IMMOBILISATION OF *PHANEROCHAETE CHRYSOSPORIUM* IN PVA-ALGINATE-SULPHATE BEADS FOR DECOLOURIZATION OF TEXTILE EFFLUENTS

NOR ATIKAH HUSNA BINTI AHMAD NASIR

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science (Biosciences)

Faculty of Biosciences and Medical Engineering Universiti Teknologi Malaysia

JULY 2013

To my beloved family:

Ahmad Nasir Bin Khosri Norashiken Binti Ahmad Norsaidatul Akmar Binti Ahmad Nasir Nor Fatihah Izzati Binti Ahmad Nasir Ahmad Amirul Hakim Bin Ahmad Nasir

and fiancée :

Ahmad Zuhairi Bin Abd Rahman

ACKNOWLEDGEMENT

My deepest thank and praise for the blessing of almighty Allah S.W.T to whom I indebted for my life, knowledge and thoughts.

I would like to express my appreciation and sincere gratitude to my supervisor, Dr. Nor Azimah Mohd Zain for her advices, guidance, critics and non-stop help during the duration of this project to be complete. Without her continued support, this thesis would not have been the same as presented here.

My sincere appreciations also extend to my beloved family and fiancée, for their huge moral support, pray for my success and listen to all the difficulties I faced throughout completing this research.

Last but not least, I would like to thank to the staffs in Biochemistry and Research Laboratory 2 for their assistances in supplying the relevant guidelines. My special thanks to my laboratory colleagues- Lam Chi Yong, Zaratulnur, Raziana, Sarina, Nor Badzilah, Siti Nur Balqis, Stasha Eleanor and Ahmad Zuhairi, for their encouragement, idea, help and friendship. Their views and tips are useful indeed.

ABSTRACT

Textiles industry is one of the main sources that contribute to water pollution due to the release of substances such as wax, surfactant and dyes into water bodies. Until now, many methods for textile effluents treatments were introduced. Unfortunately, most of them are expensive and ineffective. Recently, the ability of microorganisms as an alternative to overcome these problems has attracted attentions. In this study, textile effluents were treated with immobilised the white-rot fungi, Phanerochaete chrysosporium cells in PVA-alginate-sulphate beads. Optimisation conducted using Design Expert 6.0.4 software. A two level factorial with three factors programme was used for the optimisation. The efficiency of this system was determined by several tests such as colour and COD reduction, enzymatic activities, reusability, storage stability and toxicity test. Results showed that the optimum colour reduction and enzyme activity was achieved at 37 °C, 10 g of immobilised cells and 300 mg/L dyes concentration. At the optimum condition, immobilised cells were able to decolourize dyes and reduced COD content up to 50% and 33% higher compared to free cells. Meanwhile, the enzyme activity of immobilised cells was doubled as compared to free cells. The suggested model equation are significant since the predicted and actual value show percentage of error less than 5% for colour, COD reduction and enzymatic activity. Reusability test showed the immobilised cells could be reused up to four times to treat dyes effluents. For the stability test, the ability of immobilised cells to reduce dyes effluents decreased to about 10% after two-month storage as compared to free cells which decreased to about 25%. Toxicity test proved that immobilised cells could reduced the toxicity level up to 4% higher than free cells. In conclusion, P.chrysosporium was successfully immobilised in PVA-alginate-sulphate beads and could serve as a potential method for dyes effluents treatment.

ABSTRAK

Industri tekstil adalah satu sumber utama yang menyumbang kepada pencemaran air akibat pelepasan bahan seperti lilin, surfaktan dan pewarna ke dalam air. Sehingga kini, pelbagai cara untuk merawat sisa tekstil telah diperkenalkan. Namun, kebanyakan adalah mahal dan tidak berkesan. Kini, mikroorganisma dilihat sebagai alternatif untuk mengatasi pemasalahan ini. Dalam kajian ini, kulat reput-putih, Phanerochaete chrysosporium telah disekat gerak ke dalam manik PVA-alginate-sulfat untuk merawat sisa tekstil. Pengoptimuman rawatan sisa tekstil dijalankan menggunakan perisian Design Expert 6.0.4, program tahap dua faktorial dengan tiga faktor. Kecekapan sistem ini ditentukan dengan ujian nyah warna, COD, aktiviti enzim, guna semula, kestabilan penyimpanan dan ujian ketoksikan. Keputusan menunjukkan nyah warna dan aktiviti enzim yang optimum dicapai pada 37 °C, 10 g sel sekat gerak dan 300 mg/L kepekatan warna. Pada keadaan optimum, sel sekat gerak dapat menyahkan warna dan mengurangkan kandungan COD sehingga 50% dan 33% lebih tinggi berbanding dengan sel bebas. Sementara itu, aktiviti enzim sel sekat gerak juga dua kali lebih tinggi berbanding dengan sel bebas. Model persamaan yang dicadangkan adalah tepat kerana nilai ramalan dan sebenar menunjukkan peratusan ralat kurang daripada 5% bagi ujian nyah warna, COD dan aktiviti enzim. Ujian guna semula menunjukkan sel sekat gerak boleh digunakan semula sehingga empat kali untuk merawat sisa tekstil. Dalam ujian kestabilan, keupayaan sel sekat gerak merawat sisa tekstil telah menurun sebanyak 10% selepas dua bulan penyimpanan berbanding keupayaan sel bebas telah menurun sehingga 25%. Ujian ketoksikan membuktikan sel sekat gerak boleh mengurangkan ketoksikan sehingga 4% lebih tinggi berbanding sel bebas. Kesimpulannya, P. chrysosporium berjaya di sekat gerak ke dalam PVA-alginate-sulfat dan berpotensi untuk merawat sisa tekstil.

