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ABSTRACT

Semi-SWATH ship design is a result of combining the good features of
SWATH and Catamaran designs. However, the disadvantage of semi-SWATH isthat
she has low restoring force at bow that causes a tendency to bow-dive when running
in following seas. In some critical conditions, the foredeck was found to be immersed
underwater. One of the efforts to improve the ship’s performance is to install fin
stabilizers at bow and stern. The fin stabilizers are used to compensate for the low
restoring force at the bow by increasing the lift force and damping force. A fuzzy
logic controller developed for the system gives the ability to transform human
knowledge and experience into the controller system and aso to regulate the fin
angle. A numerical simulation program developed in time domain for surge, heave,
and pitch motions are then validated by seakeeping tests in towing tank of Marine
Technology Centre, Universiti Teknologi Malaysia. Using the simulation program,
parametric study was conducted to relate the ship and wave parameters with the
ship’s performance characteristics. The ship with fixed fin stabilizers has the bow-
dive and immersed foredeck conditions at the following situations: for wave height
to length ratio, Hw/Lw = 0.07, the wave to ship length ratiois 1.1 < Lw/Ls < 1.4, and
for Hw/Lw = 0.08, the wave to ship length ratio is 1.0 < Lw/Ls < 1.7. For ship with
active fin stabilizers, at Hw/Lw = 0.08 and Lw/Ls > 1.6, it was found that the
foredeck was immersed with low surfing speed. Meanwhile, for the ship with fixed
fin a bow and active fin at the stern, it was found that bow-diving and immersed

foredeck did not occur.



Vi

ABSTRAK

Rekabentuk kapal separaSWATH adalah gabungan rekabentuk antara
SWATH dan Katamaran. Walau bagaimanapun, kelemahan kapa separa-SWATH
adalah ia mempunyai kuasa balikan yang rendah pada haluannya. Keadaan ini
menyebabkan kapal tesebut cenderung mengalami keadaan haluan-menyelam ketika
belayar di laut. Bahkan, dalam beberapa keadaan, geladak haluan didapati
tenggelam. Salah satu usaha yang dibangunkan untuk meningkatkan prestas kapal
adalah penggunaan penstabil sirip di haluan dan di buritan. Sirip penstabil digunakan
untuk mengimbangi kuasa balikkan yang rendah dengan meningkatkan kuasa angkat
dan kuasa redam. Sebuah pengawal logik kabur telah dibangunkan dalam sistem
kerana pengawal ini mempunya keupayaan untuk menerapkan pengetahuan dan
pengalaman manusia ke dalam sistem kawalan untuk mengawal sudut sirip. Sebuah
program simulasi berangka dibangunkan dalam domain masa untuk gerakan terjah,
lambung, dan rewang dan disashkan melalui ujian dalam tangki tunda di Pusat
Teknologi Marin, Universiti Teknologi Malaysia. Dengan menggunakan program
simulasi, kgian parametrik dilakukan untuk menghubungkan parameter kapa dan
gelombang dengan ciri prestasi kapal. Kapa menggunakan semua penstabil sirip
tetap mempunyai keadaan haluan-menyelam dan geladak haluan menyelam pada
keadaan berikut; pada nisbah ketinggian ombak terhadap panjang ombak, Hw/Lw =
0.07 dan nisbah panjang gelombang terhadap panjang kapal, 1.1 < Lw/Ls < 1.4 dan
pada nisbah Hw/Lw = 0.08 dan nisbah 1.0 < Lw/Ls< 1.7. Untuk kapal dengan semua
penstabil sirip aktif pula, pada nisbah ketinggian ombak Hw/Lw = 0.08 dan nisbah
Lw/Ls > 1.6, didapati geladak haluan tenggelam pada kelgjuan luncur rendah.
Sementara itu, bagi kapa dengan sirip tetap di haluan dan sirip aktif di buritan,
didapati keadaan haluan-menyelam dan geladak haluan tenggelam tidak berlaku.
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CHAPTER 1

INTRODUCTION

1.1. Background

Research and development of high-speed ship in the world is developing.
Particularly multihull ship, it began in 1700 when the Europe traders sail to the East
Asia, and they found catamaran used before they recognize the multihull ship type.
Catamaran design has two monohull ships connected together with bridge structure.
Currently, Catamaran was famous fast ship with more stable, low draft, and high

dynamic motion.

In the last of 20th century, SWATH ship (Small Waterplane Area Twin Hull)
with low motion was developed. Previoudly, the ship was developed for sslow motion
of a platform invented by Canadian, Frederick G. Creed in 1938, and then he
patented the design in 1946. The underwater construction has a torpedo like design.
The design has high cost of structure and maintenance leads not developed until
1968. Then, the ship designs were built again in different countries with more sizes,
such as; SSC Kaimalino developed in US, and a SWATH ferry was built in Japan.

