ELEMENT FREE GALERKIN METHOD OF COMPOSITE BEAMS WITH PARTIAL INTERACTION

DZULKARNAIN BIN AHMAD

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > AUGUST 2013

To my thoughtful father and mother, lovely wife and kids, and family.

ACKNOWLEDGEMENT

Praise to Allah, the Almighty who sparks my intuition to pursue my post graduate studies and provides me with invaluable guidance throughout my life.

Thanks to Universiti Selangor, for providing the financial support throughout my post-graduate studies.

Thanks to my supervisor, Dr. Airil Yasreen for his supervision and support in seeing this work through to completion; and also for being my friend.

My father and mother, your second son loves you both and thanks for taught me about 'kerja bersungguh-sungguh'.

For my lovely wife and cheerful kids, thanks for cheering up my life. To my family, my deepest appreciation goes out to all of you.

Finally, my gratefulness to all authors who wrote the books and papers that I had read.

ABSTRACT

Composite beam with partial interaction behaviour has ignited many studies, not just on its mechanics but also on solutions of its one-dimensional partial differential equation. Inadequate solution by available analytical methods for this high order differential equation has demanded for numerical approach and therefore Element Free Galerkin (EFG) method is applied for the first time in this present work. The work consists of three parts; first is the formulation of Galerkin weak form and assemblage of the EFG discrete equilibrium equation. One-dimensional formulation of the weak form is performed by adopting the variational approach and the discrete equation, which is in matrix form and written using the Matlab programming code. Subsequently in second part, the EFG formulation is developed for both the slip and uplift models, where the former adopted equal curvature deflection assumption while the latter considered the unequal curvature. The proposed EFG formulation gives comparable results in both models, after been validated by established analytical solutions, thus signify its application in partial interaction problems. The third part provides numerical tests result on EFG numerical parameters such as size of support domain, polynomial basis and quadrature points with seven different types of weight functions for this composite beams behaviour. Conclusively, Cubic Spline and Quartic Spline weight functions yield better accuracy for the EFG formulation results, compares to other weight functions. The capability of the EFG formulation was also studied in terms of its application on free vibration problem and various composite beam cross-sections. Results from the numerical tests deduced the demand for optimised parameters value as the parameters are highly reliant on user-defined value. Additionally, the research supports the need for more efficient EFG code's algorithm, stiffness matrix, shape function formulation and background integration methods, in approximating the higher order differential equation which refers to dynamics analysis.

ABSTRAK

Kelakuan rasuk komposit dalam keadaan interaksi separa telah mencetuskan pelbagai kajian, dan tidak hanya melibatkan perihal mekanik tetapi juga untuk penyelesaian satu matra bagi persamaan pembezaan separanya. Ketidakupayaan yang wujud pada kaedah analitikal sediada di dalam menyelesaikan persamaan pembezaan tertib tinggi telah menuntut kepada penggunaan kaedah berangka, yang dengan itu kaedah Element Free Galerkin (EFG) diaplikasi, buat pertama kalinya. Kajian ini terbahagi kepada tiga bahagian, bahagian pertama menyentuh tentang formulasi bentuk lemah Galerkin dan persamaan keseimbangan diskrit EFG. Bentuk lemah satu matra diterbitkan mengikut kaedah perubahan manakala persamaan diskrit di dalam bentuk matrik ditulis menggunakan kod program Matlab. Di bahagian kedua, formulasi EFG dibangunkan untuk pertamanya bagi keadaan gelincir dengan anggapan pesongan adalah sama bagi kedua-dua komponen rasuk dan model kedua melibatkan bersama kesan angkat-naik yang pesongannya adalah berasingan. Formulasi EFG telah memberikan keputusan yang setara apabila dibandingkan dengan penyelesaian analitikal sediada, dengan itu memungkinkan aplikasinya di masalah interaksi separa. Bahagian ketiga memberikan keputusan ujian berangka terhadap beberapa parameter EFG seperti saiz sokong domain, asas polinomial dan titik kamiran yang melibatkan tujuh pemberat fungsi yang berbeza bagi kelakuan rasuk komposit tersebut. Kesimpulannya, pemberat fungsi Cubic Spline dan Quartic Spline memberikan keputusan ketepatan yang lebih baik berbanding yang lain. Kemampuan formulasi EFG juga diaplikasi terhadap frekuensi tabii untuk masalah getaran bebas dan pelbagai keratan-rentas rasuk komposit. Bersandar kepada keputusan ujian berangka yang dijalankan, didapati nilai parameter yang optimum adalah perlu memandangkan parameter yang diuji amat bergantung kepada nilai cadangan daripada penganalisis. Lanjutan itu, kajian ini menyokong kepada perlunya algoritma kod EFG, matrik kekukuhan, formulasi rangkap bentuk dan kaedah kamiran latarbelakang yang lebih efisen bagi penghampiran persamaan pembezaan tertib yang lebih tinggi, yang merujuk kepada analisis dinamik.

TABLE OF CONTENTS

CHAPTER

1

TITLE

PAGE

1

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xiii
LIST OF FIGURES	xvi
LIST OF SYMBOLS	xxiv
LIST OF APPENDICES	xxviii

INTRODUCTION

1.1 Introduction
1.2 Research Background and Problem Statement
1.3 Purpose and Objectives of the Study
1.4 Scope and Limitation of the Study
6
1.5 Outline of the Thesis

LITERATURE REVIEW

2.1	Introduction		9	
2.2	Behav	Behaviour of Partial Interaction Composite Beam		
	2.2.1	Analytical Solution of Partial Interaction	11	
		Composite Beam-Shear Connectors		
	2.2.2	Analytical Solution of Partial Interaction	14	
		Composite Beam-Adhesive Bonded Steel		
		Plate		
	2.2.3	Analytical Solution of Partial Interaction	16	
		Composite Beam-Adhesive Bonded Fiber		
		Reinforced Materials		
	2.2.4	Finite Element Formulation of	17	
		Partial Interaction Composite Beam		
2.3	Brief	Developement of Meshless Method	19	
2.4	Eleme	ent Free Galerkin Method	20	
2.5	Concl	uding Remarks	22	