TABLES OF CONTENTS

CHAPTER		TITLE	PAGE
	SUPERVISOR'S	DECLARATION	i
	DECLARATION		ii
	DEDICATION		iii
	ACKNOWLEDGEMENT		iv
	ABSTRACT		V
	ABSTRAK		vi
TABLE OF CONTENTS		TENTS	vii
	LIST OF TABLES	COF TABLES	xii
	LIST OF FIGURE	ES	xiii
	LIST OF ABBRE	VIATIONS	xvi
	LIST OF APPENI	DICES	xvii
1	INTRODUCTION	I	
	1.1 Background	of Study	1
	1.2 Problem Stat	tements	3
	1.3 Objectives		3
	1.4 Scope of Res	search	4
	1.5 Significant o	f Research	4

LITERATURE REVIEW

2

3

2.1	Textile Industries in Malaysia	6
	2.1.1 Dyes	7
	2.1.2 Textile Effluents	9
2.2	Conventional Method Used to Treat Dyes Removal	10
	2.2.1 Physical and Chemical Methods	11
	2.2.2 Biological Methods	13
2.3	The Advantages of Using Fungi as Degradation Tool	13
2.4	White Rot Fungi	15
2.5	Phanerochaete chrysosporium	17
2.6	Lignin Modifying Enzymes	19
	2.6.1 Manganase Peroxidase Enzyme	20
	2.6.2 Lignin Peroxidase Enzymes	21
	2.6.3 Laccase Enzymes	23
2.7	Factor Influencing Rate of Decolourization	25
	2.7.1 Effects of Inoculum Loading	26
	2.7.2 Effect of Incubation Temperature	26
	2.7.3 Effect of Initial Dyes Concentration	27
2.8	Optimisation of Responses Using Design Expert	28
	6.0.4	
2.9	Cell Immobilised	28
2.10	Methods of Immobilised	29
2.11	Immobilised of Cell Using PVA-Alginate-Sulphate	30
2.12	Immobilisation of Fungi	34
MA	TERIALS AND METHODS	
3.1	Introduction	36
3.2	Experimental Design for Optimisation Process	37
3.3	Materials	38
3.4	Immobilisation of <i>P. chrysosporium</i>	39

3.4.1Culture Maintenance39

	2 1 2 Incoulum Proposition		20
	3.4.2 Inoculum Preparation		39
	3.4.3 Preparation of Dyes Solution		40
3.5	The Ability of <i>P. chrysosporium</i> to De	ecolourize	40
	Textile Dyes		
3.6	Fungal Spores Immobilisation		40
3.7	Adsorption Efficiency and Adsorption	Capacity Test	42
3.8	Mass concentration and Immobilised I	Beads	42
	Measurement		
3.9	Analytical Method		43
	3.9.1 Percentage of Discolouration		44
	3.9.2 Chemical Oxygen Demand (CC	DD)	44
	3.9.3 Manganese Peroxidase Assay		45
	3.9.4 Lignin Peroxidase Assay		45
	3.9.5 Laccase Activity		46
3.10) Confirmation Test		46
3.11	1 Field Emission Scanning Electron Mic	roscopy	47
3.12	2 Reusability Test		47
3.13	3 Storage Stability Test		48
3.14	4 Toxicity Assays		48
	3.14.1 Bacterial Growth Curve		48
	3.14.2 ToxTrak TM Method ^{1,2,3}		49
RES	SULTS AND DISCUSSION		
4.1	Introduction		51
4.2	Ability of P. chrysosporium to Decolo	ourize Dyes	51
	Effluent		
4.3	Staining of P. chrysosporium		53

4.4 Immobilised *P. chrysosporium*4.5 Comparison of Decolourization by Free *P. chrysosporium*, Immobilised *P. chrysosporium*and plain PVA-Alginate-Sulphate Beads.

4

4.6	Grow	th of Mycelia towards Dyes Decolourization	58
4.7	Relati	onship between Adsorption Efficiency and	59
	Growt	th Mass	
4.8	Adsor	ption Capacity, (q)	61
4.9	Treatn	nent of Textile Dyes by Using Free and	62
	Immo	bilised Cells	
	4.9.1	Dyes Decolouration by Free and	62
		Immobilised Cells	
	4.9.2	COD Reduction by Free and Immobilised	65
		Cells	
	4.9.3	Lignin Peroxidase Activity of Free and	67
		Immobilised Cells	
	4.9.4	Manganase Peroxidase Activity of Free and	69
		Immobilised Cells	
	4.9.5	Laccase Activity of Free and Immobilised	72
		Cells	
4.10	Experi	mental Design for Optimisation Experiment	73
4.11	Data a	nalysis	75
	4.11.1	Anova	75
	4.11.2	2 Diagnostic	78
4.12	Confir	mation run	86
4.13	Reusa	bility Test	87
4.14	Storag	ge Stability Test	92
4.15	Scann	ing Electron Microscopy	94
4.16	Toxic	ity Test	95
	4.16.1	I Toxicity Test by Using Microorganism	95
	4.16.2	2 Toxicity Test by Using ToxTrak TM Method	97

