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ABSTRACT 

 

 

 

Composite beam with partial interaction behaviour has ignited many studies, 

not just on its mechanics but also on solutions of its one-dimensional partial 

differential equation. Inadequate solution by available analytical methods for this 

high order differential equation has demanded for numerical approach and therefore 

Element Free Galerkin (EFG) method is applied for the first time in this present 

work. The work consists of three parts; first is the formulation of Galerkin weak 

form and assemblage of the EFG discrete equilibrium equation. One-dimensional 

formulation of the weak form is performed by adopting the variational approach and 

the discrete equation, which is in matrix form and written using the Matlab 

programming code. Subsequently in second part, the EFG formulation is developed 

for both the slip and uplift models, where the former adopted equal curvature 

deflection assumption while the latter considered the unequal curvature. The 

proposed EFG formulation gives comparable results in both models, after been 

validated by established analytical solutions, thus signify its application in partial 

interaction problems. The third part provides numerical tests result on EFG 

numerical parameters such as size of support domain, polynomial basis and 

quadrature points with seven different types of weight functions for this composite 

beams behaviour. Conclusively, Cubic Spline and Quartic Spline weight functions 

yield better accuracy for the EFG formulation results, compares to other weight 

functions. The capability of the EFG formulation was also studied in terms of its 

application on free vibration problem and various composite beam cross-sections. 

Results from the numerical tests deduced the demand for optimised parameters value 

as the parameters are highly reliant on user-defined value. Additionally, the research 

supports the need for more efficient EFG code’s algorithm, stiffness matrix, shape 

function formulation and background integration methods, in approximating the 

higher order differential equation which refers to dynamics analysis. 
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ABSTRAK 

 
 

 
 

Kelakuan rasuk komposit dalam keadaan interaksi separa telah mencetuskan 
pelbagai kajian, dan tidak hanya melibatkan perihal mekanik tetapi juga untuk 
penyelesaian satu matra bagi persamaan pembezaan separanya. Ketidakupayaan 
yang wujud pada kaedah analitikal sediada di dalam menyelesaikan persamaan 
pembezaan tertib tinggi telah menuntut kepada penggunaan kaedah berangka, yang 
dengan itu kaedah Element Free Galerkin (EFG) diaplikasi, buat pertama kalinya. 
Kajian ini terbahagi kepada tiga bahagian, bahagian pertama menyentuh tentang  
formulasi bentuk lemah Galerkin dan persamaan keseimbangan diskrit EFG. Bentuk 
lemah  satu matra  diterbitkan mengikut kaedah perubahan manakala persamaan 
diskrit di dalam bentuk matrik ditulis menggunakan kod program Matlab. Di 
bahagian kedua, formulasi EFG dibangunkan untuk pertamanya bagi keadaan 
gelincir dengan anggapan pesongan adalah sama bagi kedua-dua komponen rasuk 
dan model kedua melibatkan bersama kesan angkat-naik yang pesongannya adalah 
berasingan. Formulasi EFG telah memberikan keputusan yang setara apabila 
dibandingkan dengan penyelesaian analitikal sediada, dengan itu memungkinkan 
aplikasinya di masalah interaksi separa. Bahagian ketiga memberikan keputusan 
ujian berangka terhadap beberapa parameter EFG seperti saiz sokong domain, asas 
polinomial dan titik kamiran yang melibatkan tujuh pemberat fungsi yang berbeza 
bagi kelakuan rasuk komposit tersebut. Kesimpulannya, pemberat fungsi Cubic 
Spline dan Quartic Spline memberikan keputusan ketepatan yang lebih baik 
berbanding yang lain. Kemampuan formulasi EFG juga diaplikasi terhadap frekuensi 
tabii untuk masalah getaran bebas dan pelbagai keratan-rentas rasuk komposit. 
Bersandar kepada keputusan ujian berangka yang dijalankan, didapati nilai 
parameter yang optimum adalah perlu memandangkan parameter yang diuji amat 
bergantung kepada nilai cadangan daripada penganalisis. Lanjutan itu, kajian ini 
menyokong kepada perlunya algoritma kod EFG, matrik kekukuhan, formulasi 
rangkap bentuk dan kaedah kamiran latarbelakang yang lebih efisen bagi 
penghampiran persamaan pembezaan tertib yang lebih tinggi, yang merujuk kepada 
analisis dinamik. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 
 

 

Composite members consisting of reinforced concrete and steel sections as 

well as retrofitted members are widely used in modern building constructions as well 

as strengthening and rehabilitation purposes. Since this type of member provides the 

beneficial effect of higher bending strength due to its composite behaviour, the 

interaction between two materials in the composite conditions should be assumed as 

partially interacting, if actual behaviour is required to be considered and analysed. 