FUNDAMENTALS OF MOVING LEAST SQUARE 24 3 METHOD

3.1	Introduction	24
3.2	Basis Functions	25
3.3	Non-constant Coefficients	27
3.4	Weight Functions	30
3.5	Support Domain	32
3.6	Dimensions of Support Domain	34
3.7	Derivatives of Shape Functions	35
3.8	Element Free Galerkin for Euler-Bernoulli Beam	37
	3.8.1 Galerkin Weak Form of	37
	Euler-Bernoulli Beam	
	3.8.1.1 Weighted Integral Approach	38

viii

9

2

	3.8.1.2 Principle of Minimum	39
	Potential Energy	
3.9	New EFG Solution of Simply Supported	41
	Euler-Bernoulli Beam	
3.10	Concluding Remarks	43

ELEMENT FREE GALERKIN FORMULATION 44 OF COMPOSITE BEAM WITH LONGITUDINAL SLIP

4

4.1	Introduction		
4.2	Deflection Equations of Composite Beams	45	
	4.2.1 Deflection Equation of Full Interaction	45	
	4.2.2 Deflection Equation of Partial Interaction	n 46	
	4.2.2.1 Newmark's Solution	47	
	4.2.2.2 Girhammar's Solution	47	
4.3	Principle of Minimum Potential Energy	48	
	4.3.1 The Variational Approach	50	
	4.3.2 The Galerkin Weak Form	53	
4.4	Moving Least Square Shape Function	53	
	4.4.1 Selected Polynomial Basis	54	
	4.4.2 Selected Weight Function	55	
	4.4.3 Computation of MLS Shape Function	57	
4.5	EFG Linear Algebraic Equations	59	
	4.5.1 Differential Operators	59	
	4.5.2 Global Nodal Stiffness Matrix	61	
	4.5.3 Global Nodal Displacement Matrix	63	
	4.5.4 Global Force Vector Matrix	64	
	4.5.5 Langrage Multiplier	66	
4.6	General Matlab EFG Procedure for	71	
	Longitudinal Slip of Composite Beams		
4.7	Numerical Solution and Validation	73	
	4.7.1 Domain Discretisation	74	

	4.7.2	Full Interaction Composite Beam	76
	4.7.3	Newmark Model	77
	4.7.4	Girhammar Model	79
4.8	Concl	uding Remarks	80

5 NUMERICAL TESTS ON EFG FORMULATION 82 OF LONGITUDINAL SLIP COMPOSITE BEAM

5.1	Introduction	
5.2	Influence of the Weight Functions	83
	5.2.1 Newmark Model	85
	5.2.2 Girhammar Model	89
5.3	Influence of the Support Domain	92
5.4	Polynomial Basis	96
5.5	Quadrature Points	99
5.6	Weight Function Effect on Interfacial Shear	101
	Force	
5.7	Concluding Remarks	104

ELEMENT FREE GALERKIN FORMULATION 106 OF COMPOSITE BEAM WITH PARTIAL INTERACTION

6

6.1	Introduction	
6.2	Element Free Galerkin Weak Form	107
	6.2.1 Variational Approach for Partial	109
	Interaction of Composite Beam	
6.3	EFG Algebraic Equation System	111
6.4	Numerical Solution	115
6.5	Effect of Vertical Stiffness on EFG Formulation	118
6.6	Influence of Weight Functions	120
	6.6.1 Newmark Model	121

	6.6.2 Girhammar Model	125
6.7	Influence of Support Domain Size	129
6.8	Influence of Polynomial Basis	132
6.9	Influence of Quadrature Points	135
6.10	Interfacial Normal Stress Distribution	138
6.11	Concluding Remarks	141

xi

7

ELEMENT FREE GALERKIN APPLICATION143ON PARTIAL INTERACTION COMPOSITE143WITH VARIOUS SECTIONS AND BOUNDARY143CONDITIONS143

7.1	Introduction		143
7.2	Comp	osite Sections and Boundary Conditions	144
7.3	EFG F	Formulation of Longitudinal Slip Interaction	145
	7.3.1	Simply Supported Composite Beam	146
	7.3.2	Fixed-end Composite Beam	153
	7.3.3	Cantilever Composite Beam	160
7.4	EFG F	Formulation for Partial Interaction with	166
	Uplift		
	7.4.1	Simply Supported Composite Beam	167
	7.4.2	Fixed-end Composite Beam	170
	7.4.3	Cantilever Composite Beam	173
7.5	Concl	uding Remarks	176

8 FORMULATION AND SOLUTION OF 178 COMPOSITE BEAM FOR FREE VIBRATION PROBLEM BY ELEMENT FREE GALERKIN METHOD

8.1	Introduction	178
8.2	Weak Form of Free Vibration Equation	179

8.3	EFG Linear Algebraic Equation	181
8.4	Numerical Solution	183
8.5	Influence of Weight Functions	185
8.6	Influence of Support Domain Size	186
8.7	Influence of Polynomial Basis	187
8.8	Concluding Remarks	188

9 SUMMARY, CONCLUSIONS AND 190 SUGGESTIONS FOR FUTURE WORK

9.1	Summary	190
9.2	Conclusions	194
9.3	Suggestions for Future Work	197

REFERENCES	199
Appendix A	208-222

LIST OF TABLES

TABLE NO.TITLEPAGE

1.1	Differences between FEM and Meshless	3
	method (Liu and Gu, 2005)	
3.1	Commonly used polynomial basis in the	26
	Meshless method	
3.2	Numerical parameters for Euler-	42
	Bernoulli beam	
4.1	Imposition of essential boundary	66
	condition techniques (Fries and	
	Matthies, 2003)	
4.2	Input parameters adopted in the analysis	75
4.3	Comparison of vertical displacement	78
	(m) at mid-span of the composite beam	
	with longitudinal slip (Newmark model)	
4.4	Comparison of vertical displacement	79
	(m) at mid-span of the composite beam	
	with longitudinal slip (Girhammar	
	model)	
5.1	Displacement norm and relative	86
	discrepancy obtained by using different	
	EFG weight functions for Newmark	
	model	

5.2	Displacement norm and relative	90
	discrepancy obtained by using different	
	EFG weight functions for Girhammar	
	model	
5.3	Displacement norm obtained by using	93
	different dimensionless size	
5.4	Displacement norm obtained by using	97
	different polynomial basis order	
5.5	Comparisons of displacement norms for	99
	different quadrature point	
6.1	Displacement norm and relative	121
	discrepancy obtained by using different	
	EFG weight functions for Newmark	
	model	
6.2	Displacement norm and relative	125
	discrepancy obtained by using different	
	EFG weight functions for Girhammar	
	model.	
6.3	Displacement norm obtained by using	129
	different dimensionless size	
6.4	Displacement norm from different	132
	polynomial basis order	
6.5	Comparisons of displacement norms for	135
	different quadrature point	
6.6	Geometric and material properties	139
	(Roberts and Haji-Kazemi, 1989)	
7.1	Properties of composite beam cross-	145
	sections	
7.2	Comparison of maximum deflection for	147
	simply supported composite beam	
	exerted by uniform load	

