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ABSTRACT

A Bieberbach group is a torsion free crystallographic group. It is an

extension of a lattice group, which is a maximal normal free abelian group of finite

rank, by a finite point group. The main objective of this research is to compute

the nonabelian tensor square of Bieberbach groups with a finite nonabelian point

group, in particular the dihedral group of order eight. Bieberbach groups in

the Crystallographic AlgoRithms And Tables (CARAT) homepage were first

explored and examples of the nonabelian tensor square of the groups were

then computed by using the Groups, Algrorithms, Programming (GAP) software

system. The exploration of the groups and the examples computed led to

the exact characterization of the Bieberbach groups with trivial center. The

centerless Bieberbach groups are interesting since they do not arise in the general

construction of a Bieberbach group for a given point group. This construction has

been shown to depend on the presentation of the point group. In addition, the

experimental data of the computation of the nonabelian tensor square gives no

insight into the structure of the tensor square such as its generators and relations.

With the method developed for polycyclic groups, the nonabelian tensor square

of one of the centerless Bieberbach groups with dihedral point group of order

eight were manually computed. It has been demonstrated that the use of GAP

helps to simplify the manual calculation. Furthermore, the computation of some

homological functors of all 73 centerless Bieberbach groups with dihedral point

group of order eight and of dimension at most six were explored. Lastly, some

homological functors for Bieberbach groups with some other nonabelian point

groups were also computed with the help of GAP.
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ABSTRAK

Kumpulan Bieberbach adalah kumpulan kristolografi yang bebas kilasan.

Ia adalah perluasan kepada kumpulan kekisi iaitu kumpulan abelan bebas yang

normal dan maksimal, melalui kumpulan titik terhingga. Objektif utama kajian

ini adalah untuk mengira kuasa dua tensor tak abelan bagi kumpulan Bieberbach

dengan kumpulan titik tak abelan berperingkat terhingga, perincian kepada

kumpulan titik dwihedron berperingkat lapan. Kajian ini dimulakan dengan

meneroka kumpulan tersebut dalam laman Crystallographic AlgoRithms And

Tables (CARAT) dan seterusnya pengiraan contoh-contoh kuasa dua tensor

tak abelan kumpulan tersebut dibuat dengan menggunakan sistem perisian

Groups, Algrorithms and Programming (GAP). Hasil penerokaan dan contoh-

contoh pengiraan menghala ke arah pencirian kumpulan Bieberbach dengan pusat

remeh. Kumpulan Bieberbach tidak berpusat adalah menarik kerana ia tidak

wujud dalam pembinaan umum kumpulan Bieberbach untuk kumpulan titik yang

diberi. Pembinaan ini ditunjukkan bergantung kepada persembahan kumpulan

titik tersebut. Tambahan lagi, data eksperimental bagi pengiraan kuasa dua

tensor tak abelan tidak memberi maklumat yang mendalam tentang struktur

kumpulan tersebut seperti penjana dan perhubungannya. Dengan menggunakan

kaedah kumpulan polikitaran, kuasa dua tensor tak abelan bagi salah satu

kumpulan Bieberbach yang tidak berpusat dengan kumpulan titik dwihedron

berperingkat lapan telah dilakukan secara manual. Penggunaan GAP ditunjukkan

dalam membantu memudahkan pengiraan secara manual tersebut. Selanjutnya,

pengiraan beberapa fungtor berhomologi bagi kesemua 73 kumpulan Bieberbach

dengan kumpulan titik dwihedron berperingkat lapan dan berdimensi enam atau

kurang dikaji. Akhir sekali, beberapa fungtor berhomologi untuk kumpulan

Bieberbach dengan kumpulan titik tak abelan yang lain juga dikira dengan

bantuan GAP.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

A free abelian group G is the extension

1 −−−→ A −−−→ G −−−→ 1 −−−→ 1

where the point group is finite (trivial). A crystallographic group G is a

generalization of free abelian groups since it satisfies the short exact sequence

1 −−−→ L −−−→ G −−−→ P −−−→ 1

where P is a point group that is a finite group acting faithfully on a maximal

normal free abelian subgroup L of G which is of finite rank. The subgroup L is

called a lattice group. It follows that L is a Fitting subgroup of G and its rank or

Hirsch length is referred to as the dimension ofG. Crystallographic groups arise as

discrete, irreducible subgroups of the group of isometries of the n−dimensional

Euclidean space. They are used to study the structures and characteristics of

crystals. One of the crystallographic point groups that the researchers had an

interest is Bieberbach groups. Bieberbach groups are torsion-free crystallographic

groups.

The nonabelian tensor square G⊗G of a group G is a special case of the

nonabelian tensor product G ⊗ H for two arbitrary group G and H that was



2

introduced by Brown and Loday [1] extending the idea of Whitehead [2]. The

nonabelian tensor square G ⊗ G is a group generated by the symbols g ⊗ h for

g, h ∈ G, subject to relations

gh⊗ k = (gh ⊗ kh)(h⊗ k) and g ⊗ hk = (g ⊗ k)(gk ⊗ hk)

for all g, h, k ∈ G where gh = h−1gh. It is defined by a presentation on |G|2

generators and 2|G|3 relations. This presentation does not reflect the group

structure very well. The structure of G ⊗ G has been first studied by Brown,

Johnson and Robertson [3] where they investigated the group structures in terms

of central extensions. Their focus is to compute the nonabelian tensor square of

groups by finding a simplified presentation for the nonabelian tensor square from

the presentation given by the definition.