5	CONCLUSION AND RECOMMENDATIONS		
	5.1	Conclusion	99
	5.2	Future Works	100
LIST OF AC	HIFVFN	AFNTS	101

LIST OF ACHIEVEMENTS	101
REFERENCES	103
APPENDICES A-B	116

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Dyes structure based on their chromophores	7
2.2	Characteristic of wastes produced by textile industries	9
2.3	The advantages and disadvantages of physical and chemical	12
	methods used to treat textile effluents	
2.4	Examples of fungi involved in dyes degrading systems	15
2.5	Report on P. chrysosporium capability to decolourize textile	18
	dyes	
2.6	The dyes decolourization by fungal of different matrix	34
3.1	The low and high level used for optimisation	38
3.2	The complete design layout	38
4.1	Dyes decolourization by P. chrysosporium	52
4.2	Visual comparison between free cells, immobilized cell and	55
	plain PVA-alginate on the PDA plates.	
4.3	The factorial design for the experiment and the optimum	74
	output	
4.4	ANOVA for all responses	76
4.5	R ² value for ADMI reduction, COD reduction and enzymatic	77
	activities	
4.6	The empirical model for the responses tested	77
4.7	Comparison between Predicted and Actual Value	87
4.8	Percentage of inhibition after treated by ToxTrak TM Method	98

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Method used for textile waste water treatment	11
2.2	White rot fungi	16
2.3	Oxidation process from Mn ²⁺ to Mn ³⁺	20
2.4	The catalytic cycle of manganase peroxidase	21
2.5	Mechanism in generating cation radicals	22
2.6	The lignin peroxidase redox cycle	23
2.7	Oxidation of phenols by laccase enzymes	24
2.8	The catalytic cycle of laccase	25
2.9	Basic methods of cell immobilisation	30
2.10	Chain of Polyvinyl-alcohol	31
2.11	Reaction between PVA, boric acid and sodium sulphate	32
2.12	Reaction involved in formation of PVA-alginate-sulphate	33
	beads	
3.1	PVA-alginate-sulphate beads modified method	41
3.2	Analytical method used to determine the ability of	43
	immobilised cells	
3.3	Schematic diagram of summarise methodology	50

4.1	Spores and mycelium of <i>P. chrysosporium</i> at 40X magnification	53
4.2	Immobilised <i>P. chrysosporium</i> in PVA-alginate-sulphate beads	54
4.3	Comparison of colour reduction by free cells, immobilised	56
	cells and plain PVA-alginate-sulphate beads	
4.4	The difference in colour between beads for dyes	58
	decolourization	
4.5	Mass concentrations by free cell and immobilised cells	59
4.6	Relationship between adsorption and growth curve by free	60
	cell and immobilised cell	
4.7	Adsorption capabilities of free and immobilised cells	61
4.8	Dye decolourization by free and immobilised cells	64
4.9	COD reduction by free and immobilised cells	66
4.10	Lignin peroxidase activity by free and immobilised cells	67
4.11	MnP activity by free and immobilised cells	70
4.12	Laccase activity by immobilised beads and free cells	72
4.13	The diagnostic graph for colour reduction from Design	80
	Expert Software	
4.14	The diagnostic graph for COD removal from Design Expert	81
	Software	
4.15	The diagnostic graph for LiP activity from Design Expert	83
	Software	
4.16	The diagnostic graph for MnP activity from Design Expert	85
	Software	
4.17	The diagnostic graph for Laccase activity from Design	86
	Expert Software	
4.18	Percentage of colour reduction from cycle to cycle	88
4.19	The colour changes during incubation time	88
4.20	Percentage of COD reduction from cycle to cycle	89

4.21	Lignin peroxidase activity from cycle to cycle	90
4.22	Manganase peroxidase activity from cycle to cycle	91
4.23	Laccase activity from cycle to cycle	91
4.24	Storage stability test of colour reduction	92
4.25	Storage stability test for LiP, MnP and Laccase for 60 days	94
	incubation period	
4.26	SEM images	95
4.27	Growth profile of B. cereus in 1.5X TY broths, untreated	96
	dyes, treated dye by immobilised beads and free cells	
4.28	Visible colour differences observed after toxicity test by free	97
	and immobilised cells	

LIST OF ABBREVIATIONS

A_0	Absorbance in a mean time
A_1	Absorbance of initial dyes
A _t	Absorbance at time't'
ABTS	2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
ADMI	American Dyes Manufacturing Index
C_0	Initial concentration of dyes
COD	Chemical Oxygen Demand
g	Gram
m	Dry mass of beads after adsorption
mg	Milligram
mg/L	Milligram/Liter
mL	Milliliter
°C	degree Celsius
PAHs	Polycyclic aromatic hydrocarbon
PDA	Potato Dextrose Agar
rpm	Revolutions per minute
SEM	Scanning Electron Microscopy
v/v	Volume/ Volume
V_0	Initial volume of culture medium
w/v	Weight/volume

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	Determination of Spores Concentration	113
В	Estimation of Spores Concentration in PVA-Alginate-	114
	Sulphate Beads	

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Dyes are widely used as colouring agent in textile, leather, paper, plastic and food industries (Ali and El-Mohamedy, 2010). Approximately 10,000 different dyes and pigments are produce annually worldwide with a volume of more than $7x10^5$ tonnes (Devecci *et al.*, 2004). Meanwhile, data shows up to 10% of dyes were found in water bodies as wastes (Devecci *et al.*, 2004). Textiles industry is identified as one of the industries that contribute to serious water pollution. This is caused by the releasing of substances such as dyes, wax and surfactant in water bodies (Ali and El-Mohamedy, 2010). These chemicals are used for desizing, scouring, bleaching, dyeing, printing and finishing. Thus, opportunities exist for the release of potentially hazardous compounds into ecosystems at various stages of the operation. Usually, the substances are then released to the nearest water bodies without proper treatment.