Catamaran and SWATH ship had significant difference in seakeeping
characteristics. Catamaran has a high dynamic motion with an increase of ship speed,
mainly the ship running in the head seas. While SWATH ship has good seakeeping

with low response, but she has too narrow space for the underwater structure used for



machinery and propulsion system. The difference characteristics motivate engineers
to develop a hybrid hull design named semi-SWATH that aims to have combined
advantage characteristics of both ships.

The advantages of the multihull ship in seakeeping led the demand of the
ships increased. Papanikolaou and Soares (2009) presented a systematically data for
high-speed ship and advance marine vehicle type operating in worldwide. He
recorded catamaran used widdly in the world was 34.1% whilst SWATH 1.2% and
semi-SWATH 1.4% of 653 ships recorded throughout the world. The famous aspect
of catamaran was caused by the high speed with low cost of structure and ship
maintenance than SWATH ship. He estimated that demand of the semi-SWATH

would increase along with advances in the technology and design of the ship.

Steven and Parsons (2002) and Folso (2004) presented that demand of high-
speed ship is developing not only increasing the ship dimension but also the ship
performances in worst weather condition. It was particularly the ship with the
required of high comfort in service and safety in ship navigation. However, the
purpose of high-speed ship cannot ignore the occurrence of the dynamic motion by
the forces acting on the ship hull. It is considerably different to conventiona
monohull ship where the ship has alow speed and risk in the ship navigation.

Kan (1990) has investigated the dynamics of the monohull ship in following
seas, and investigated the ship with surf-riding condition. He has confirmed
experimentally that the ship response in surf-riding was nonlinearity. Dand (2006)
has also investigated the dynamic motion of Catamaran sailing in following seas. He
has conducted seakeeping test in following wave in towing tank. The results showed
the ship tends to have a surfing condition when amidships just passing the wave’s
crest. According to Fang and Chan (2004), during the ship was surfing, the ship’s
speed increases and then accelerated by the effect of the ship weight force down to
the wave trough. The ship will experience a bow-dive condition by a low restoring
force at fore hull. Furthermore, Matsuda (2004) described the occurrence of the bow-
dive condition always proceeded by a surfing condition that indicated by a rapidly
acceleration to the wave trough. This condition can affect the ship in a dangerous
situation where the ship can lost of control condition.



The restoring force or stiffness force is highly influenced by the waterplane
area of the ship, where the force is increase with an increase of the area. Three
different waterlines for high-speed were showed in Figure 1.1. Monohull ship has
highest waterplane area, Catamaran, and SWATH ship as the smalest one. It
indicates the tendency of the bow-dive occurrence by monohull, Catamaran, and
SWATH ship.

D
Al

MONOHULL CATAMARAN SWATH

Figure 1.1 Three types of displacement hull ship and their waterline’s
shape (www.abeking.com).

The low restoring force, particularly at the bow hull might be a dominant
factor to the occurrence of the bow-dive condition. Design of SWATH ship with
small waterplane area cannot provide a sufficiently high restoring force relatively to
the ship displacement. In addition, the inertiadl mass of surging motion increase
during the ship is surfing. In such condition, the bow can be submerged even it may
find the foredeck is being immersed. This condition encourages the researchers to
reduce the condition by attaching some additional devices such as fin stabilizers to
increase the damping and lift force. The fin stabilizer installed at lower hull as shown

inFigure 1.2.

Another way to reduce the bow-dive effect is to use additional structure of
bow flare as presented by Katayama et a. (2003). The bow flare increases the
restoring force when the bow isimmersed in the wave. The bow flare shape likes “V’



means the waterplane area increase by the increase of the draft and the buoyancy. It
is different from the fin stabilizer, where the fins can compensate the vertical force
by lift force. The force is influenced by the water velocity flowing around the fin,
indeed the ship speed was assumed equal to the water velocity as explored by Naito
and Isshiki (2005b) and Djackov (2005). Those efforts aim to increase the ship
seakeeping behavior through introducing parameters of added mass, damping, and
restoring force influencing on the ship motion characteristics. Fang and Y ang (2002)
have studied the ship characteristics of heave and pitch motion in following sea by
effect of the active fin stabilizer. However, they did not analyze the effect of the ship
weights and the ship surfing the wave trough, whilst the surfing condition takes a

significant effect in the ship motion.

Lewer Hell Srrer Comtrolled Fin

Figure 1.2 Small Waterplane Area Twin Hull, SWATH with controlled

fin stabilizer (www.swath.com).

