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ABSTRACT

Semi-SWATH ship design is a result of combining the good features of

SWATH and Catamaran designs. However, the disadvantage of semi-SWATH is that

she has low restoring force at bow that causes a tendency to bow-dive when running

in following seas. In some critical conditions, the foredeck was found to be immersed

underwater. One of the efforts to improve the ship’s performance is to install fin

stabilizers at bow and stern. The fin stabilizers are used to compensate for the low

restoring force at the bow by increasing the lift force and damping force. A fuzzy

logic controller developed for the system gives the ability to transform human

knowledge and experience into the controller system and also to regulate the fin

angle. A numerical simulation program developed in time domain for surge, heave,

and pitch motions are then validated by seakeeping tests in towing tank of Marine

Technology Centre, Universiti Teknologi Malaysia. Using the simulation program,

parametric study was conducted to relate the ship and wave parameters with the

ship’s performance characteristics. The ship with fixed fin stabilizers has the bow-

dive and immersed foredeck conditions at the following situations: for wave height

to length ratio, Hw/Lw = 0.07, the wave to ship length ratio is 1.1 ≤ Lw/Ls < 1.4, and

for Hw/Lw = 0.08, the wave to ship length ratio is 1.0 ≤ Lw/Ls < 1.7. For ship with

active fin stabilizers, at Hw/Lw = 0.08 and Lw/Ls > 1.6, it was found that the

foredeck was immersed with low surfing speed. Meanwhile, for the ship with fixed

fin at bow and active fin at the stern, it was found that bow-diving and immersed

foredeck did not occur.
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ABSTRAK

Rekabentuk kapal separa-SWATH adalah gabungan rekabentuk antara

SWATH dan Katamaran. Walau bagaimanapun, kelemahan kapal separa-SWATH

adalah ia mempunyai kuasa balikan yang rendah pada haluannya. Keadaan ini

menyebabkan kapal tesebut cenderung mengalami keadaan haluan-menyelam ketika

belayar di laut. Bahkan, dalam beberapa keadaan, geladak haluan didapati

tenggelam. Salah satu usaha yang dibangunkan untuk meningkatkan prestasi kapal

adalah penggunaan penstabil sirip di haluan dan di buritan. Sirip penstabil digunakan

untuk mengimbangi kuasa balikkan yang rendah dengan meningkatkan kuasa angkat

dan kuasa redam. Sebuah pengawal logik kabur telah dibangunkan dalam sistem

kerana pengawal ini mempunyai keupayaan untuk menerapkan pengetahuan dan

pengalaman manusia ke dalam sistem kawalan untuk mengawal sudut sirip. Sebuah

program simulasi berangka dibangunkan dalam domain masa untuk gerakan terjah,

lambung, dan rewang dan disahkan melalui ujian dalam tangki tunda di Pusat

Teknologi Marin, Universiti Teknologi Malaysia. Dengan menggunakan program

simulasi, kajian parametrik dilakukan untuk menghubungkan parameter kapal dan

gelombang dengan ciri prestasi kapal. Kapal menggunakan semua penstabil sirip

tetap mempunyai keadaan haluan-menyelam dan geladak haluan menyelam pada

keadaan berikut; pada nisbah ketinggian ombak terhadap panjang ombak, Hw/Lw =

0.07 dan nisbah panjang gelombang terhadap panjang kapal, 1.1 ≤ Lw/Ls < 1.4 dan

pada nisbah Hw/Lw = 0.08 dan nisbah 1.0 ≤ Lw/Ls < 1.7. Untuk kapal dengan semua

penstabil sirip aktif pula, pada nisbah ketinggian ombak Hw/Lw = 0.08 dan nisbah

Lw/Ls > 1.6, didapati geladak haluan tenggelam pada kelajuan luncur rendah.

Sementara itu, bagi kapal dengan sirip tetap di haluan dan sirip aktif di buritan,

didapati keadaan haluan-menyelam dan geladak haluan tenggelam tidak berlaku.
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CHAPTER 1

INTRODUCTION

1.1. Background

Research and development of high-speed ship in the world is developing.

Particularly multihull ship, it began in 1700 when the Europe traders sail to the East

Asia, and they found catamaran used before they recognize the multihull ship type.

Catamaran design has two monohull ships connected together with bridge structure.

Currently, Catamaran was famous fast ship with more stable, low draft, and high

dynamic motion.

In the last of 20th century, SWATH ship (Small Waterplane Area Twin Hull)

with low motion was developed. Previously, the ship was developed for slow motion

of a platform invented by Canadian, Frederick G. Creed in 1938, and then he

patented the design in 1946. The underwater construction has a torpedo like design.

