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ABSTRACT 

 

 

 

Acetabular cup is a component of hip prosthesis that replaces the acetabulum 

of pelvis bone in total hip arthroplasty. As shown in clinical studies, the stiffness 

mismatch between the implant and the bone leads to stress-shielding and bone 

resorption. The formation of wear debris due to contact between the acetabular cup 

and the femoral head can also cause adverse tissue reactions leading to massive bone 

loss around the implant and consequently implant loosening. This study attempted at 

solving the problem through the use of double-layer polymer composites. Carbon 

fiber reinforced polyetheretherketone (CFR-PEEK) was incorporated as the 

acetabular cup liner part to reduce wear rates whilst a second layer Hydroxyapatite-

Polyetheretherketone (HA-PEEK) was used to create low modulus acetabular cup 

shell part. This new design was developed with the aim of reducing stress shielding, 

promote bone in-growth, and reducing wear debris from modular interfaces. The 

objective of this study was to prepare beam samples of the double-layer polymer 

composites via injection moulding process and ultrasonic welding. The strength of 

welding interface was evaluated by single cantilever beam (SCB) and lap shear tests. 

Response surface method (RSM) optimization process was used in the design of 

experiments in order to optimize the ultrasonic welding parameters. Coating of 

hydroxy-apatite on polymer composite substrate was investigated and the substrate 

was tested by CSM Micro scratch tester machine. SCB test showed stronger welding 

for partial energy director compared to those performed with whole energy director. 

The optimized maximum debonding force of the composite layers was achieved for 

3.5 seconds welding time, 3 seconds holding time, and 8 bar pressure of ultrasonic 

welding parameters. Scratch test assessment showed plasma spraying as an 

appropriate method for coating of HA on PEEK substrate with a coefficient friction 

of 0.67.  
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ABSTRAK 

 

  

 

Cawan acetabular adalah komponen prostesis pinggul yang menggantikan 

acetabulum tulang pelvis dalam pembedahan keseluruhan tulang pinggul. Seperti 

yang dibuktikan dalam ujian klinikal, ketidakpadanan tegasan antara implan dan 

tulang membawa kepada perlindungan tekanan dan penyerapan tulang. Pembentukan 

serpihan haus disebabkan oleh sentuhan antara cawan acetabular dan kepala femoral 

juga boleh menyebabkan tindak balas tisu yang membawa kepada kehilangan tulang 

secara besar-besaran pada keseluruhan implan dan seterusnya melongggarkan 

implan. Kajian ini cuba menyelesaikan masalah melalui penggunaan dua lapisan 

polimer komposit. Gentian karbon diperkuat polyetheretherketone (CFR-PEEK) 

telah digabungkan sebagai sebahagian pelapik cawan acetabular untuk 

mengurangkan kadar haus manakala lapisan kedua Hidroksiapatit-

Polyetheretherketone (HA-PEEK) telah digunakan untuk menghasilkan bahagian 

cangkerang cawan acetabular yang  bermodulus rendah. Reka bentuk baru ini telah 

dibangunkan dengan tujuan untuk mengurangkan perlindungan tekanan, 

menggalakkan pertumbuhan tulang dan mengurangkan puing haus antara permukaan 

bermodul. Objektif kajian ini adalah untuk menyediakan sampel alur dua lapisan 

polimer komposit melalui proses pengacuan suntikan dan kimpalan ultrasonik. 

Kekuatan antara muka kimpalan telah dinilai oleh rasuk julur tunggal (SCB) dan 

ujian pusingan ricihan. Kaedah tindak balas permukaan (RSM) telah digunakan 

dalam proses pengoptimuman reka bentuk eksperimen untuk mengoptimumkan 

parameter kimpalan ultrasonik. Salutan hidroksiapatit ke atas substrat polimer 

komposit telah dikaji dan substrat telah diuji dengan mesin penguji calar Mikro 

CSM. Ujian SCB menunjukkan kimpalan yang lebih kukuh untuk pengarah tenaga 

separa jika dibandingkan dengan pengarah seluruh tenaga. Daya maksimum 

nyahikatan bagi lapisan komposit telah berjaya dioptimumkan pada 3.5 saat untuk 

masa kimpalan, 3 saat untuk masa pegangan, dan tekanan 8 bar untuk parameter 

kimpalan ultrasonik. Penilaian ujian calar menunjukkan semburan plasma sebagai 

kaedah yang sesuai untuk penyalutan HA ke atas substrat PEEK dengan pekali 

geseran 0.67. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION  

 