1.2. Problem Statements

The ship may experience surfing condition in following sea when the
amidships was just passing the wave crest at the same time the ship’s speed and the
wavelength dightly higher than the wave velocity and the ship length. The ship
speed will increase due to the weight force effect during the ship on the down slope

of wave. The ship was found in rapidly accelerating to the wave’s trough and tending



to experience a bow-dive condition, even resulted in the deck-dive. The bow-dive
occurs due to the small vertical restoring force of the fore hull ship required to lift the
ship bow. According to Dand (2005), although taking water over the bow is common
in al ships, bow-dive is notable for the fact that it can cause all ways to be lost, the
ship will experience a severe bow-dive, deck-dive, and restrained to surge. The worst
effect of the condition can decrease the ship performance where it can increase the
load of the ship immediately. This problem has been explored by Froehlich et a
(2005). Some investigations were conducted including of increasing the
displacement of flares, addition of flare structures at the bow of the ship, and
application of fixed fin's stabilizer at the ends of the ship. The fins used to increase
the lift force and damping force compensating the low buoyancy force at the ends of
semi-SWATH hull.

Umeda (1990) and Spyrou (1995, 1996) simulated the ship running in
following wave with low encounter frequency and the ship with a dynamic nonlinear
response. The nonlinear response occurs at near of the wave’s crest. However, using
mathematical model in investigation of the ship response at the wave’s crest in
frequency domain will not figures the effect of parameters changed. The ship
parameters changed when the ship’s speed is changed. This gives the effect of
nonlinear ship’s response changed. In addition, research on ship response based on
frequency domain shows that the change of particularly encounter frequency also

changes the ship characteristics.

1.3. Research Objectives

Based on statement of the problem above, the objectives of this research
leads;

a. To develop the mathematical model in time domain with respect to parameter
changed.
b. To analyzethe effect of fin stabilizer on deck-dive, heave, and pitch.



c. To propose a strategy used to reduce the emergence of bow-dive in following

Seas.

1.4. Research Scopes

In order to focus the research on the track of the objectives, some scopes of

the research were listed as follows;

a. Develop a simulation program for vertical and longitudinal ship motion in
regular waves.

b. Develop areal time programming for fin stabilizer controller used in seakeeping
test.

c. Validate the smulation program using seakeeping test data in following seas
with regular waves

d. Anayze the ship seakeeping performance and obtain the ship characteristics in

following sea.

15. Research Outline

This research follows a systematic procedure to study the seakeeping
performance of the semi-SWATH in following seas using an active fin stabilizer.

This research follows a set organization as following;

Chapter 1: This chapter describes background, objectives, and scopes of the
research. The research organization was structured to as guidance in whole of

research reports.

Chapter 2: This chapter describes a brief history of multihull ship and ship
characteristics in sea waves. Some reviews of research of the multihull ship,
mathematical model, and control method applied in seakeeping as well as application
of appendages on the ship.



Chapter 3: This chapter describes the methodology applied in this research to
meet the objectives of the research. The ship motion model and the numeric method
used in simulation program and the way of validation the program as an approach to
ensure the simulation results in reliable used for analysis, and study the ship

performance.

Chapter 4. This chapter describes the basic mathematical model used in
arranging the model of surge, heave and pitch motion. The chapter presents
calculation of force and moment of fin stabilizers and integration the added mass,
damping and stiffness coefficient. The ship motion model presents in time-domain

simulation.

Chapter 5: This chapter describes the numerical simulation model devel oped
in MATLAB and Simulink-MATLAB using the mathematical model developed in
the previous chapter. The control of pitch motion aso describes to regulate the ship
motion using active fin stabilizer as ship motion actuator.

Chapter 6: This chapter describes the seakeeping test in following wave such
as the seakeeping test procedure, type of test, test equipment, model and fin
stabilizer, and control and measurement system. The seakeeping test results would be
used in validation of the numerical simulation program.

Chapter 7: This chapter describes a validation of the numerical simulation
program and parametric study conducted to evaluate the ship characteristics in
following wave. The ship characteristics studied is a related to prevent the bow-dive
and foredeck to be immersed. The parametric relations of waves to ship are

simulated in time domain, and then the parameters relations were showed in some

graphs.

Chapter 8: This chapter describes the results of parametric relation of the ship
response were elaborated in discussion and in future work of the related research.

Chapter 9: This chapter describes the conclusions of the research and future

works for the next research.



16. Concluding Remarks

Semi SWATH was afast ship created from the combination of catamaran and
SWATH ship. Both ship’s designs were famous with the advantaged characteristic.
Combination of both designed aims to have advantage characteristics of both ship
designs. However, in following wave, the ship has a tendency to experience bow-
dive in which the ship has a low restoring force at bow. Fin stabilizer is one of the
solutions can be used to improve her performance. Investigation of the solutions was
required to identify, and solve the problems. The next chapter is reviews of

literatures described to meet the research objective.
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