7.3	Comparison of maximum deflection for	150
	simply supported composite beam	
	exerted by point load	
7.4	Comparison of maximum deflection for	154
	fixed support composite beam exerted	
	by uniform load	
7.5	Comparison of maximum deflection for	157
	fixed support composite beam exerted	
	by point load	
7.6	Comparison of maximum deflection for	160
	cantilever composite beam exerted by	
	uniform load	
7.7	Comparison of maximum deflection for	164
	cantilever composite beam exerted by	
	point load	
8.1	Geometric and material properties (after	184
	Xu and Wu, 2007)	
8.2	Comparison of EFG natural frequency	184
	result	
8.3	Displacement norm and relative	185
	discrepancy obtained by using different	
	EFG weight functions for Newmark	
	model	
8.4	Displacement norm obtained by using	186
	different dimensionless size	
8.5	Displacement norm from different	187
	polynomial basis order	

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1	Partial interaction in composite beams	1
1.2	Flowchart for FEM and Meshless	3
	method (Liu and Gu, 2005)	
1.3	Flow of the thesis contents	8
2.1	Differential element of partial	13
	interaction in composite beam	
3.1	The approximate function $u^{h}(\mathbf{x})$ and the	28
	nodal parameter in the MLS	
	approximation (Liu, 2002)	
3.2	Different sizes and shapes of support	33
	domain at different quadrature points	
3.3	Influence domain(s) of nodes. Only	34
	node 1 and 3 are included for	
	quadrature point domain; X although	
	node 2 is nearer than node 1	
3.4	Comparison of (a) deflection and (b)	42
	rotation of EFG with exact solution	
4.1	Boundary conditions of (a) concentrated	46
	load (after Newmark, Siess and Viest,	
	1951) and (b) uniformly distributed load	
	(after Girhammar and Gopu, 1993).	

4.2	Quartic spline weight function at mid-	56
	span of the beam using 101 nodes	
4.3	(a) First and (b) second derivatives of	56
	quartic spline weight function using 101	
	nodes at mid-span of the beam.	
4.4	MLS Shape function at mid-span of the	58
	beam using 101 nodes	
4.5	(a) First and (b) second derivatives of	58
	MLS Shape function using 101 nodes at	
	mid-span of the beam	
4.6	EFG algorithm flow chart of the	73
	longitudinal slip model	
4.7	Nodal arrangement (21 nodes) and	75
	background cell of one-dimensional	
	beam	
4.8	Convergence of deflection in full	76
	interaction model subjected to mid-	
	point load	
4.9	Convergence of deflection in full	77
	interaction model subjected to uniform	
	load	
4.10	Comparison of deflection between EFG	78
	and Newmark solution	
4.11	Comparison of deflection between EFG	80
	and Girhammar solution	
5.1	Selection of weight function at mid-	83
	span of the beam using 67 nodes	
5.2	Various shape function at mid-span of	84
	the beam using 67 nodes	
5.3	Various shape function at quarter-span	84
	of the beam using 67 nodes	

5.4	Comparison of deflection using	87
	different weight functions for the	
	Newmark model	
5.5	Convergence of displacement in (a)	88
	displacement norm and (b) relative	
	discrepancy using different weight	
	functions for the Newmark model	
5.6	Comparison of deflection using	90
	different weight functions for the	
	Girhammar model	
5.7	Convergence of displacement in (a)	91
	displacement norm and (b) relative	
	discrepancy using different weight	
	functions for the Girhammar model	
5.8	Convergence of displacement norm	94
	using different dimensionless size for	
	Newmark model	
5.9	Convergence of displacement norm	95
	using different dimensionless size for	
	Girhammar model	
5.10	Convergence of displacement norm	98
	using different polynomial orders for	
	the Newmark model	
5.11	Convergence of displacement norm	98
	using different polynomial orders for	
	the Girhammar model	
5.12	Displacement norm using different	100
	quadrature points for Newmark model	
5.13	Displacement norm using different	100
	quadrature points for Girhammar model	
5.14	Comparison of interfacial slip between	102
	EFG and Newmark solution	

5.15	Comparison of interfacial shear force	102
	between EFG (QS weight function) and	
	Newmark solution	
5.16	Comparison of interfacial shear force	103
	between EFG (Qu, Hy, Ex, Co weight	
	function) and Newmark solution	
6.1	Comparison of deflection in the	116
	Newmark model between EFG and	
	analytical solution (55 nodes)	
6.2	Comparison of deflection in the	117
	Girhammar model between EFG and	
	analytical solution (63 nodes).	
6.3	Vertical stiffness effect on top(T) and	119
	bottom(B) parts of composite beam	
	with partial interaction	
6.4	Comparison of deflection using	122
	different weight functions for Newmark	
	model (53 nodes)	
6.5	Convergence of displacement in (a)	123
	displacement norm and (b) relative	
	discrepancy using different weight	
	functions for Newmark model	
6.6	Comparison of deflection using	126
	different weight functions for	
	Girhammar model	
6.7	Convergence of displacement in (a)	127
	displacement norm and (b) relative	
	discrepancy using different weight	
	functions for Girhammar model	
6.8	Convergence of displacement norm	130
	using different dimensionless size for	
	Newmark model	

6.9	Convergence of displacement norm	131
	using different dimensionless size for	
	Girhammar model	
6.10	Convergence of displacement norm	133
	using different polynomial order for	
	Newmark model	
6.11	Convergence of displacement norm	134
	using different polynomial order for	
	Girhammar model	
6.12	Displacement norm using different	137
	quadrature points for Newmark model	
6.13	Displacement norm using different	137
	quadrature points for Girhammar model	
6.14	Comparison of interfacial normal stress	140
	distribution for RC beam with a steel	
	plate subjected to uniform load	
7.1	Composite beam sections (Girhammar,	144
	2009)	
7.2	Deflection of EFG formula and exact	148
	solution of simply supported composite	
	beam (Steel-concrete section-uniform	
	load)	
7.3	Deflection of EFG code and exact	148
	solution of simply supported composite	
	beam (Wood-wood section-uniform	
	load)	
7.4	Deflection of EFG code and exact	149
	solution of simply supported composite	
	beam (Fully cracked section-uniform	
	load)	

