaches for 
estimating ∑  are presented. They observed that the control 
chart employing the familiar covariance matrix estimator S1, 
that is obtained from the pooled observations is ineffective 
in detecting shift in the mean vector. They showed that 
control chart based on differences between each successive 
pair of observation vectors to estimate ∑  performs much 
better than that when estimator S1 is employed. The recent 
technology in monitoring process variability based on 
individual observations is presented by Mason et al. [6]. 
The methodology is based on original work by Wilks [7,8] 
in the detection of multivariate outliers. The control 
statistic, W, is the ratio between the determinant of sample 
covariance matrices issued from the augmented data set 
(ADS) in phase II and that of phase I (HDS). The ADS 
refers to a set of data consisting of HDS and a new 
observation obtained during phase II. In this paper, we 
discuss the used of the statistic W in order to monitor 
changes in the process variability characterized by the 
covariance matrix ∑  of size (p x p), where p is the number 
of process variables.  
 This paper is organized as follows. In Section 2, we 
describe the procedure to develop a control procedure based 
on Wilk’s statistic. The control chart based on W statistic is 
presented in Section 3. An example based on data from 
automotive industry is demonstrated in Section 4 to 
illustrate its application. In the last section, the conclusions 
are given. 
 
2. CONTROL PROCEDURE BASED ON WILK’S 

STATISTIC   
 

Suppose that we have a data matrix X of size (n x p) 
that consists of n random p-dimensional observations from 
an   in-control process in phase I. We will regard this data 
matrix as HDS and we assume that those observations 
follow a multivariate normal distribution with mean vector 

0µ and covariance matrix 0∑ , ( )00 ,∑µpN . For simplicity, 
we write the data matrix X in matrix notation: 
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Based on HDS, the unknown parameters 0µ and 0∑ are 
estimated, respectively, as follows 
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In order to perform the phase II operation, where 
monitoring any departure from in-control process variability 
is conducted based on individual observations and 0∑  is 
estimated by HDSS , the methodology proposed by Mason et 
al. [6] for monitoring a shift in a covariance matrix is as 
follows.  

Let us now consider the data matrix ADS 
′
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To monitor a shift in process variability, they used 

the following Wilk’s statistic [7,8]. 
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where HDSSS and ADSSS represent the scatter matrix of 
HDS and ADS.  

Mason et al. [6] pointed out that the new observation 
1+nx is said to be similar to the observations in HDS if 

1+nx does not increased the volume of space provided by 
HDS regardless additional new observation is included. 
However, if the volume of space provided by HDS is 
increased after a new observation 1+nx  is added, we 
conclude that the new observation is different than HDS. 
Thus, by using the relationship between the determinant of 
a sample covariance matrix and the volume of a p-
dimensional parallelotope, one could measure the change in 
the volume of space provided by HDS when a new 
observation is drawn. For example, if ADSS  is less 

than HDSS , then the values of W will be large. On the other 

hand, if ADSS  is greater than HDSS , the values of W will 
be small.  

Thus, if 1+nx  does not increase the volume of the 
space provided by HDS, W is large. In contrast, 1+nx  which 
increases that volume will give small W. Hence, in order to 
detect the shift in a covariance matrix when a new 
observation 1+nx  is added, the ratio between the 

determinant of HDSS  and that of ADSS  that is 
ADS

HDS

S
S

could 

be used. The influence of 1+nx  on the covariance structure 
will be reflected by the W statistic. Thus, the shift in the 
process variability could be monitored by constructing a 
control chart based on W statistic.  

Wilks showed that the possible value of W is 
between zero and one. If HDSS is similar to ADSS , the 
values of W is close to one. Otherwise if the values of W is 
close to zero, these two determinants are said to be 
dissimilar and            ADSS  > HDSS . We conclude that 
the ADSS  has different variability than that given by HDSS . 
In other words, the process variability is shifted when new 
observation is available. 

Control procedure based on Wilk’s statistic is to plot 
the values of W together with the values of its upper control 
limit (UCL) and lower control limit (LCL). These control 
limits will be discussed in the next section.                                                                           
 
3. CONTROL LIMITS 
 

The upper control limit (UCL) and the lower control 
limit (LCL) are calculated using the distribution of W. Since 
the values of W are between zero and one, while values near 
zero indicate an existence of the shift in process variability, 
the out of control region is at the left region of that 
distribution. Thus, an out-of-control signal will occur as 
soon as the value of W is less than LCL. Consequently, the 

UCL is not required. To calculate the LCL, we need the 
distribution of W under in-control state.   
 Consider again the W statistic in (4). To determine 
the distribution of W under in-control state, Mason et al. [6] 
used the relationship between W with Hotelling’s 

2T statistic. It can be seen, see Rencher [9], that W can be 
written as a function of 2T statistic and can be expressed as 
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Since 1+nx  is included in the calculation of ADSx  and ADSS , 

thus, 1+nx is not independent of both ADSx  and ADSS .       
Mason et al. [6] used equation (5) in order to derive the 
distribution for W. Let us first consider the 2T in phase I. If 
the true population parameters 0µ  and 0∑  are known, for 
all i = 1, 2, …, n,  
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is distributed as pχ (e.g. see Mason and Young, [10] or 
Seber, [11]). Otherwise, if those parameters are unknown, 
they must be estimated by HDSx  and HDSS  respectively, the 

