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ABSTRACT 

 
Nowadays, privacy issue becomes one of the main concerns of persons 

among their raw data. This happens at a time, when more and more historically 

public information is also electronically available. When these data are linked 

together, they provide an electronic shadow of a person or organization that is as 

identifying and personal as a fingerprint even when the information contains no 

explicit identifiers, such as name and phone number. Other distinctive data, such as 

birth date and ZIP code, often combine uniquely and can be linked to publicly 

available information to re-identify individuals. However, there are several k-

anonymity algorithms available in the literature to solve that problem such as Datafly 

and Incognito. Nevertheless, their study of performances in terms of efficiency and 

accuracy is lacking. In this study, we compare these two k-anonymity algorithms. So 

that users can select which algorithm is more suitable for their data mining. The 

finding shows that Datafly gives higher overall efficiency. Comparing with Incognito 

which gives high accuracy. Consistent good performance of Incognito in k-

anonymity has made a promising k-anonymity  techniques to be used in the Privacy 

Preserving Technique. 
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ABSTRAK 

 

 

          Pada masa kini, isu privasi menjadi salah satu keprihatinan seseorang tentang 

data Asal. Ini terjadi apabila semakin banyak sejarah maklumat umum diperolehi 

secara elektronik. Apabila data ini berhubungan antara satu sama lain, data tersebut 

memberikan bayangan elektronik tentang seseorang atau organisasi yang 

dikenalpasti dan sulit seperti cap jari walaupun maklumat tersebut tiada pengenalan 

yang nyata seperti nama dan nombor telefon.Data yang berkaitan lain seperti tarikh 

lahir dan kod ZIP, sering digabungkan dan dihubungkan untuk dipaparkan pada 

umum untuk mengenalpasti semula seseorang individu. Walaubagaimanapun, 

terdapat banyak algoritma k-anonimiti di dalam penyelidikan untuk menyelesaikan 

masalah tersebut seperti Datafly dan Incognito.Tambahan lagi, kajian tentang 

prestasi daripada segi kadar efisyensi dan ketepatan adalah lemah. Dalam kajian ini, 

kami membandingkan kedua-dua algoritma k-anonimiti ini. Supaya pengguna dapat 

pilih algoritma mana yang lebih sesuai untuk kenalpasti data.Penemuan ini 

menunjukkan bahawa Datafly memberikan kadar efisyensi yang lebih tinggi secara 

keseluruhannya.berbanding dengan Incognito yang memberikan lebih tinggi kadar 

ketepatannya. Kestabilan prestasi incognito yang baik dalam k-anonimiti 

membuatkan teknik k-anonomiti yang meyakinkan untuk digunakan di dalam 

TEknik Pengekalan Privasi. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 Introduction  

Nowadays the size of the data, which is collected daily by the public and 

private institutions are increasing dramatically. The process of extracting enormous 

of datasets by data mining has become very important to help decision making 

processes. In contrast, contain explicitly data sets for data mining can be used to 

imply to information consist of the original data that might not be intended to release 

for the public. Therefore, there is a privacy violation for those who refer to whom 

these data. Data mining can be prevented these data sets only if there are safeguards 

from compromising the privacy. It has been suggested the concept of privacy 

preserving data mining (PPDM) In response to these concerns privacy (Ciriani, 

2008).  

 

 

The privacy is considered one of the most critical characteristics of 

information systems which should be offered. Thus, there are several efforts have 

been suggested to integrating many techniques to maintain the privacy in order to 

safeguard obtains sensitive information through the extract the knowledge. It can be 

classified existing conservation techniques of data mining and according to the 

dimensions of the following five different (Verykios, 2004):  

 

(i) Data distribution (central or distributed). 
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(ii) The amendment applied to the data (encryption, disorder, 

generalization, and so on) in order to cleanse them. 

(iii) Algorithm to extract the data that has been designed this technique to 

save the privacy. 

(iv) Type of data which need it for the protection from disclosure. 

(v)  The method adopted for privacy preservation. 

 

 There are several techniques such as K-anonymity and randomization 

(Rakesh Agrawal, 2000, Samarati, 1998, Dakshi Agrawal, 2001)  that have been 

proposed in the last years for the performance and privacy of data mining. Moreover, 

the problem has been explained in different communities, such as a database group, 

and community statistical disclosure control and encryption community (Charu, 

2007). 

 

The privacy of the individual to whom the data belongs to, released data were 

at first “de-identified” by deleting explicit identifiers for instance names, addresses, 

and phone numbers. However this de-identified data could still have other 

identifying characteristics such as birth date, postal code, race and sex, when they are 

considered all together, almost uniquely relate to specific individuals. These sets of 

characteristics are often called quasi-identifiers. For instance, in one statistic, 

Sweeney finds out  that 87.1% of the US population can be uniquely identified by the 

combination of their 5-digit zip code, gender, and date of birth because such records 

can be linked to publicly available databases such as voter lists and driving records 

(Sharow 2007). 