7.5	Deflection of EFG code and exact	149
	solution of simply supported composite	
	beam (Non-cracked section-uniform	
	load)	
7.6	Deflection of EFG code and exact	151
	solution of simply supported composite	
	beam (Steel-concrete section-point	
	load)	
7.7	Deflection of EFG code and exact	152
	solution of simply supported composite	
	beam (Wood-wood section-point load)	
7.8	Deflection of EFG code and exact	152
	solution of simply supported composite	
	beam (Fully cracked section-point load)	
7.9	Deflection of EFG code and exact	153
	solution of simply supported composite	
	beam (Non-cracked section-point load)	
7.10	Deflection of EFG code and exact	155
	solution of fixed supported composite	
	beam (Steel-concrete section-uniform	
	load)	
7.11	Deflection of EFG code and exact	155
	solution of fixed supported composite	
	beam (Wood-wood section-uniform	
	load)	
7.12	Deflection of EFG code and exact	156
	solution of fixed supported composite	
	beam (Fully cracked section-uniform	
	load)	
7.13	Deflection of EFG code and exact	156
	solution of fixed supported composite	
	beam (Non-cracked section-uniform	
	load)	

7.14	Deflection of EFG code and exact	158
	solution of fixed supported composite	
	beam (Steel-concrete section-point	
	load)	
7.15	Deflection of EFG code and exact	158
	solution of fixed supported composite	
	beam (Wood-wood section-point load)	
7.16	Deflection of EFG code and exact	159
	solution of fixed supported composite	
	beam (Fully cracked section-point load)	
7.17	Deflection of EFG code and exact	159
	solution of fixed supported composite	
	beam (Non-cracked section-point load)	
7.18	Deflection of EFG code and exact	162
	solution of cantilever composite beam	
	(Steel-concrete section-uniform load)	
7.19	Deflection of EFG code and exact	162
	solution of cantilever composite beam	
	(Wood-wood section-uniform load)	
7.20	Deflection of EFG code and exact	162
	solution of cantilever composite beam	
	(Fully cracked section-uniform load)	
7.21	Deflection of EFG code and exact	163
	solution of cantilever composite beam	
	(Non-cracked section-uniform load)	
7.22	Deflection of EFG code and exact	164
	solution of cantilever composite beam	
	(Steel-concrete section-point load)	
7.23	Deflection of EFG code and exact	165
	solution of cantilever composite beam	
	(Wood-wood section-point load)	

7.24	Deflection of EFG code and exact	165
	solution of cantilever composite beam	
	(Fully cracked section-point load)	
7.25	Deflection of EFG code and exact	166
	solution of cantilever composite beam	
	(Non-cracked section-point load)	
7.26	Simply supported's mid-span deflection	168
	of top and bottom components; a) Steel-	
	conrete, b) Wood-wood sections	
7.27	Simply supported's mid-span deflection	169
	of top and bottom components; a) Fully	
	cracked concrete, b) Non-cracked	
	concrete sections	
7.28	Fixed support's mid-span deflection of	171
	top and bottom components, (a) Steel-	
	concrete, (b) Wood-wood sections	
7.29	Fixed support's mid-span deflection of	172
	top and bottom components; a) Fully	
	cracked concrete, b) Non-cracked	
	concrete sections	
7.30	Cantilever free end's deflection of top	174
	and bottom components; (a) Steel-	
	concrete, (b) Wood-wood sections	
7.31	Cantilever free end's deflection of top	175
	and bottom components; a) Fully	
	cracked concrete, b) Non-cracked	
	concrete sections	

LIST OF SYMBOLS

$\mathbf{A}(\mathbf{x})$	-	weighted moment matrix
A,,x	-	first derivative of the weighted moment
A, _{xx}	-	second derivative of the weighted moment
A_b	-	cross-sectional areas (of bottom component)
$a_i(\mathbf{x})$	-	non-constant coefficients
A_t	-	cross-sectional areas (of top component)
b	-	matrix of distributed load
$\mathbf{B}(x)$	-	non-symmetry matrix
С	-	constant value of shear connector
С	-	order of consistency
c	-	stiffness matrix
C_b	-	distance between the contact surface of the lower
		components from the centroidal axis
C_t	-	distance between the contact surface of the top
		components from the centroidal axis
d	-	dimension of the problem
d_c	-	nodal spacing
d_s	-	support domain
E_a	-	adhesive's Modulus
E_b	-	modulus elasticity (of bottom component)
Er_u	-	displacement norm
E_t	-	modulus elasticity (of top component)
F	-	applied forces acting at the centroid of top and
		lower components
f(x)	-	distributed load
F	-	global nodal force vector

\mathbf{F}_b	-	global force vector of body force
\mathbf{f}_{I}	-	nodal force vector of body force
\mathbf{F}_Q	-	global force vector of traction force
I_b	-	moment inertia (of bottom component)
<i>i</i> _c	-	connectors spacing
I_t	-	moment inertia (of top component)
J	-	weighted least-square discrete error norm
К	-	global nodal stiffness matrix
k_c	-	slip modulus of connectors
\mathbf{K}_{IJ}	-	nodal stiffness matrix
k_s	-	shear connector modulus
k_t	-	foundation modulus
k_y	-	vertical connection stiffness
L	-	Length
L, H	-	matrix of differential operators
m	-	number of terms in basis function
M_b	-	resistant moments acting at the surface (of bottom
		component)
M_t	-	resistant moments acting at the surface (of top
		component)
n	-	number of nodes in support domain
$n_{\lambda t}$	-	total number of nodes on the essential boundary
N_I	-	Langrage interpolants
<i>n</i> _r	-	number of rows of connectors
Р	-	concentrated load
$p_i(\mathbf{x})$	-	basis functions
Q	-	matrix of concentrated forces
q_c	-	shear flow at interface
q_y	-	vertical force per unit length at interface
r	-	normalised distance
<i>r</i> _u	-	displacement relative discrepancy
sgn	-	signum function
Т	-	uplift force per unit length