The design has high cost of structure and maintenance leads not developed until

1968. Then, the ship designs were built again in different countries with more sizes,

such as; SSC Kaimalino developed in US, and a SWATH ferry was built in Japan.

Catamaran and SWATH ship had significant difference in seakeeping

characteristics. Catamaran has a high dynamic motion with an increase of ship speed,

mainly the ship running in the head seas. While SWATH ship has good seakeeping

with low response, but she has too narrow space for the underwater structure used for
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machinery and propulsion system. The difference characteristics motivate engineers

to develop a hybrid hull design named semi-SWATH that aims to have combined

advantage characteristics of both ships.

The advantages of the multihull ship in seakeeping led the demand of the

ships increased. Papanikolaou and Soares (2009) presented a systematically data for

high-speed ship and advance marine vehicle type operating in worldwide. He

recorded catamaran used widely in the world was 34.1% whilst SWATH 1.2% and

semi-SWATH 1.4% of 653 ships recorded throughout the world. The famous aspect

of catamaran was caused by the high speed with low cost of structure and ship

maintenance than SWATH ship. He estimated that demand of the semi-SWATH

would increase along with advances in the technology and design of the ship.

Steven and Parsons (2002) and Folso (2004) presented that demand of high-

speed ship is developing not only increasing the ship dimension but also the ship

performances in worst weather condition. It was particularly the ship with the

required of high comfort in service and safety in ship navigation. However, the

purpose of high-speed ship cannot ignore the occurrence of the dynamic motion by

the forces acting on the ship hull. It is considerably different to conventional

monohull ship where the ship has a low speed and risk in the ship navigation.

Kan (1990) has investigated the dynamics of the monohull ship in following

seas, and investigated the ship with surf-riding condition. He has confirmed

experimentally that the ship response in surf-riding was nonlinearity. Dand (2006)

has also investigated the dynamic motion of Catamaran sailing in following seas. He

has conducted seakeeping test in following wave in towing tank. The results showed

the ship tends to have a surfing condition when amidships just passing the wave’s

crest. According to Fang and Chan (2004), during the ship was surfing, the ship’s

speed increases and then accelerated by the effect of the ship weight force down to

the wave trough. The ship will experience a bow-dive condition by a low restoring

force at fore hull. Furthermore, Matsuda (2004) described the occurrence of the bow-

dive condition always proceeded by a surfing condition that indicated by a rapidly

acceleration to the wave trough. This condition can affect the ship in a dangerous

situation where the ship can lost of control condition.
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The restoring force or stiffness force is highly influenced by the waterplane

area of the ship, where the force is increase with an increase of the area. Three

different waterlines for high-speed were showed in Figure 1.1. Monohull ship has

highest waterplane area, Catamaran, and SWATH ship as the smallest one. It

indicates the tendency of the bow-dive occurrence by monohull, Catamaran, and

SWATH ship.

Figure 1.1 Three types of displacement hull ship and their waterline’s

shape (www.abeking.com).

The low restoring force, particularly at the bow hull might be a dominant

factor to the occurrence of the bow-dive condition. Design of SWATH ship with

small waterplane area cannot provide a sufficiently high restoring force relatively to

the ship displacement. In addition, the inertial mass of surging motion increase

during the ship is surfing. In such condition, the bow can be submerged even it may

find the foredeck is being immersed. This condition encourages the researchers to

reduce the condition by attaching some additional devices such as fin stabilizers to

increase the damping and lift force. The fin stabilizer installed at lower hull as shown

in Figure 1.2.

Another way to reduce the bow-dive effect is to use additional structure of

bow flare as presented by Katayama et al. (2003). The bow flare increases the

restoring force when the bow is immersed in the wave. The bow flare shape likes ‘V’
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means the waterplane area increase by the increase of the draft and the buoyancy. It

is different from the fin stabilizer, where the fins can compensate the vertical force

by lift force. The force is influenced by the water velocity flowing around the fin,

indeed the ship speed was assumed equal to the water velocity as explored by Naito

and Isshiki (2005b) and Djackov (2005). Those efforts aim to increase the ship

seakeeping behavior through introducing parameters of added mass, damping, and

restoring force influencing on the ship motion characteristics. Fang and Yang (2002)

have studied the ship characteristics of heave and pitch motion in following sea by

effect of the active fin stabilizer. However, they did not analyze the effect of the ship

weights and the ship surfing the wave trough, whilst the surfing condition takes a

significant effect in the ship motion.

Figure 1.2 Small Waterplane Area Twin Hull, SWATH with controlled

fin stabilizer (www.swath.com).