Various techniques had been proposed in treating textile effluents (Couto, 2009). Attention has shifted towards biological method in textile effluent treatment. It is a result in pursuing the most economical, environmental friendly and efficient technique (Suhaimi, 2010). Basidiomycetes fungi is commonly use in biological method to degrade wide range of different synthetic dyes. Basidiomycetes fungi is a white rot fungi. This type of fungi has the ability to secrete extracellular lignin-modifying enzymes. These enzymes have low substrate specificity and able to degrade a wide range of xenobiotic compound (Barr and Aust, 1994; Pointing, 2001) including dyes (Glenn and Gold, 1983; Pasti-Grigsby *et al.*, 1992; Paszczynski *et al.*, 1992; Spadaro *et al.*, 1992). Basidiomycetes are considered as the most developed class of fungi because of these specialties (Kunz *et al.*, 2001).

The efficiency and effectiveness of dyes decolourization through microorganisms can be enhanced by cell immobilisation (Chen *et al.*, 2003). This is due to the protection served by immobilisation matrix towards cells from harsh environment such as high acidity and extreme temperature. The immobilisation matrix would also provide a surrounding that mimics cell natural habitat by stimulating ligninolytic enzymes production, depending on the nature of support matrix (Suhaimi, 2010). Moreover, immobilised cells are able to be reused up to several times thus resulting in decreasing the operational cost.

Basically, immobilised matrix can be divided into synthetic and natural polymer. One of the most natural polymers that widely used is alginate which exists naturally in the cell wall of brown algae. Alginate offers lots of advantages such as availability, nontoxic to microorganisms, cost-effective and eases to handle (Suhaimi, 2010). Unfortunately, alginate is susceptible to their counter ion, such as phosphate that would let them disintegrated resulting the failure of the gelation process.

A synthetic polymer which is Polyvinyl alcohol (PVA) which is a synthetic polymer had been widely used to replace alginate due to its properties. It offers advantageous likes alginates, which are non-toxic to microorganisms, economic and ease to use. The use of PVA as immobilisation matrix seems as an alternative.

Thus, the idea of this study is to combine the advantages offer by PVA and white rot fungi to treat the textile effluents with the improvement of the existing technique.

1.2 Problem Statements

In order to fulfil human demand, dyes are designed to be recalcitrant and resistant when expose to light, sweat, water, chemical and microbial attack. However, certain dyes used are toxic, mutagenic and carcinogenic (Chung *et al.*, 1992). During textiles' processing, about 40% of used dyes are release into the water bodies (Faraco *et al.*, 2009). Used dyes might contain grease, wax, heavy metal, surfactant and suspended solid (Ahmad *et al.*, 2002). Thus, without improper management and treatment, textile effluents can cause serious water pollution to the ecosystems. Dyes released might hinder sunlight to penetrate water bodies, retarding the photosynthesis process and inhibit the growth of aquatic biota and affects gas solubility in water bodies.

Undeniable, the existing chemical and physical methods used to treat textile effluents are effective. However, they also pose drawbacks such as cost consuming, high sludge formation and generate toxic by-products (Couto, 2009). Meanwhile, biological approach by using bacteria would be unfeasible due to the production of colourless dead-aromatic amines by certain bacteria which is more toxic than the parental compounds (Couto, 2009). Thus, a quick, efficient and cost effective approach is necessary to overcome these problems.

1.3 Objectives

The objectives of this study are:

- 1. To immobilize *Phanerochaete chrysosporium* into PVA-alginate-sulphate beads.
- 2. To remediate dyes in shake flask using the immobilised cells and compare the degradation with free cells.

- 3. To optimize the physical parameter for the immobilised cells to treat textile effluents by using Design Expert 6.0.4 software.
- 4. To study the reusability and stability of the immobilised cells.
- 5. To examine the toxicity level of treated textile effluents.

1.4 Scope of Research

This study investigates the ability of *Phanerochaete chrysosporium* to decolourize textile effluents collected from Razali Batik, Kelantan. PVA-alginate-sulphate beads used were a modified version from pervious works (Idris *et al.*, 2008).

The ability of this immobilised fungus to decolourize and degrade textile dyes was examined in several tests such as American Dyes Manufacturer's Institute (ADMI) reduction, Chemical Oxygen Demand (COD) reduction and enzymatic activities. Design Expert Software 6.0.4 was used as a statistical method to optimize the physical parameter for immobilised *Phanerochaete chrysosporium*. Scanning Electron Microscope (SEM) was used to study the morphology of the matrix and immobilised fungus. In addition, reusability, storage stability and toxicity tests were conducted to ensure the effectiveness of this immobilisation matrix.

1.5 Significant of Research

This study highlights the ability of *Phanerochaete chrysosporium* immobilised in PVA-alginate-sulphate beads in textile effluents treatment. Previously, this immobilisation matrix had successfully immobilised an enzymes, enhanced the beads' shapes, resulting the best surface area for the cells, reduce cell leakage and cells agglomeration (Idris *et al.*, 2008). Additionally, immobilised cells are proven to give better results for dye decolourization compared to free cells. Immobilised cells also give better COD reduction, higher enzymatic activities, reusability, more stable in longer period of storage and lower toxicity level compared to free cells (Wang *et al.*, 2007).

Thus, the ability of immobilised *Phanerochaete chrysosporium* in treating textile effluents will be beneficial since this method is inexpensive and easy to handle at the industrial scale (Wang *et al.*, 2007). The successfulness of this research would be an outstanding knowledge to treat textile effluents in the future.