t_a	-	adhesive thickness
\mathbf{t}_b	-	nodal force vector of traction force
U	-	strain energy
u	-	column vector of approximate displacement
U	-	global displacement parameter vector
ū	-	boundary condition matrix
$u(\mathbf{x})$	-	unknown scalar function of a field variable
u_B	-	longitudinal slip of bottom component
$u^{h}(\mathbf{x})$	-	approximate unknown scalar function of a field
		variable
u_I	-	nodal parameter
u_T	-	longitudinal slip of top component
ν	-	vertical displacement
VB	-	bottom component deflection
V _{full}	-	vertical displacement due correspond tofull
		interaction
<i>V</i> _{slip}	-	vertical displacement correspond to slip
v_T	-	top component deflection
W	-	potential load energy
$w(\mathbf{x}-\mathbf{x}_I)$	-	moving weight function
X	-	quadrature point/ spatial coordinates
у	-	distance of mass centre of components from
		barycentre
Z.	-	distance between the centroidal axis of the top and
		lower components
α_s	-	dimensionless size of support domain
β	-	shape control parameter
Δ_s	-	interface slip
Δ_u	-	vertical uplift
δ	-	variational term
δu	-	test function
3	-	Strain
λ	-	Langrange multiplier

σ	-	Stress
σ_{normal}	-	interfacial normal stress
П	-	total potential energy
μ	-	coefficient of friction
Φ	-	shape function vector
$\Phi_{,x}$	-	first derivative of the shape function
$\Phi_{,xx}$	-	second derivative of the shape function
ω	-	Frequency
Ω	-	problem domain

208

LIST OF APPENDICES

APPENDIX TITLE PAGE

А	EFG code for one dimensional
	composite beam with longitudinal slip

CHAPTER 1

INTRODUCTION

1.1 Introduction

Composite members consisting of reinforced concrete and steel sections as well as retrofitted members are widely used in modern building constructions as well as strengthening and rehabilitation purposes. Since this type of member provides the beneficial effect of higher bending strength due to its composite behaviour, the interaction between two materials in the composite conditions should be assumed as partially interacting, if actual behaviour is required to be considered and analysed. This behaviour is known as partial interaction at the interface surfaces. Typical behaviour of partial interaction composite beam is as shown in Figure 1.1.

Figure 1.1 Partial interaction in composite beams

Composite member behaviour is mathematically represented by partial differential equation and can result in higher order when longitudinal slip, uplift and dynamic effects on the beam are considered. Generally, an analytical solution for such effect is difficult to obtain due to the high order. Therefore, numerical techniques such as the Finite Element method (FEM) are widely used, in solving this type of difficulty.

The Finite Element method (FEM) has been used as one of the methods in solving differential equations, numerically, for almost five decades circa the 1960's. This approximate method is well established and among the most popular choices of analysis tools, either by engineers or scientists. Due to its vast and deep researches, the FEM is well accepted throughout the engineering committees, due to its flexibility in analysing complex geometry and capability to simulate nonlinear behaviour. Nevertheless the FEM still suffers from two shortcomings; discontinuity of meshed elements and computing cost of re-meshing.

In recent years, several developments in providing solutions for those shortcomings have unfolded, hence the initiation of an alternative to the FEM have been initiated. New methods have been introduced with promising procedures, where the approximate solution is constructed solely by a set of nodes instead of element. These new types of methods are usually known as the Meshfree or Meshless methods. In this study the 'Meshless' term is used, as it is favourably used in most academic papers as compared to the former term.

1.2 Research Background and Problem Statement

The meshless method obtained its name from its mathematical algorithm ability to discretise the problem domain by simply adding or deleting nodes where desired. No element mesh is needed to connect those nodes during the discretisation process which is contrary to the FEM's procedure. This is possible due to formulation of the shape functions that is based on nodes in local support domains thus eliminating the needs for pre-defined elements.

The major difference between the meshless method and the FEM is that the problem domain is discretised only by nodes and the ability to use higher order continuous shape functions. Liu and Gu (2005) has provided a good overview on the procedure and differences between both methods as shown in Figure 1.2 and tabulated in Table 1.1, respectively. Those advantages and the infant status of the meshless method are factors that motivate this study, as they provide the first insights for the application of the present method onto partial interaction of composite beams.

Figure 1.2 Flowchart for the FEM and the meshless methods (Liu and Gu, 2005).

Items	FEM	Meshless method
Mesh	Yes	No
Shape function creation	Based on pre-defined elements	Based on local support domains
Discretised system stiffness matrix	Banded, symmetric	Banded, may or may not be symmetric depending on the method used
Imposition of essential boundary conditions	Easy and standard	Special treatments may be required, depending on the method used
Computation speed	Fast	Slower compared to the FEM depending on the method used
Accuracy	Accurate compared to FDM	More accurate than FEM
Adaptive analysis	Difficulty for 3D cases	Easier
Stage of development	Well developed	Infant, with many challenging problems
Commercial software packages availability	Many	Few

Table 1.1: Differences between FEM and meshless method (Liu and Gu, 2005)

In regards to the partial interaction analysis of composite beam, as an alternative method to the Finite Element Method, the meshless method, with abovementioned advantages can give a new perspective on the research subject. Proposing a new element formulation for FEM in partial interaction problem is literally cumbersome, due to problems of shear locking, element remeshing and computing cost. Thus, new FEM's element with partial interaction feature will not be possible in future development of FEM software. Regards to that, meshless method formulation which apparently formulated to overcome the last two shortcomings, has also open-up an opportunity for the first shortcoming solution, unintentionally. However, before the feature can be realised in meshless software, a one-dimensional formulation of the partial interaction behaviour has to be formulated. This will be the important step in meshless formulation of partial interaction behaviour, before it can be extended to higher dimensional problems.

Element Free Galerkin (EFG) is one of the meshless methods that have been used widely among researchers to model solid mechanic problems. Its formulation is closer to FEM compares to others meshless method and easily to be extended to others meshless formulation, such as; meshless local Petrov-Galerkin (MLPG), Reproducing kernel particle method (RKPM) and hp-clouds. The Element EFG method was developed by Belytschko *et al.* (1994). An extensive review (as in Chapter 2) by the study, found that, there are no attempts yet to be found on the application of EFG method on composite beam with slip and uplift effects. It is therefore the main interest of this study to establish the EFG formulation for such an engineering problem.