This behaviour is known as partial interaction at the interface surfaces. Typical 

behaviour of partial interaction composite beam is as shown in Figure 1.1. 

 

 

Figure 1.1 Partial interaction in composite beams 
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Composite member behaviour is mathematically represented by partial 

differential equation and can result in higher order when longitudinal slip, uplift and 

dynamic effects on the beam are considered. Generally, an analytical solution for 

such effect is difficult to obtain due to the high order. Therefore, numerical 

techniques such as the Finite Element method (FEM) are widely used, in solving this 

type of difficulty.  

 

The Finite Element method (FEM) has been used as one of the methods in 

solving differential equations, numerically, for almost five decades circa the 1960’s. 

This approximate method is well established and among the most popular choices of 

analysis tools, either by engineers or scientists. Due to its vast and deep researches, 

the FEM is well accepted throughout the engineering committees, due to its 

flexibility in analysing complex geometry and capability to simulate nonlinear 

behaviour.  Nevertheless the FEM still suffers from two shortcomings; discontinuity 

of meshed elements and computing cost of re-meshing.  

  

In recent years, several developments in providing solutions for those 

shortcomings have unfolded, hence the initiation of an alternative to the FEM have 

been initiated. New methods have been introduced with promising procedures, 

where the approximate solution is constructed solely by a set of nodes instead of 

element. These new types of methods are usually known as the Meshfree or 

Meshless methods. In this study the ‘Meshless’ term is used, as it is favourably used 

in most academic papers as compared to the former term.  

 

 

  

 

1.2 Research Background and Problem Statement 
 

 

The meshless method obtained its name from its mathematical algorithm 

ability to discretise the problem domain by simply adding or deleting nodes where 

desired. No element mesh is needed to connect those nodes during the discretisation 

process which is contrary to the FEM’s procedure. This is possible due to 
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formulation of the shape functions that is based on nodes in local support domains 

thus eliminating the needs for pre-defined elements.  

  

The major difference between the meshless method and the FEM is that the 

problem domain is discretised only by nodes and the ability to use higher order 

continuous shape functions. Liu and Gu (2005) has provided a good overview on the 

procedure and differences between both methods as shown in Figure 1.2 and 

tabulated in Table 1.1, respectively. Those advantages and the infant status of the 

meshless method are factors that motivate this study, as they provide the first 

insights for the application of the present method onto partial interaction of 

composite beams.  

 

 
Figure 1.2   Flowchart for the FEM and the meshless methods (Liu and Gu, 2005). 
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Table 1.1: Differences between FEM and meshless method (Liu and Gu, 2005) 
 

Items FEM Meshless method 
Mesh Yes  No 
Shape function creation Based on pre-defined elements Based on local support domains 
Discretised system stiffness 
matrix 

Banded, symmetric Banded, may or may not be 
symmetric depending on the 
method used 

Imposition of essential boundary 
conditions 

Easy and standard Special treatments may be 
required, depending on the 
method used 

Computation speed Fast  Slower compared to the FEM 
depending on the method used 

Accuracy Accurate compared to FDM More accurate than FEM 
Adaptive analysis Difficulty for 3D cases Easier 
Stage of development Well developed Infant, with many challenging 

problems 
Commercial software packages 
availability 

Many  Few  

 

 

In regards to the partial interaction analysis of composite beam, as an 

alternative method to the Finite Element Method, the meshless method, with 

abovementioned advantages can give a new perspective on the research subject. 

Proposing a new element formulation for FEM in partial interaction problem is 

literally cumbersome, due to problems of shear locking, element remeshing and 

computing cost. Thus, new FEM’s element with partial interaction feature will not 

be possible in future development of FEM software. Regards to that, meshless 

method formulation which apparently formulated to overcome the last two 

shortcomings, has also open-up an opportunity for the first shortcoming solution, 

unintentionally. However, before the feature can be realised in meshless software, a 

one-dimensional formulation of the partial interaction behaviour has to be 

formulated. This will be the important step in meshless formulation of partial 

interaction behaviour, before it can be extended to higher dimensional problems.  

 

Element Free Galerkin (EFG) is one of the meshless methods that have been 

used widely among researchers to model solid mechanic problems. Its formulation is 

closer to FEM compares to others meshless method and easily to be extended to 

others meshless formulation, such as; meshless local Petrov-Galerkin (MLPG), 

Reproducing kernel particle method (RKPM) and hp-clouds. The Element EFG 

method was developed by Belytschko et al. (1994). An extensive review (as in 

http://en.wikipedia.org/w/index.php?title=Hp-clouds&action=edit&redlink=1�
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Chapter 2) by the study, found that, there are no attempts yet to be found on the 

application of EFG method on composite beam with slip and uplift effects. It is 

therefore the main interest of this study to establish the EFG formulation for such an 

engineering problem.  