REFERENCES

- Abo-State, M. A. M., Reyad, B., Ali, M. Gomaa, O., and Youssif, E. A. (2011). Comparing Decolorization of Dye by White Rot Fungi, Free Enzyme and Immobilized Enzyme. *World Applied Sciences Journal*. 14, 1469-1468.
- Ahmad, A. L., Harris, W. A., Syafiie and Seng, O. B. (2002). Removal of Dye from Wastewater of Textile Industry Using Membrane Technology. *Jurnal Teknologi*. 36, 31-44.
- Ali, N. F. and El-Mohamedy, R. S. R. (2010). Microbial Decolourization of Textile Waste Water. *Journal of Saudi Chemical Society*. 16, 117-123.
- Arora, D.S., Chander, M., Gill, P.K. (2002). Involvement of lignin peroxidase, manganase peroxidase and laccase in degrading and selective ligninolysis of wheat straw. *Biodegradation*.50, 115-120.
- Assadi, M. M., Rostami, K., Shahvali, M and Azin, M. (2001). Decolourization of Textile Wastewater by *Phanerochaete chrysosporium*. *Desalination*.141, 331-336.
- Babu, B. R., Parande, A. K., Raghu, S. and Kumar T. K. (2007). Cotton Textile Processing: Waste Generation and Effluent Treatment. *The Journal of Cotton Science*. 11, 141-153.
- Barr, D.P., and Aust, S.D. (1994). Mechanisms of White Rot Fungi Use to Degrade Pollutants. *Environment Science Technology*.28, 78-87.

- Bishnoi, K., Kumar, R. and Bishnoi, N.R. (2007). Biodegradation of Polyclic Aromatic Hydrocarbons by White Rot Fungi, *Phanerochaete chrysosporium* in Sterile and Unsterile Soil. *Journal of Scientific Industries Research (India)*. 67, 538–542.
- Buckley, K. F., and Dobson, A. D. W. (1998). Extracellular Ligninolytic Enzyme Production and Polymeric Dye Decolourization in Immobilized Cultures of *Chrysosporium lignorum* CL1. *Biotechnology Letters*. 20, 301-306.
- Bumpus, J. A., Tien, M., Wright, D., Aust, S.D. (1985).Oxidation of Persistent Environmental Pollutants by a White-rot Fungus. *Science*. 228, 1434-1436.
- Burdsall, H. (1985). A Contribution to the Taxonomy of the Genus Phanerochaete. *Mycologia Memoir*.10, 61-63.
- Call, H. P and Mücke, I. (1997). Minireview: History, Overview and Applications of Mediated Ligninolytic Systems, Especially Laccase-Mediator-Systems (Lignozym-Process). *Journal of Biotechnology*. 53, 163-202.
- Carletto, R., Chimirri, F., Bosco, F., and Ferrero, F. (2008). Adsorption of Congo Red Dyes on Hazelnut Shells and Degradation *Phanerochaete chrysosporium*. *BioResources*.3, 1146-1155.
- Cestari, A. R., Vieira, E. F. S., Nascimento, A. J. P., Oliveira, F. J. R., Bruns, R. E. and Airoldi, C. (2000). New Factorial Design to Evaluate Chemisorption of Divalent Metals on Aminated Silicas. *Journal of Colloid and Interface Science*. 241, 45-51.
- Chai, C. C. (2008). Enhanced Production of Lignin Peroxidase and Manganase Peroxidase by Phanerochaete chrysosporium in a Submerged Culture Fermentation and Their Application in Decolourisation of Dyes. Master Thesis. Universiti Sains Malaysia, Penang.

- Champagne, P. P., and Ramsay, J. A. (2005). Contribution of Manganase Peroxidase and Laccase to Dye Decoloration by *Trametes versicolor*. *Applied Microbiology and Biotechnology*.69, 276-285.
- Chen, K.C. and Lin, Y.F. (1994). Immobilization of Microorganisms with Phosphorylated Polyvinyl Alcohol (PVA) Gel. *Enzyme and Microbial Technology*. 16, 79-83.
- Chen, K-C., Wu, J-Y., Huang, C. C, Liang, Y-M. and Hwang S-C.J. (2003). Decolorization of Azo Dyes Using Immobilized Microorganism. *Journal of Biotechnology*. 101, 242-252.
- Christiansson, A., Satyanarayan, N., Nilsson, I., Wadstrom, T. and Petterson, H. E. (1989).Toxin Production by *Bacillus cereus* Dairy Isolates in Milk at Low Temperature. *Applied and Environmental. Microbiology*. 55, 2395-2600.
- Chung, K. T., Stevans, S. E., and Cerniglia, C. E. (1992). The Reduction of Azo Dyes by the Intestinal Microflore. *Critical Reviews in. Microbiology*. 18, 175-190.
- Couto, S. R. (2009). Dye Removal by Immobilized Fungi. *Biotechnology Advances*. 27, 227-235.
- Devecci, T., Unyayar, A. and Mazmanci, M. A. (2004). Production of Removal Brilliant Blue R Decolorizing Oxygnase from the Culture Filtrate of *Funalia trogii* ATCC 200800. *Journal of Molecular Catalysis B: Enzymatic*. 30, 25-32.
- Eggert, C., Temp, U., and Eriksson, K. E. (1996). Laccase Producing White Rot Fungi Lacking Lignin Peroxidase and Manganase Peroxidase, Role of Laccase in Lignin Biodegradation. *ACS* Symposium Series. 655, 130-150.