1.3 Purpose and Objectives of the Study

The purpose of this study is to establish new formulation, namely the Element Free Galerkin (EFG) method, for the analysis of the partial interaction behaviour of composite beams. The objectives of this study are as follows:-

- a) To derive one-dimensional formulation and algorithm of EFG method for composite beams with longitudinal slip effect, and validate the result with established analytical solutions.
- b) To conduct numerical tests on various numerical parameters of the developed EFG formulation in assessing the accuracy of its result.
- c) To extend derivation for an additional effect; the vertical uplift at interfacial faces and subsequently assess the effect of the numerical parameters on its convergence result.
- d) To verify the viability of the EFG formulation by conducting analysis on various typical composite beam cross-sections with various boundary conditions.
- e) To derive and evaluate the capability of developed EFG formulation in finding natural frequency of free vibration problem and conduct its numerical parameters study.

1.4 Scope and Limitation of the Study

Formulation of Element Free Galerkin method becomes the main purpose of this study. The formulation is applied on partial interaction analysis of composite beams that follows Euler-Bernoulli's assumptions. Verification of the formulation is conducted by comparing its result with available analytical solution. The study is limited to static analysis. Even so initial effort is taken to formulate the method on free vibration behaviour.

1.5 Outline of Thesis

This present chapter gives a brief introduction on the study which consists of meshless development and its differences with a well known numerical method, the finite element. The Element Free Galerkin (EFG) method is highlighted for this research work and objectives of the study are presented at the end of the chapter. The flow of the thesis contents is depicted as in Figure 1.3, for ease review.

In Chapter 2, an extensive review on the development of partial interaction study in composite beam behavior is reviewed. The review starts with an early development of longitudinal slip effect derivation of composite beam in early 50's. Till then, the study area has been extended due to the various application of composite beam technology in construction industry. This development includes the derivation of analytical solution and numerical solution, particularly finite element method. The second part of the review touches on the development of EFG method in various attempts in solving mechanics problems.

The shape function of numerical solution is the main perimeter that gives FEM and EFG methods their own numerical characteristic. Therefore, in Chapter 3, the fundamental of EFG shape function known as Moving Least Square (MLS) method is derived in step-by-step manner. The effects of MLS numerical parameters are reviewed based on previous researches and general formulation of the method is reviewed from the weak form perspective. The numerical EFG solution for Euler-Bernoulli beam problem is presented for introductory reason.

Chapter 4 provides the new developed EFG formulation with its essential formulation procedure for the application of composite beams with longitudinal slip at interface surfaces. The code is developed using Matlab programming language and the results were verified against established analytical solutions.

Selected numerical parameter values are studied in Chapter 5 through various numerical tests. Several weight functions are used in each numerical test and their effects on the result are discussed. The convergence rates are plotted for comparison purposes.

The developed EFG formulation is extended to consider the vertical uplift effects and it is the main discussion in Chapter 6. Results are compared with analytical solution in terms of deflection, for validation purposes. EFG formulation is presented and similar numerical parameters from preceding chapter are reconsidered in present numerical tests. Suggestions on suitable numerical parameters for the EFG formulation are made available.

In Chapter 7, the capabilities of developed EFG formulation code are studied and discussed. Four different cross-sections of composite beam are used in this study and three types of boundary conditions for each cross-section have been chosen to verify the code application. Further application on these various section and boundary condition is extended to partial interaction EFG formulation, where previously, longitudinal slip EFG formulation was involved.

Chapter 8 comprises the formulation, of the linear dynamic algebraic equation and numerical study for free vibration problem. This study involves the finding of the natural frequency of the partial interaction composite beam. Chapter 9 summarises the development of EFG formulation and its capability in terms of applications. Effects of numerical parameters on the formulation accuracy are concluded and several recommendations for future works are suggested.

Chapter 1

Problem Statement and Objectives of the Study

Chapter 8

EFG Formulation of Free Vibration of Partial Interaction Composite Beams Chapter 2 Review on Partial Interaction Study, Analytical Solution and EFG

<u>Chapter 7</u> Application of EFG for Common Composite Cross-sections and Boundary Conditions

Chapter 9 Summary, Conclusion and Suggestion for Future Works <u>Chapter 3</u> Basic Formulation of EFG's Shape Functions and EFG of Euler-Bernoulli's Beam

<u>Chapter 6</u> EFG Formulation of Composite Beam with Partial Interaction effect and its Numerical Tests **Chapter 4**

EFG Formulation of Composite Beam with Longitudinal Slip effect and its Algorithm

Chapter 5

Numerical Test of the Longitudinal Slip Algorithm

Figure 1.3 Flow of the thesis contents.

REFERENCES

- Adekola, A. O. (1968). Partial interaction between elastically connected elements of a composite beam. *International Journal of Solids and Structures*, Vol. 4, 1125-1135.
- Airil, Y. (2007). The Development of Precast Cold-formed Composite Beams. Ph.D Thesis, University of London.
- Amirani, M. C., Khalili, S. M. R. and Nemati, N. (2009). Free vibration analysis of sandwich beam with FG core using the element free Galerkin method. *Composite Structures*, **90**, 373-379.
- Atluri, S. N. and Zhu, T. (1998). A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. *Computational Mechanics*, **22**, 117-127.
- Atluri, S. N. and Zhu, T. (2000a). New concepts in meshless methods. Int. J. Numerical. Methods. Engrg, 47, 537-556.
- Atluri, S. N. and Zhu, T. (2000b). The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. *Computational Mechanics*, 25, 169-179.
- Atluri, S. N. Cho, J. Y. and Kim, H. G. (1999). Analysis of thin beams, using the meshless local Petrov-Galerkin (MLPG) method with generalized moving least squares interpolations. *Computational Mechanics*, 24, 334-347.