 

 

1.2 Problem Background  

 

  K-anonymization is a technique that prevents joining attacks by generalizing 

and suppressing portions of the released microdata so that no individual can be 

uniquely distinguished from a group of size k. The real-world algorithms Datafly and 

µ-Argus are compared to MinGen. Both Datafly and µ-Argus use heuristics to make 
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approximations, and so, they do not always yield optimal results (Sweeney, 2002). It 

is shown that Datafly can over distort data and µ-Argus can additionally fail to 

provide adequate protection. One of the problems is that Datafly makes crude 

decisions–generalizing all values associated with an attribute and suppressing all 

values within a tuple. 

 

The view of k-anonymization problem from the perspective of inference 

attacks over all possible combinations of attributes. (Ciriani, 2007) showed that when 

the data contains a large number of attributes which may be considered quasi-

identifiers; it becomes difficult to anonymize the data without an unacceptably high 

amount of information loss. This is because an exponential number of combinations 

of dimensions can be used to make precise inference attacks, even when individual 

attributes are partially specified within a range (Vijayarani, 2010). The provided 

analysis of the effect of dimensionality on k-anonymity methods, conclude that when 

a data set contains a large number of attributes which are open to inference attacks, 

are faced with a choice of either completely suppressing most of the data or losing 

the desired level of anonymity. 
 

 

 

There are many algorithms under the k-anonymity technique have been 

proposed to preserve the privacy in data mining such as Bayardo-Agrawal (Bayardo, 

2005), Mondrian (Samarati, 2001) and Approximation Algorithms (Gagan Aggarwal, 

2005)all these algorithms use different standards to measure the quality of output and 

try to improve production against those standards. However, in the context of data, 

the trade-off between speed and optimality is not possible since researchers need to 

work on an anonymized data set with minimal information loss. Moreover, as 

opposed to the heuristic-based approaches, by insuring an optimal solution that can 

be located efficiently, researchers will benefit immensely, for the better the quality of 

the anonymized data the more valuable that data is for the research. Among these 

algorithms, the Datafly (Sweeney, 1997) and Incognito (David, 2005) are the most  

popular approaches in the privacy preserving data mining. Several studies have 

evaluated the results of k-anonymization algorithms based on a particular data mining task, 

such as information loss and efficiency (Issa, 2009),(Nurul H, 2012) and (Khaled Elemam, 

2009). However, the evaluation of information loss has not previously been explored 
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by using the global metric (Dissimilarity Metric). Specially, to evaluate Datafly and 

Incognito algorithms 

  

 

1.3 Problem Statement 

 

 In the midst of the vast amount of information available electronically led to 

the disclosure of individual privacy. When these data are linked together, they 

provide an electronic shadow of a person or organization that is as identifying and 

personal as a fingerprint even when the information contains no explicit identifiers, 

such as name and phone number. There are several k-anonymity algorithms available 

in the literature, however their study on performances in terms of efficiency and 

accuracy is lacking. In this study, we are going to compare these two k-anonymity 

algorithms. So that users can select which algorithm is more suitable for their data 

mining. 

 

 

1.4 Purpose of Study 

 

             In this research the performance of K-anonymity algorithms namely 

Incognito and Datafly were compared in terms of efficiency and accuracy 

(Information loss). At the end of this comparison, an analysis of their performances was 

discussed and the algorithm that shows better performance is highlighted and 

recommended. 

 

 

 

 1.5     Objective of Study 

 

   This research has the following objectives: 

i. Studying the Privacy Preserving Data Mining. 
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ii.  Evaluating the performance of Datafly and Incognito algorithms in Privacy 

Preserving Data Mining. 

 

1.6        Scope of Study 

 

       The scope of the project is listed below: 

 
i. The data being used in this study were from the University of California, 

Irvine (UCI) Cup 1996 Census dataset. Its size is 30000 rows. 

ii. Weka 3.6.9 being used to implement the evaluation. 

iii. Performance was evaluated based on efficiency and accuracy 

(Information loss) metrics. 

 

 

1.7 Significant of Study 

 

This study evaluates the performance of two k-anonymity algorithms namely 

Datafly and Incognito for privacy preserving data mining in terms of efficiency and 

accuracy. By studying each one and investigate them to show which one is more 

suitable to be used in privacy preserving in data mining.  

 

 

 

1.8 Organization of Report 

 

           The thesis consists of 4 chapters. Chapter one describes the introduction, 

background of the study, research objectives and questions, the scope of the study 

and its primary objectives. The second chapter reviews available and related 

literature on Privacy Preserving in data mining, K-anonymity approaches. Chapter 

three describes the study methodology along with the appropriate framework for the 
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study. The fourth chapter provides the analysis of the preliminary results of the 

study. 
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