- Faraco, V., Pezzella, C., Miele, A., Giardina, P., and Sannia, G. (2009). Bio-remediation of Colored Industrial Wastewaters by the Fungi *Phanerochaete chrysosporium* and *Pleurotus ostreatus* and Their Enzymes. *Biodegradation*. 20, 209-220.
- Federici, F. (1993). Potential Application of Viable, Immobilized Fungal Cell Systems. World Journal Microbial Biotechnology. 9, 4 95-502.
- Filho, D. N. L. (1999). Adsorption of Cu (II) and Co (II) Complexes on a Silica Gel Surface Chemically Modified with 2-Mercaproimidazole. *Mikromchimica.Acta*. 130, 233.
- Gao, D., Du, L., Yang, L., Wu, W.M., Liang, H. (2010). A Critical Review of the Application of White Rot Fungus to Environmental Pollution Control. *Critical reviews in Biotechnology*.30,70-77.
- Ghasemi, F. Tabandeh, F. Bambai, B. and Sambasive Rao, K. R. S. (2010). Decolorization of different azo dyes by *Phanerochaete chrysosporium* RP78 under optimal condition. *International Journal.of Environmental. Science* and.Technology. 7, 457-464.
- Glenn, J. K and Gold, M. H (1983). Decolorization of Several Polymeric Dyes by the Lignin-Degrading Basidiomycete *Phanerochaete chrysosporium*. Applied and *Environmental Microbiology*. 45, 1741-1747.
- Gonvales, I., Gomes, A., Brás, R., Ferra, M. I. A., Amorim, M. T. P. and Porter, R. S. (2000). Biological Treatment of Effluent Containing Textile Dyes. *Journal of the Society of Dyers Colourists*. 6, 393-397.
- Haapala, A. and Linko, S. (1993). Production of *Phanerochaete chrysosporium* Lignin Peroxidase under Various Culture Condition. *Applied Microbiology and Biotechnology*. 40, 494-498.

- HACH. (2005). DR5000 Spectrometer: Procedures Manual (2nd ed.) USA: HACH Company.
- Haglund, C. (1999). Biodegradation of Xenobiotic Compounds by the White –rot Fungus Trametes trogii. Molecular Biotechnology Programme. Uppsala University School of Engineering.30.
- Hasan, M. (2011).Dyes: Technologies for Colour Removal. Retrieved April 30, 2013, from The School of Environmental Engineering, Universiti Malaysia Perlis: <u>http://ppkas.unimap.edu.my/index.php/news/articles/22-dye-technologies-for-</u> <u>colour-removal</u>.
- Hatakka, A. (1994). Lignin-Modifying Enzymes from Selected White-rot Fungi: Production and Role from in Lignin Degradation. *FEMS Microbiology Reviews*. 13, 125-135.
- Heinfling, A., Martinez, M. J., Bergbauer, M. and Szewzyk, U. (1998).Transformation of Industrial Dyes by Manganase Peroxidase from *Bjerkandera adusta* and *Pleurotus eryngii* in a Manganse-independent Reaction. *Applied and Environmental Microbiology*. 64, 2788-2793.
- Idris, A., Zain, N. A. M. and Suhaimi, M. S. (2008). Immobilization of Baker's Yeast Invertase in PVA-Alginate Matrix Using Innovative Immobilization Technique. *Process Biochemistry*. 43, 331-338.
- Ikehata, K., Buchanan, I. D. and Smith, D. W. (2004). Recent Development in the Production of Extracellular Fungal Peroxidase and Laccase for Waste Treatment. *Journal of Environmental Engineering Science*. 3, 1-19.
- Kashyap, P., Sabu, A., Pandey, A. and Szakacs, G. (2002). Extra-cellular L-glutaminase Production by Zygosscharomyces rouxii Under Solidstate Fermentation. Process Biochemistry. 38, 307-312.

- Kaushik, P. and A. Malik. (2009). Fungal Dye Decolourization: Recent Advances and Future Potential. *Environment International*. 35, 127-141.
- Kerchove, A. J. D and Elimech, M. (2007). Formation of Polysaccharide Gel Layers in the Presence of Ca²⁺ and K⁺ Ions: Measurements and Mechanisms. *Biomacromolecules*. 8, 113-21.
- Kim, J. H., Eldon, R. R. and Park, H. S. Biological Oxidation of Hydrogen Sulfide Under Steady and Transient State Conditions in a Immobilized Cell Biofilter. *Bioresources Technology*. 99, 583-8.
- Knapp, J. S., Newby, P. S. and Reece, L. P. (1995). Decolourization of Dyes by Wood-Rotting Basidiomycete Fungi. *Enzyme and Microbiol Technology*. 17, 664-668.
- Kroll, D. (2004). Utilization of a New Toxicity Testing System as a Water Security Monitoring Tool. Colorado: HACH.
- Kumari, K. and Abraham, T. E. (2007). Biosorption of Anionic Textile Dyes by Nonviable Biomass of Fungi and Yeast. *Bioresources Technology*. 98, 1704-1710.
- Kunz, A., Reginatto, V. and Duran, N. (2001). Combined Treatment of Textile Effluent Using the Sequence *Phanerochaete chrysosporium-Ozone.Chemosphere*. 44, 281-287.
- Lacina, C., Germin, G. and Spiros, A. (2003). Utilization of Fungi for Biotreatment of New Wastewater: A Review. *African Journal of Biotechnology*.2, 620.
- Lan, W., Gang, G. E. and Jinbao, W. (2008). Biodegradation of Oil Wastewater by Free and Immobilized *Yarrowia lipolytica* W29. *Journal of Environmental Sciences*. 21, 237-242.