- Barnard, P.R and Johnson R. P. (1965). Ultimate strength of composite beam. *Proceedings of the Institution of Civil Engineers*, Vol. 32. 101-179.
- Belytscho, T., Krongauz, Y., Organ, D., Fleming, M. and Krysl, P. (1996). Meshless method: an overview and recent development. *Computer Methods in Applied Mechanics and Engineering*. 139, 3-47.
- Belytscho, T., Krongauz, Y., Organ, D., Fleming, M., Organ, D. and Liu, W. K. S. (1996). Smoothing and accelerated computations in the element free Galerkin method. *Journal of Computational and Applied Mathematics*. 74, 111-126.
- Belytscho, T., Lu, Y.Y. and Gu, L. (1994). Element-free Galerkin methods. Int. J. Numerical. Methods. Engrg, 37, 229-256.
- Belytscho, T., Lu, Y.Y., Gu, L. and Tabbara, M. (1995). Element-free Galerkin methods for static and dynamic fracture. *Int. J. Solid Structures*, **32**, 2547-2570.
- Belytscho, T., Krongauz, Y., Dolbow, J. and Gerlach, C. (1998). On the completeness of meshfree particle methods. *Int. J. Numerical. Methods. Eng*, 43, 785-819.
- Chapman J. C. and Balakrishnan, S. (1964). Experiments on composite beams. The *Structural Engineer*, No. 11 Vol. 42, 369-383.
- Choi, Y. J. and Kim, S. J. (2003). Bending analysis of Mindlin-Reissner plates by the Element Free Galerkin Method with Penalty Technique. *KSME International Journal*. No. 1 Vol. 17, 64-76.
- Dai, K. Y., Liu, G. R., Lim, K. M. and Chen, X. L. (2004). A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates. *Journal of Sound and Vibration.* 269, 633-652.

- Dolbow, J. and Belytscho, T. (1998). An introduction to programming in the meshless element-free Galerkin method. . Archives of Computational Methods in Engineering. 5(3), 207-241.
- Dolbow, J. and Belytscho, T. (1999). Numerical integration of the Galerkin weak form in meshfree methods. . *Computational Methods*. **23**, 219-230.
- Donning, B. M. and Liu, W. K. (1998). Meshless methods for shear-deformable beams and plates. *Computer Methods in Applied Mechanics and Engineering*. 152, 47-71.
- Duarte, C. A. (1995). A review of some meshless methods to solve partial differential equations. *Technical Report 95-06*. TICAM. The University of Texas Austin.
- Fries, T. P. and Matthies, H. G. (2003). Classification and overview of meshfree methods. *Informatikbericht-Nr*. Technische Universitat Braunschweig, Braunschweig.
- Girhammar, U. A. and Gopu, V. K. A. (1993). Composite beam-columns with interlayer slip-Exact analysis. *Journal of Structural Engineering*. No. 4. Vol. 119. 1265-1282.
- Girhammar, U. A. and Pan, H. D. (2007). Exact static analysis of partially composite beams and beam-columns. *International Journal of Mechanical Sciences*. Vol. 49. 239-255.
- Grant, J. A., Fisher, J. W. and Slutter, R. G. (1977). Composite beams with formed steel deck. *American Institute of Steel Construction Engineering Journal*, First Quarter, Vol. 14, No. 1, 24 – 42.
- Gu, Y. T. and Liu, G. R. (2001). A meshless local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids. *Computational Mechanics*, 27, 188-198.

- Hicks, S., Lawson, R. M. and Lam D. (2004). Design consideration for composite beams using pre-cast concrete slabs. Composite Construction in Steel and Concrete V, United Engineering Foundation, The Krueger National Park Conference Centre, Berg-en-Dal, Mpumalanga, South Africa, July 18-July 23.
- Jones, R., Swamy, R. N., and Charif, A. (1988). Plate separation and anchorage of reinforced concrete beams strengthened by epoxy-bonded steel plates. *The Structural Engineer*. Vol. 66. No. 5. 85-94.
- Kaljevic, I and Saigal, S. (1997). An improved element free Galerkin formulation. . Int. J. Numerical. Methods. Engrg. 40, 2953-2974.
- Krysl, P.and Belytscho, T. (1995). Analysis of thin plates by the element-free Galerkin method. *Comput. Mech.* 17, 26-35.
- Krysl, P.and Belytscho, T. (1996). Analysis of thin shells by the element-free Galerkin method. *Int. J. Solid Structures.* 33, 3057-3080.
- Krysl, P.and Belytscho, T. (1997). Element-free Galerkin method: Convergence of the continuous and discontinuous shape functions. *Comput. Meth. Appl. Mech. Eng.* 148, 257-277.
- Krysl, P.and Belytscho, T. (1999). The element-free Galerkin method for dynamic propagation of arbitrary 3-D cracks. *Int. J. Numerical. Methods. Engrg.* 44, 767-800.
- Krysl, P.and Belytscho, T. (2001). ESLIB. a library to compute the element free Galerkin shape functions. *Comput. Meth. Appl. Mech. Eng.* **190**, 2181-2205.
- Lam, D., Elliot, K.S. and Nethercot, D. A. (2000). Experiments on composite steel beams with precast concrete hollow core floor slabs. *Proceedings of the Institution of Civil Engineers (Structures and Buildings)*, **140**, 127-138.

- Lange, J. (2004). Design of edge beams in slim floors using pre-cast hollow core slabs. Composite Construction in Steel and Concrete V, United Engineering Foundation, The Krueger National Park Conference Centre, Berg-en-Dal, Mpumalanga, South Africa, July 18-July 23.
- Lancaster, P, and Salkauskas, K. (1986). Curve and surface fitting: an introduction. Academic Press, London, Orlando.
- Li, S, and Liu, W. K. (2004). Meshfree Particle Method. Spinger. pp. 502.
- Liu, G. R. (2002). Mesh free methods: moving beyond the finite element method. CRC Press. pp 691.
- Liu, G.R. and Chen, X. L. (2001). A mesh-free method for static and free vibration analyses of thin plates of complicated shape. *Journal of Sound and Vibration*. 241(5), 839-855.
- Liu, G.R. and Gu, Y.L (2005). An introduction to meshfree methods and their programming. Springer, Netherlands.
- Liu, W. K., Jun, S., Li, S., Jonathan, A. and Belytscho, T. (1995). Reproducing kernel particle methods for structural dynamics. *Int. J. Numerical. Methods. Engrg.* 38, 1655-1679.
- Liu, L., Liu, G. R. and Tan, V. B. C. (2002). Element free method for static and free vibration analysis of spatial thin shell structures. *Comput. Meth. Appl. Mech. Eng.* 191, 5923-5942.
- Lu, Y.Y., Belytscho, T. and Gu, L. (1994). A new implementation of the element free Galerkin method. *Comput. Meth. Appl. Mech. Eng.* **113**, 397-414.
- Malek, A. M., Saadatmanesh, H. and Ehsani, M. R. (1997). Prediction of failure load of R/C beams strengthened with FRP plate due to stress concentration at the plate. ACI Structural Journal, Vol. 95. No. 1. 142-151.