 

 

 

1.1 Background 

 

Implant technology investigation has a long history. In recently decades, 

tissue diseases included bone, cartilage, and soft tissues have been growing fast. This 

is because; human has been liked to do their applications by technological tools and 

instruments. The activities like walking, work on field, and etc. that involve the 

human body bone, muscles, and all other tissues, have been going to decrease and as 

a result the tissues cannot deal with appropriate applying force and consequently 

stress.  

 

This event would be addressed by in the 19th century by the German 

Anatomist/Surgeon "Julius Wolff (1836-1902)" as Wolff's Law theory that states that 

bone in normal applications will remodel due to the loading condition. If loading 

apply on bone increases rather than normal application, the bone will change to 

become stiffer to sustain the extra effect of overloading. In contrast, if the loading 

decreases, the bone will become weaker [1].  
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In this way, two joint diseases might happen.  Rheumatoid arthritis is a joint 

disease at which immune system cells spread in large numbers inside the joint 

structure. It occurs when the body's immune system invade against of joint tissues. 

When the immune cells attack the joint, chemical messages call bloodstream for 

reinforcement. This results in more new immune cells reach to the joint and enhance 

blood flow around the joint. These chemicals increase blood flow to the region 

around the joint and make the blood vessels leakier so that fluid (and immune cells) 

can leave the blood vessels and travel into the tissues. This response is called an 

inflammatory response and leaves the joint warm and swollen from the fluid 

accumulation. It also causes joint pain because of destruction of bone and cartilage 

tissue in the joint [2]. 

 

Osteoarthritis, also known as degenerative joint disease, results from wear 

and tear. The pressure of gravity causes physical damage to the joints and 

surrounding tissues, leading to pain, tenderness, swelling, or decreased function. 

Initially, osteoarthritis is non-inflammatory and its onset is subtle and gradual, 

usually involving one or only a few joints. The joints most often affected are the 

knees, hips, hands, and spine. Risks of osteoarthritis increase with age. Other risk 

factors include joint trauma, obesity, and repetitive joint use [3].  

 

Osteoarthritis mostly affects the cartilage. Cartilage is the slippery tissue that 

covers the ends of bones in a joint. Healthy cartilage allows bones to glide over one 

another. It also absorbs energy from the shock of physical movement. In 

osteoarthritis, the surface layer of cartilage breaks down and wears away. This allows 

bones under the cartilage to rub together, causing: pain, swelling, or loss of motion of 

the joint. Over time, the joint may lose its normal shape. Also, bone spurs (small 

growths called osteophytes) may grow on the edges of the joint. Bits of bone or 

cartilage can break off and float inside the joint space. This causes more pain and 

damage. Cartilage is 65 to 80% water. Three other components make up the rest of 

cartilage tissue: collagen, proteoglycans, and chondrocytes [4].  

 

The joint that was focused in this study was the hip joint. Hip pain is common 

problem, and it may happen because of many reasons. The diagnosis of the reason 
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would be done to obtain the appropriate treatment. The hip pain might be as a result 

of arthritis, trochanteric bursitis, tendonitis, osteonecrosis, lumbar pain, snapping hip 

syndrome, muscle strains, hip fracture, and stress fracture.  Trochanteric bursitis and 

tendonitis affect bursa and tendons and osteonecrosis occurs due to restriction of an 

area of bone by blood flow. Back and spine problems may results lumbar pain and 

hip region “herniated discs or sciatica" [5].  Iliotibial (IT) band, deep hip flexor 

snapping and cartilage tear can cause pain at hip joint. In elderly patients hip fracture 

is at risk and athletes who do high-impact sports may experience with stress fracture 

of the hip. These hip problems can cause hip pain by affecting on around tissue, 

cartilage or even bones. Fig. 1.1 shows the diseased hip joint. 