1.2. Problem Statements

The ship may experience surfing condition in following sea when the

amidships was just passing the wave crest at the same time the ship’s speed and the

wavelength slightly higher than the wave velocity and the ship length. The ship

speed will increase due to the weight force effect during the ship on the down slope

of wave. The ship was found in rapidly accelerating to the wave’s trough and tending
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to experience a bow-dive condition, even resulted in the deck-dive. The bow-dive

occurs due to the small vertical restoring force of the fore hull ship required to lift the

ship bow. According to Dand (2005), although taking water over the bow is common

in all ships, bow-dive is notable for the fact that it can cause all ways to be lost, the

ship will experience a severe bow-dive, deck-dive, and restrained to surge. The worst

effect of the condition can decrease the ship performance where it can increase the

load of the ship immediately. This problem has been explored by Froehlich et al

(2005). Some investigations were conducted including of increasing the

displacement of flares, addition of flare structures at the bow of the ship, and

application of fixed fin's stabilizer at the ends of the ship. The fins used to increase

the lift force and damping force compensating the low buoyancy force at the ends of

semi-SWATH hull.

Umeda (1990) and Spyrou (1995, 1996) simulated the ship running in

following wave with low encounter frequency and the ship with a dynamic nonlinear

response. The nonlinear response occurs at near of the wave’s crest. However, using

mathematical model in investigation of the ship response at the wave’s crest in

frequency domain will not figures the effect of parameters changed. The ship

parameters changed when the ship’s speed is changed. This gives the effect of

nonlinear ship’s response changed. In addition, research on ship response based on

frequency domain shows that the change of particularly encounter frequency also

changes the ship characteristics.

1.3. Research Objectives

Based on statement of the problem above, the objectives of this research

leads;

a. To develop the mathematical model in time domain with respect to parameter

changed.

b. To analyze the effect of fin stabilizer on deck-dive, heave, and pitch.
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c. To propose a strategy used to reduce the emergence of bow-dive in following

seas.

1.4. Research Scopes

In order to focus the research on the track of the objectives, some scopes of

the research were listed as follows;

a. Develop a simulation program for vertical and longitudinal ship motion in

regular waves.

b. Develop a real time programming for fin stabilizer controller used in seakeeping

test.

c. Validate the simulation program using seakeeping test data in following seas

with regular waves

d. Analyze the ship seakeeping performance and obtain the ship characteristics in

following sea.

1.5. Research Outline

This research follows a systematic procedure to study the seakeeping

performance of the semi-SWATH in following seas using an active fin stabilizer.

This research follows a set organization as following;

Chapter 1: This chapter describes background, objectives, and scopes of the

research. The research organization was structured to as guidance in whole of

research reports.

Chapter 2: This chapter describes a brief history of multihull ship and ship

characteristics in sea waves. Some reviews of research of the multihull ship,

mathematical model, and control method applied in seakeeping as well as application

of appendages on the ship.
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Chapter 3: This chapter describes the methodology applied in this research to

meet the objectives of the research. The ship motion model and the numeric method

used in simulation program and the way of validation the program as an approach to

ensure the simulation results in reliable used for analysis, and study the ship

performance.

Chapter 4: This chapter describes the basic mathematical model used in

arranging the model of surge, heave and pitch motion. The chapter presents

calculation of force and moment of fin stabilizers and integration the added mass,

damping and stiffness coefficient. The ship motion model presents in time-domain

simulation.

Chapter 5: This chapter describes the numerical simulation model developed

in MATLAB and Simulink-MATLAB using the mathematical model developed in

the previous chapter. The control of pitch motion also describes to regulate the ship

motion using active fin stabilizer as ship motion actuator.

Chapter 6: This chapter describes the seakeeping test in following wave such

as the seakeeping test procedure, type of test, test equipment, model and fin

stabilizer, and control and measurement system. The seakeeping test results would be

used in validation of the numerical simulation program.

Chapter 7: This chapter describes a validation of the numerical simulation

program and parametric study conducted to evaluate the ship characteristics in

following wave. The ship characteristics studied is a related to prevent the bow-dive

and foredeck to be immersed. The parametric relations of waves to ship are

simulated in time domain, and then the parameters relations were showed in some

graphs.

Chapter 8: This chapter describes the results of parametric relation of the ship

response were elaborated in discussion and in future work of the related research.

Chapter 9: This chapter describes the conclusions of the research and future

works for the next research.
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1.6. Concluding Remarks

Semi SWATH was a fast ship created from the combination of catamaran and

SWATH ship. Both ship’s designs were famous with the advantaged characteristic.

Combination of both designed aims to have advantage characteristics of both ship

designs. However, in following wave, the ship has a tendency to experience bow-

dive in which the ship has a low restoring force at bow. Fin stabilizer is one of the

solutions can be used to improve her performance. Investigation of the solutions was

required to identify, and solve the problems. The next chapter is reviews of

literatures described to meet the research objective.
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