- Mukherjee, Y. X. and Mukherjee, S. (1997). On boundary conditions in the elementfree Galerkin method. *Computational Mechanics*. Vol. 19, 264-270.
- Nayroles, B., Touzot, G. and Villon, P. (1992). Generalizing the finite element method: diffuse approximation and diffuse elements. *Computational Mechanics*, 10, 307-318.
- Nethercot, D. A. ed., "Composite Construction", Spon Press, 2003
- Newmark, N. M., Siess, C.P. and Viest, I. M. (1951). Tests and analysis of composite beams with incomplete interaction. *Proceedings, Society for Experimental Stress Analysis*, Vol. 9. 75-92
- Nguyen, V. P., Rabczuk, T., Bordas, S. and Duflot, M. (2008). Meshless methods: A review and computer implementation aspect. *Mathematics and Computers in Simulation*,(Article in press).
- Oehlers, D. J. (1993). Composite profiled beams. *Journal of Structural Engineering*, ASCE, Vol.119, No.4, 1085-1100.
- Oehlers, D. J., Wright, H. D., and Burnet, M. J. (1994). Flexural strength of profiled composite beams. *Journal of Structural Engineering*, ASCE, Vol.120, No.2, 378-390.
- Phillips, D. R. and Raju, I. S. (2002). Meshless Local Petrov-Galerkin Method for bending problem. Technical memorandum. NASA Langley Research Center. pp 164.
- Porco, G., Spadea, G. and Zinno, R. (1994). Finite element analysis and parametric study if steel-concrete composite beams. *Cement & Concrete Composites*. Vol. 16. 261-272.

- Rabinovich, O. and Frostig, Y. (2000). Closed-form high-order analysis of RC beams strengthened with FRP strips. *Journal of Composites for Construction*.
 Vol. 4. No. 2. 65-74.
- Ranzi, G., Gara, F. and Ansourian, P. (2006). General method of analysis for composite beams with longitudinal and transverse partial interaction. *Computer and Structures.* 84, 2373-2384.
- Raju, I. S., Phillips, D. R. and Krishnamurthy, T. (2004). A meshless method using radial basis functions for beam bending problem. *National Technical Information Servis.* 38pp.
- Rao, B. N. and Rahman, S. (2000). An efficient meshless method for fracture analysis of cracks. *Comput. Mech.* 26, 398-408.
- Roberts, T. M. (1989). Approximate analysis of shear and normal stress concentrations in the adhesive layer of plated RC beams. *The Structural Engineer.* Vol. 67. No. 12. 229-233.
- Roberts, T.M. and Haji-Kazemi, H. (1989). Theoretical study of the behaviour of reinforced concrete beams strengthened by externally bonded steel plates. *Proc. Instn. Civ. Engrs.*, Part 2. 87, 39-55.
- Shen, H. S., Teng, J. G. and Yang, J. (2001). Interfacial stresses in beams and slab bonded with thin plate. *Journal of Engineering Mechanics*. Vol. 127. No. 4. 399-406.
- Salari, M. R. and Spacone, E. (2001). Finite element formulations of onedimensional elements with bond-slip. *Engineering Structures*. 23. 815-826.
- Sladek, J., Sladek, V. Krivacek, J., Wen, P. H. and Zhang, Ch. (2007). Meshless local Petrov-Galerkin (MLPG) method for Reissner-Mindlin plates under dynamic load. *Computer Methods in Applied Mechanics and Engineering*. **196**, 2681-2691.

- Singh I. V. (2004). A numerical solution of composite heat transfer problems using meshless method. *Int. J. of Heat and Mass Transfer.* **47**, 2123-2138.
- Singh I. V., Sandeep, K., and Prakash, R. (2002). The element free Galerkin method in three dimensional steady state heat conduction. *Int. J. Comput. Eng. Sci.* 3(3), 291-303.
- Singh I. V., Sandeep, K., and Prakash, R. (2003). Heat transfer analysis of twodimensional fins using meshless element-free Galerkin method. *Numer. Heat Transfer-Part A.* 44, 73-84.
- Smith, S. T. and Teng, J. G. (2000). Interfacial stress in plated beams. *Engineering Structures*. 23. 857-871.
- Taljsten, B. (1997). Strengthening of beams by plate bonding. *Journal of Materials in Civil Engineering*. Vol. 9. No. 4. 206-212.
- Tiago, C. M. and Leitao, V. M. A. (2003). Analysis of free vibration problems with the Element-Free Galerkin method. *Numerical Method in Continuum Mechanics*. Zilina, Slovak Republic.1-13.
- Tiago, C. M. and Leitao, V. M. A. (2004). Development of EFG formulation for damage analysis of reinforced concrete beams. *Computers and Structures*. 82.1503-1511.
- Tounsi, A and Benyoucef, S. (2007). Interfacial stresses in external FRP-plated concrete beams. *International Journal of Adhesion & Adheisive*. **27**. 207-215.
- Uy, B. and Bradford, M. A. (1995a). Ductility and member behaviour of profiled composite beams: Experimental study. *Journal of Structural Engineering*, ASCE, Vol.121, No.5, 876-882.

- Uy, B. and Bradford, M. A. (1995b). Ductility and member behaviour of profiled composite beams: Analytical study", *Journal of Structural Engineering*, ASCE, Vol.121, No.5, pp. 883-889.
- Vilnay, O. (1988). The analysis of reinforced concrete beams strengthened by epoxy bonded steel plates. *The International Journal of Cement Composites and Lightweight Concrete*, Vol. 10, No. 2. 73-78.
- Wang, K., Zhou, S. and Shan, G. (2005). The natural neighbour Petrov-Galerkin method for elasto-statics. *Int. J. Numerical. Methods. Engrg.* **63**, 1126-1145.
- Wang, Y. H., Li, W. D., Tham, L. G., Lee, K. K., and Yue, Z. Q. (2002). Parametric study for an efficient meshless method in vibration analysis. *Journal of Sound* and Vibration, 255(2), 261-279.
- Xiao, J. R. and MacCarthy, M. A. (2003). Meshless analysis of Timoshenko beams based on a locking-free formulation and variational approaches. *Computer Methods in Applied Mechanics and Engineering*. **192**, 4403-4424.
- Zhang, Z., Liew, K. M., Cheng, Y. and Lee, Y.Y. (2008). Analysing 2D fracture problems with improved element-free Galerkin method. *Engineering Analysis* with Boundary Elements, **32**, 241-250.