 

 

 

Fig. 1.1 Diseased Hip Joint 

 

 

Total Hip Replacement (THR) is the last treatment of hip joint pain if other 

treatments would not be able to heal the problem. The hip surgeons consider the 

intensity of pain as apposed of application. They mostly evaluate the activities at 

which the patient is under pain or not. Daily activities like normal walking, climbing 

stairs or entertainment activity like traveling, shopping, and exercising are some 

factors in this way. Patients who experience severe pain in their hip at daily 

applications or normal activities are advised to do THR.  
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Nowadays millions of people around the world suffer from their hip joint 

injury. In United States more than 250,000 THR surgeries currently are performed 

annually and it is predicted that it goes to more than 500,000 surgery per year at 2030 

[6]. Although, this surgery is so difficult for either surgeon or patient, but it is 

observed that many patients who are affected by hip joint pain, are pursuing to do 

THR. The difficulty of THR is related to tissue cares. Surgeon should pass away the 

tissues around the hip joint to reach to the head of fumer and acetabulum of pelvis 

bone (Fig. 1.2). Recovery process and tissue-integration of hip implant are two hard 

challenging matters that should be performed at good biological manner. 

 

 

 

Fig. 1.2 The connection of acetabulum of pelvis bone and head of femur 

  

 

The hip implant that is applied to overcome the severe hip pain or severe hip 

problems needs various processes to reach to the desired component to insert at the 

human body. First of all, biological requirements are considered. In this regard, 

chemical, physical, and mechanical reactions of implant against joint tissues make 

implant biocompatibility issues. In addition of using surgery techniques and cements 

to insert the implant within the hip joint, it is attempted that the implant connects 

biologically to hip joint tissues as well as normal and healthy hip joint.  
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Biology scientists try to simulate the action of various kinds of tissues in 

joints and reaction of body tissues and body fluid by designing and performing 

various kind of in-vivo and in-vitro simulated testing. Then material and chemical 

investigators attempt to compound or synthesis new biocompatible material that are 

called "biomaterial". Then implants, tissue scaffolds, or other artificial prosthesis 

made from biomaterial and inserted inside the body. Some influence of body reaction 

to prosthesis takes long time to appear. This may because body systems are all 

actively regenerative. Therefore, firstly body tissues remodel to balance the anti-

biological consequences of artificial prosthesis. After passing time, if this process 

would not be successful, the prosthesis become as an external component inside the 

body that fail the application of the joint. 

 

Hip implant is composed of three main parts (Fig. 1.3). Femoral stem, 

femoral head, and acetabular cup. In this research, acetabular cup prosthesis was 

focused to be investigated. This part of hip implant is considered as cartilage on the 

acetabulum of pelvis bone. Commercial available acetabular cup are thick and 

composed of two parts; liner, shell. The shell is metal based material and the liner is 

made of biopolymer. But in recent years, composite polymer materials were 

addressed to produce a lightweight and thin acetabular cup.   

 

 

Fig. 1.3 Commercially Hip Implant components 
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1.2 Problem Statement 

 

The hip joint is a synovial joint formed by the articulation of the rounded 

head of the femur and the cup-like acetabulum of the pelvis. Hip prosthesis is an 

implant that is inserted in femur bone and connected to pelvis bone. 

 

Acetabular cup is one part of hip prosthesis component. This would be hip 

joint part to pelvis bone. Due to the existence of cartilage and lunate surface and 

other body joint compositions at acetabulum, the connection between hip prosthesis 

or in particular connection between acetabualr cup and pelvis is considerable in 

terms of load transferring, bio-connection. 

 

Cartilage is an incompressible, neo-Hoboken, hyper elastic material with 

shear modulus G=6.8MPa [7, 8]. This kind of material absorbs energy when it is 

deformed elastically and then upon unloading this energy recovered. An example of 

a cartilage which has a high resilience is articular cartilage, the substance lining the 

ends of bones in articulating joints such as the knee and hip.  