- Li-Sheng, Z., Wei-Zhong, W. and Jian-Long, W. (2007). Immobilization of Activated Sludge Using Improved Polyvinyl Alcohol (PVA) Gel. *Journal of Environmental Sciences*. 19, 1293-1297
- Liu, D. (1981). A Rapid Biochemical Test for Measuring Chemical Toxicity. *Bulletin of Environmental Contaminant and Toxicology*. 26, 145-149.
- Liversidge, R. M., Lloyd, G. J., Wase, D. A. J. and Forster, C. F. (1997). Removal of Basic Blue 41 Dye from Aqueous Solution by Linseed Cake. *Process Biochemistry*. 32, 473-77.
- Manna, S., Fakhrul'l- Razi, A. and Alam, M. Z. (2005). Use of Fungi to Improve Bioconversion of Activated Sludge. *Water Research*. 39, 2935-2943.
- Martirani, L., Giardina, P., Marzullo, L. and Sannia, G. (1996). Reduction of Phenol Content and Toxicity in Olive Oil Mill Waste Waters with the Ligninoytic Fungus *Pleurotus ostreatus*. *Water Resources*. 8, 1914-1918.
- McCurdy, M. W., Boardman, G. D., Michelsen, D. L. and Woodby, B. M. (1992). Chemical Reduction and Oxidation Combined with Biodegradation for the Treatment of a Textile Dye. In 46th Proc. Purdue Industrial Waste Conf. Lewis Publishers, MI. 14-16 May. Purdue University, 229-234.
- McGuirl, M. A., and Dooley, D. M. (1999). Copper-containing Oxidases. *Current Opinion in Chemical Biology*. 3, 138-44.
- Miao,Y.J. (2011). Biological Remediation of Dyes in Textile Effluent : A review on Current Treatment Technology. Retrieved April 30, 2013, from <u>http://www.public.iastate.edu/~tge/courses/ce521/yongjie.pdf</u> *Microbiology, Chemistry and Potential Applications* (pp. 215-230). Boca Raton: CRC.

MIDA. (2013). Retrieved April 28, 2013 from

http://www.mida.gov.my/env3/index.php?page=textiles-and-apparel-industry

- Miranda, R. M., Gomes, E. B., Gouveia, ER., Machado, K. M. G and Gusmao, N.B.(2010). Decolorization of Laundry Effluent by Filamentous Fungi. African Journal of Biotechnology. 11, 4216-4224.
- Nakamura, Y., Sawada, T., Sungusi, M.G., Kobayashi, F., Kuwahara, M. and Ito, H. (1997). Lignin Peroxidase Production by *Phanerochaete chrysosporium*. *Journal* of Chemical Engineering Japan. 30, 1-6.
- Nedovic, V., Ida Leskosek-Cukalovic, and Gordana Vunjak-Novakovic. (1999). Immobilized Cell Technology (ICT) in Beer Fermentation–A Possibility for Environmentally Sustainable and Cost-effective Process. *University of Belgrade*
- Nie, G., Reading, N. S. and Aust, S. D. (1999). Relative Stability of Recombinant Versus Native Peroxidase fom *Phanerochaete chrysosporium*. Archives of Biochemistry and Biophysics. 365, 328-34.
- Niku-Paavola, M. L., Fagerström, R., Kruus, K and Viikari, L. (2004). Thermostable Laccase from the White-rot Fungus *Peniophora sp. Enzyme and Microbial Technology*. 35, 100-102.
- Odaci, D., Timur, S., Pazarliogli, N., Montereali, M. R., Vasteralla, W., Pilloton, R. and Telefoncu, A. (2007). Determination of Phenolic Acids Using *Trametes versicolor* Laccase. *Talanta*. 71, 312-217.
- Ohkuma, M., Maeda, Y., Johjima, T. and Kudo, T. (2001). Lignin Degradation and Roles of White Rot Fungi: Study on an Effective Symbiotic System in Fungus-Growing Termites and Its Application to Bioremediation *.RIKEN*. 42, 39-42.

- Orth, A. B., Royse, D. J. and Tien, M. (1993). Ubiquity of Lignin-degrading Peroxidase Among Various Wood-degrading Fungi. Applied and Environmental Microbiology. 59, 4017-4023.
- Pasti-Grigsby, M. B., Paszczynski, A., Goszczynski, S., Crawford, D. L. (1992). Influence of Aromatic Substitution Patterns on Azo Dyes Degradability by *Streptomyces sp.* and *Phanerochaete chrysosporium*. *Applied and Environmental. Microbiology*. 58, 605-3613.
- Pointing, S. B. (2001). Feasibility of Bioremediation by White-rot Fungi. *Applied Microbiology and Biotechnology*. 57, 20-33.
- Radha, K. V., Regupathi, I., Arunagiri, A. and Murugesan, T. (2005). Decolorization Studies of Synthetic Dyes Using *Phanerochaete chrysosporium* and Their Kinetics.*Process Biochemistry*. 40, 3337-3345.
- Radha, K. V., Sridevi, V. and Kalaivani, K. (2009). Eletrochemical Oxidation for the Treatment of Textile Industry Wastewater. *Bioresources Technology*. 100, 987-990.
- Rajamohan, N. and Karthikeyan, C. (2004). Fungi Biodegradation of Dyes House Effluent and Kinetic Modeling. Annamalai University, Tamilnadu-India.
- Rosli, M. N. H. (2006). Development of Biological Treatment System for Reduction of COD from Textile Wastewater. Master Thesis. Universiti Teknologi Malaysia, Skudai.
- Sahoo, D. K and Gupta, R. (2005). Evaluation of Ligninolytic Microorganisms for Efficient Decolorization of a Small Pulp and Paper Mild Effluent. *Process Biochemistry*. 40, 1573-1578.