2T statistic in (7) can be expressed as  
 

( ) ( )HDSiHDSHDSiT x-xx-x 12 −′= S  (8) 
 
The distribution of 2T statistic in (8), (see Tracy and 
Young, [4]), is a scalar multiplication of Beta distribution 
with degrees of freedom, 2/p and 2/)1( −− pn , 
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Now, we consider the 2T  in phase II. In this case, the 
distribution of 2T  statistic in (6) is                              
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In order to determine the distribution of W, the following 
property of beta distribution is applied (see Mason et al., 
[12]).     If the variable y is distributed as ( )baBeta , , then the 
variable x = 1- y is distributed as ( )abBeta , . This implies that,   
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n
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Based on this distribution, the lower control limit of W 
control charting is 
                                                                      
LCL = )2/,2/)(( ppnBeta −              (13) 
 
 
4. AN ILLUSTRATIVE EXAMPLE  

 
In this section, we consider a set of data from the 

beltline moulding process consisting of 57 individual 
observations with p = 8 process variables collected at 
certain time interval from an automotive industry obtained 
from Bon [13]. We used this data set to illustrate the 
application of control chart based on W statistic for 
monitoring multivariate process variability. We first 
established the phase I in-control process and obtained the 
estimates of unknown process parameters of mean vector 

0µ  and covariance matrix 0∑ . For this purpose, we use the 
first 30 observations as HDS, n = 30 and the last 27 
observations will be used in phase II. We assume that these 
observations are random and follow a multivariate normal 
distribution.  

From the phase I operation, we calculated the sample 
covariance matrix of HDS, HDSS . We get the following            
in-control sample covariance matrix  
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and the determinant of HDSS is 9104201.1 −×=HDSS .   

Now, we perform the phase II operation. We want to 
assess whether the process variability is still in-control 
when new observation is available. In this phase, the aim is 
to detect a shift in the process covariance matrix. Table 1 
shows the values of ADSS  for each of the 27 observations. 

Table 2 presents the corresponding values of W 
statistic for each ADS. The values of W are calculated based 
on equation (4) for n = 30, p = 8, 9104201.1 −×=HDSS and 

substituting ADSS  for each k where k = 1,2, ....., 27.  The 

change in the process variability is then monitored by 
plotting the values of W in Table 2 on the control chart 
together with the value of LCL. According to Equation (13), 
for 0027.0=α  we get LCL = 0.3845. It is the thα quantile 
of )4,11(Beta .                                                                                                   
 

Table 1: The sample generalized variances of each ADS.  
 

k ADSS  k ADSS  k ADSS  

1 1.1806E-09 10 1.3480E-09 19 1.4500E-09 
2 2.1515E-09 11 1.3213E-09 20 2.1044E-09 
3 1.7092 E-09 12 1.2132E-09 21 1.1429E-09 
4 1.3315E-09 13 2.3436E-09 22 1.5523E-09 
5 1.3469E-09 14 1.6186E-09 23 1.9087E-09 
6 1.2104E-09 15 1.7442E-09 24 1.8483E-09 
7 1.3952E-09 16 1.6706E-09 25 1.5324E-09 
8 2.1258E-09 17 1.3307E-09 26 1.8615E-09 
9 1.2958E-09 18 1.5578E-09 27 1.9987E-09 

 
 

Table 2: The values of W statistic. 
 

k W k W k W 

1 0.9171 10 0.8032 19 0.7467 
2 0.5032 11 0.8194 20 0.5145 
3 0.6335 12 0.8924 21 0.9474 
4 0.8132 13 0.4620 22 0.6975 
5 0.8039 14 0.6689 23 0.5673 
6 0.8946 15 0.6208 24 0.5858 
7 0.7761 16 0.6481 25 0.7066 
8 0.5093 17 0.8136 26 0.5817 
9 0.8356 18 0.6950 27 0.5417 
 

 

  
 

Figure 1: Control chart of W statistic for 27 individual observations   
 
 

Figure 1 shows that there is no signal of out-of-control state. 
Thus, we conclude that the process variability remains in-
control.  
 
5. CONCLUSION  
 

In this paper, we discuss a multivariate process 
variability monitoring based on individual observations 
using Wilk’s statistic. The control statistic W is defined as 
the ratio between two sample generalized variances given 
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by HDS and that given by ADS. The advantage of W 
statistic is due to user’s familiarity with sample generalized 
variance. Moreover, the exact distribution of this statistic is 
known. Thus, the control limit can be exactly determined. 
However, the statistic is not free from limitations.  For 
example, the value of sample generalized variance can be 
possibly zero in which case there exist a variable that is a 
linear combination of other variables. In another example, 
the two sample generalized variances can give the same 

value but they are different to each other in their covariance 
structures. 
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