 

Hip join mostly related to cartilage removing by aging. Transferring load 

within the joint between bones is done via cartilage. In fact, acetabular cup is seated 

at the acetabulum instead of cartilage. Fig. 1.4 displays the articular surface of the 

acetabulum. 

 

Mechanical properties, biocompability, and osteointegration of acetabular cup 

are issues that should be investigated to fabricate the implant. In Chapter 2 various 

kinds of acetabular cups that are currently commercial or under clinical research have 

been exhibited. 

 

The use of composite material in orthopaedic surgery offers a variety of new 

implant designs. As shown by clinical studies, the mismatch of stiffness between the 

implant and the bone leads to stress-shielding and bone resorption and is one of the 

contributing factors to implant failure. Fiber-reinforced composite materials are light 

weight and have high specific strength. They also could be designed with desire 

http://en.wikipedia.org/wiki/Synovial_joint
http://en.wikipedia.org/wiki/Femur_head
http://en.wikipedia.org/wiki/Acetabulum
http://en.wikipedia.org/wiki/Elasticity_%28physics%29
http://en.wikipedia.org/wiki/Biomaterial
http://en.wikipedia.org/wiki/Cartilage
http://en.wikipedia.org/wiki/Bone
http://en.wikipedia.org/wiki/Joints
http://en.wikipedia.org/wiki/Knee
http://en.wikipedia.org/wiki/Hip
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performance and therefore reduce the mismatch of stiffness between bone and 

implant. In this research, carbon fiber reinforced polyetheretherketone (CFR/PEEK) 

as the liner and hydroxyapatite polyetheretherketone (HA/PEEK) as the shell were 

utilized to decrease bone and implant stiffness mismatch.  

 

 

Fig. 1.4  Articular surface of the acetabulum 

 

 

1.3 Research Objectives 

 

1. To fabricate a suitable kind of lightweight polymer composite and low 

friction material with relevant composition using for acetabular cup that 

could satisfy the mechanical and biological requirements of the acetabular 

cup.  

2. To examine the fabricated composition by using mechanical testing.  

3. To evaluate the coating processing of bioactive material on the composition. 
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1.4 Significance of Study 

 

It could be mentioned that hip joint is the main joint of the body that plays an 

important role to connect the upper part of the body to the bottom part. If this area 

would affect by any problem, the whole body would be out of movement.  

 

By in-growing the THR surgeries in the world and the problems of the 

currently commercial acetabular cup, it is needed to develop the new composition 

acetabular cup applying the new biomaterials that were developed for joints 

implants.    

 

 

1.5 Research Scopes 

 

This study would propose a light weight acetabular cup that there would be 

low friction between ball (femoral head) and acetabular cup interfaces. Carbon Fiber 

Reinforced PolyetheretherKetone (CFR/PEEK) will be incorporated to reduce wear 

rates whilst Hydroxyapatite-PEEK (HA/PEEK) coated by HA creating low modulus 

backing. 

 

The methods used in the manufacturing of the component (Injection Molding, 

Ultrasonic welding, Plasma Spraying) will be utilized to joint two composite material 

"HA/PEEK & CFR/PEEK" and coating HA on HA/PEEK. 

 

 

1.6 Research Report Organization  

 

This report has been organized in to the 5 chapters. Chapter 1 considers the 

introduction of this investigation. The background of diseases that motivate the 

investigator to do this research is explained and then the problem statement, 

objectives, and scope of the study are determined. 
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In Chapter 2, the previous investigations regarding to the problem statement 

are considered. In this chapter, the material and methods that could be applied for 

performing this research were elaborated.   

 

Chapter 3 displays the methodology and specifies the way that this research 

was done. This chapter explains the methodology of applying the material and 

methods that have addressed in chapter 2. 

 

The attained results of the research according to the research methodology are 

exhibited in chapter 4. The results will discuss to evaluate the research methodology. 

Chapter 5 is included the conclusion of the whole research and suggest the further 

research to develop the project.  
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