 

 

 

 

1.3 Purpose and Objectives of the Study 
 

 

The purpose of this study is to establish new formulation, namely the 

Element Free Galerkin (EFG) method, for the analysis of the partial interaction 

behaviour of composite beams. The objectives of this study are as follows:- 

 

a) To derive one-dimensional formulation and algorithm of EFG method for 

composite beams with longitudinal slip effect, and validate the result with 

established analytical solutions. 

 

b) To conduct numerical tests on various numerical parameters of the developed 

EFG formulation in assessing the accuracy of its result. 

 

c) To extend derivation for an additional effect; the vertical uplift at interfacial 

faces and subsequently assess the effect of the numerical parameters on its 

convergence result.  

 

d) To verify the viability of the EFG formulation by conducting analysis on 

various typical composite beam cross-sections with various boundary 

conditions. 

 
e) To derive and evaluate the capability of developed EFG formulation in 

finding natural frequency of free vibration problem and conduct its numerical 

parameters study. 
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1.4 Scope and Limitation of the Study 
 

 

Formulation of Element Free Galerkin method becomes the main purpose of 

this study. The formulation is applied on partial interaction analysis of composite 

beams that follows Euler-Bernoulli’s assumptions. Verification of the formulation is 

conducted by comparing its result with available analytical solution. The study is 

limited to static analysis. Even so initial effort is taken to formulate the method on 

free vibration behaviour.  

 

 

 

 

1.5 Outline of Thesis 
 

 

This present chapter gives a brief introduction on the study which consists of 

meshless development and its differences with a well known numerical method, the 

finite element. The Element Free Galerkin (EFG) method is highlighted for this 

research work and objectives of the study are presented at the end of the chapter. The 

flow of the thesis contents is depicted as in Figure 1.3, for ease review. 

 

In Chapter 2, an extensive review on the development of partial interaction 

study in composite beam behavior is reviewed. The review starts with an early 

development of longitudinal slip effect derivation of composite beam in early 50’s. 

Till then, the study area has been extended due to the various application of 

composite beam technology in construction industry.  This development includes the 

derivation of analytical solution and numerical solution, particularly finite element 

method. The second part of the review touches on the development of EFG method 

in various attempts in solving mechanics problems.  

 

The shape function of numerical solution is the main perimeter that gives 

FEM and EFG methods their own numerical characteristic. Therefore, in Chapter 3, 

the fundamental of EFG shape function known as Moving Least Square (MLS) 
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method is derived in step-by-step manner. The effects of MLS numerical parameters 

are reviewed based on previous researches and general formulation of the method is 

reviewed from the weak form perspective. The numerical EFG solution for Euler-

Bernoulli beam problem is presented for introductory reason.  

 

Chapter 4 provides the new developed EFG formulation with its essential 

formulation procedure for the application of composite beams with longitudinal slip 

at interface surfaces. The code is developed using Matlab programming language 

and the results were verified against established analytical solutions. 

 

Selected numerical parameter values are studied in Chapter 5 through various 

numerical tests. Several weight functions are used in each numerical test and their 

effects on the result are discussed. The convergence rates are plotted for comparison 

purposes. 

 

The developed EFG formulation is extended to consider the vertical uplift 

effects and it is the main discussion in Chapter 6. Results are compared with 

analytical solution in terms of deflection, for validation purposes.  EFG formulation 

is presented and similar numerical parameters from preceding chapter are 

reconsidered in present numerical tests. Suggestions on suitable numerical 

parameters for the EFG formulation are made available.  

 

In Chapter 7, the capabilities of developed EFG formulation code are studied 

and discussed. Four different cross-sections of composite beam are used in this study 

and three types of boundary conditions for each cross-section have been chosen to 

verify the code application. Further application on these various section and 

boundary condition is extended to partial interaction EFG formulation, where 

previously, longitudinal slip EFG formulation was involved. 

 

Chapter 8 comprises the formulation, of the linear dynamic algebraic 

equation and numerical study for free vibration problem. This study involves the 

finding of the natural frequency of the partial interaction composite beam. 
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Chapter 9 summarises the development of EFG formulation and its capability 

in terms of applications. Effects of numerical parameters on the formulation 

accuracy are concluded and several recommendations for future works are 

suggested. 
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Figure 1.3   Flow of the thesis contents. 
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