- Saritha, V., Maruthi, Y. A. and Mukkanti, K. (2010). Potential Fungi for Bioremediation of Industrial Effluents. *BioResources*. 5, 8-22.
- Schoemaker, H. E., and Piontek, K. (1996). On the Interaction of Lignin Peroxidase with Lignin. *Pure and Applied. Chemistry*. 68, 2089-2096.
- Shah, V., and Nerud, F. (2002). Lignin Degrading System of White-rot Fungi and Its Exploitation for Dye Decolorization. *Canadian Journal of Microbiology*. 48, 857-70.
- Singh, D., and Chen, S. (2008). The White-rot Fungus Phanerochaete chrysosporium: Conditions for the Production of Lignin- degrading Enzymes. Applied Microbiology and Biotechnology. 81, 399-417.
- Soloman, P.A., Basha, C.A., Ramamurthi, V., Koteeswaran, K. and Balasubramanian, N. (2009). Electrochemical Degradation of Remazol Black B Dye Effluent. *Clean.*37, 889-900
- Spadaro, J. T., Gold , M. H. and Renganathan, V. (1992). Degradation of Azo Dyes by The Lignin-Degrading Fungus *Phanerochaete chrysosporium*. *Applied and Environmental. Microbiology*. 58, 2397-2401.
- Suhaimi, M. S. (2010). Degradation of Textile Dyes Using Immobilized Phanerochaete chrysosporium. Master Thesis, Universiti Teknologi Malaysia, Skudai.
- Sundaramoorthy, M., Kishi, K., Gold, M. H. and Poulos, T. L. (1997). Crystal Structures of Substrate Binding Site Mutants of Manganase. *Biological Chemistry*. 272, 17574-17580.
- Szczesna-Antczak, M. and Galas, E. (2001). *Bacillus subtilis* Cells Immobilized in PVA-Cryogels. *Biomolecular Engineering*. 17, 55-63.

- Takei, T., Ikeda, K., Ikima, H. and Kawakami, K. (2011). Fabrication of Poly(vinyl alcohol) Hydrogel Beads Crosslinked Using Sodium Sulfate for Microorganism Immobilization. *Process Biochemistry*. 46, 566-571.
- Tengerdy, R. P., Weinberg, Z. G., Sza-kacs, G., Wu, M., Linden, J. C., Henk, L. L. and Johnson, D. E. (1991). Ensiling Alfalfa With Additives of Lactic Acid Bacteria and Enzymes. *Journal of the Science of Food and Agriculture*. 55, 215-228.
- Urek, R. O. and Pazarlioglu, N. K. (2007). Enhanced Productivity of Manganase Peroxidase by *P.chrysosporium*. *Brazalian Archieves of Biology and Technology*. 50, 913-920.
- Urzu'a, U., Larrondo, L. F., Lobos, S., Larrai'n J. and Vicun`a, R. (1995). Oxidation Reactions Catalyzed by Manganase Peroxidase Isoenzymes from *Ceriporiopsis subvermispore*. *FEBS Letters*. 371, 132-136.
- Vaithanomsat, P., Apiwatanapiwat, W., Petchoy, O., and Chedchant. (2009). Production of Ligninolytic Enzymes by White-rot Fungus *Datronia sp.* KAP10039 and Their Application for Reactive Dye Removal. *Journal of Chemical Engineering.*6.
- Vaithanomsat, P., Songpim, M., Malapant, T.Kosugi, A., Thanapse, W. and Mori, Y. (2010). Production of β-Glucosidase from a Newly Isolated Aspergillus Species Using Response Surface Methodology. International Journal of Microbiology.9.
- Wang, Bao-e and Hu, Yong-you. (2007). Comparison of Four Support for Adsorption of Reactive Dyes by Immobilized Aspergillus fumigates Beads. Journal of Environmental Sciences. 19, 451-457.

- Wariishi, H., Valli, K. and Gold, M. H. (1992). Manganase (II) Oxidation by Manganase Peroxidase from the Basidiomycete *Phanerochaete chrysosporium*. Kinetic Mechanism and Role of Chelators. *Journal of Biological Chemistry*. 267, 23688-23695.
- Wesenberg, D., Kyriakides, I. and Agothos, S. N. (2003). White-rot Fungi and Their Enzymes for the Treatment of Industrial Dye Effluents. *Biotechnology Advances*. 22, 161-187.
- White rot fungi. Retrieved December 28, 2012 from http://greenreport.it/web/archivio/show/id/2079)
- Xiong, X., Wen, X., Bai, Y. and Qian, Y. (2008). Effects of Culture Conditions on Ligninolytic Enzymes and Protease Production by *Phanerochaete chrysosporium* in Air. *Journal of Environmental Science*. 20, 94-100.
- Yang,C-C., Lue, S.J., Shih,J-Y.(2011). A Novel Organic/inorganic Polymer Membrane Based on Poly (vinyl alcohol)/poly (2-acrylamido-2-methyl-1-propanesulfonic acid/3-glycidloxypropyl ttimethyoxysilane) Polymer Electrolyte Membrane for Direct Methanol Fuel Cells. Journal of Power Sources.196, 4458-4467.
- Zain, N. A. M., Suhaimi, M. S., Idris, A. (2010). Hydrolisis of Liquid Pineapple Waste by Invertase Immobilized in PVA-alginate Matrix. *Biochemical Engineering Journal*. 50, 83-89.
- Zain, N. A. M., Suhaimi, M. S., Idris, A. (2011). Development and Modification of PVA-alginate as a Suitable Immobilization Matrix. *Process Biochemistry*.46, 2122-212.

Zwietering, M. H, Jongenburger, I, Rombouts, F. M. and Van'triet, K. (1990).Modelling of the Bacterial Growth Curve. *Applied and Environmental Microbiology*. 56, 1875-1881.

•