1.2 Research Background

Bieberbach groups are torsion-free crystallographic groups. They appear

as fundamental groups of compact, connected, flat Riemannian manifolds and

have many interesting algebraic properties [4, 5]. Any new properties or results

concerning crystallographic groups, particularly Bieberbach groups might lead

to new exploration of the groups by not only mathematicians but by physicists

and chemists too. New properties and results of the groups can be obtained by,

not limited to, exploring the groups and by computing their nonabelian tensor

squares.

Eventhough the work on computing the nonabelian tensor squares of

groups have started a long time ago, but the work on computing the nonabelian

tensor squares of Bieberbach groups has just started by Rohaidah [6] in 2009. She

computed the nonabelian tensor squares of Bieberbach groups with cyclic point

groups. One of the main goals of this research is to compute the nonabelian

tensor squares of Bieberbach groups with a nonabelian point group, particularly

with a dihedral point group of order eight. The exploration of the groups in the



3

Crystallographic AlgoRithms And Tables (CARAT) [7] and the computation of

the nonabelian tensor squares of the groups with the Groups, Algrorithms, and

Programming (GAP) software [8] lead us first to characterize exactly the general

Bieberbach group with trivial center. The centerless Bieberbach groups are of

interest since they do not arise in the general construction of a Bieberbach group

for any given finite point group. It will be shown that the construction depends

on the presentation of the point group.

1.3 Problem Statement

To explore the properties of Bieberbach groups with any finite point

group and to calculate the nonabelian tensor squares of Bieberbach groups with

nonabelian point group; in particular, the dihedral point group of order eight.

1.4 Research Objectives

The objectives of this research are

(i) to construct a Bieberbach group with an arbitrary finite point group

(ii) to give examples of the construction of Bieberbach groups in (i) with a

cyclic point group of order two and with a dihedral point group of order

eight

(iii) to characterize Bieberbach groups with trivial center as exactly those with

finite abelianization

(iv) to determine the properties of centerless Bieberbach groups with a dihedral

point group of order eight and their nonabelian tensor squares
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(v) to compute the nonabelian tensor squares of a centerless Bieberbach group

of dimension four with dihedral point group of order eight and whose derived

length of its nonabelian tensor squares is two and

(vi) to compute some homological functors of Bieberbach groups with dihedral

point group of order eight and with other nonabelian point groups with

GAP.

1.5 Scope of Thesis

In this thesis, only n−dimension Bieberbach groups with any point group

are considered. Properties of only centerless Bieberbach groups with dihedral

point group of order eight and their nonabelian tensor squares are obtained. In

computing the nonabelian tensor squares of a group, a group is limited to a

centerless Bieberbach group of dimension four with a dihedral point group of

order eight in which the derived length of its nonabelian tensor squares is two.

1.6 Significance of Findings

The major contribution of this thesis will be new theoretical results on

constructing and characterizing the Bieberbach groups with any finite point

groups. The properties of the centerless Bieberbach groups of dimension four

with dihedral point group of order eight and computing their nonabelian tensor

squares will contribute as a foundation in determining the generalization of their

nonabelian tensor squares and the nonabelian tensor squares of Bieberbach groups

with other nonabelian finite point groups. Thus this thesis contributes to new

findings in the field of theoretical and computational group theory.



5

1.7 Thesis Outline

There are eight chapters in this thesis. Chapter 1 presents the introduction

of the thesis. This chapter discusses research background, problem statement,

research objectives, research scope and the significance of the thesis.

In Chapter 2, the studies of crystallographic groups especially Bieberbach

groups are presented. Some characterizations of Bieberbach groups given by

several researchers are discussed. The background of the nonabelian tensor

squares of groups are overviewed and the methods of computing the nonabelian

tensor squares of various groups by several researchers are compared. The method

of computing the nonabelian tensor squares initiated by Rocco [9] followed by

Ellis and Leonard [10] and extended by Blyth and Morse [11] is presented briefly

in this chapter. The background and the application of the software system for

computational group theory, GAP, and a computer package consists of a library

of Bieberbach groups, CARAT, are also presented in this chapter.

Chapter 3 is a chapter of preliminary results. It presents some related and

important definitions in group theory that are used throughout the thesis. Some

basic results on free groups are presented in this chapter. Methods chosen in

computing the nonabelian tensor squares of polycyclic groups and related results

that are used in the thesis are elaborated deeply in one of the section in this

chapter. A list of commutator calculus is also given here for easy reference.

Chapter 4 discusses the main result on constructing a Bieberbach group

with an arbitrary point group. The proof of the existence of a Bieberbach group

with any finite point group are presented in this chapter. With the construction

discussed, examples of Bieberbach groups with a cyclic point group of order two

and a dihedral point group of order eight are given here.

Chapter 5 presents a new characterization of any Bieberbach group

with finite point group. The characterization is based on the structure of the

abelianization of a centerless Bieberbach group.
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Chapter 6 discusses the theory and the calculation of the nonabelian tensor

squares of centerless Bieberbach groups with a dihedral point group of order eight.

The theory gives us the properties of the groups and its nonabelian tensor squares.

In this chapter, with the method chosen, the computation of the nonabelian

tensor squares of a centerless Bieberbach group of dimension four with a dihedral

point group of order eight in which the derived length of its nonabelian tensor

squares is two is presented. The polycyclic presentation of the group is shown

to be consistent so that GAP can be used to assist the hand computation. The

nonabelian tensor square of the group is presented by a simple presentation of its

generators and relations.

The exploration of some homological functors of all centerless Bieberbach

groups with a dihedral point group of order eight with GAP is discussed in

Chapter 7. In this chapter the exploration is not limited to the centerless

Bieberbach groups but also to Bieberbach groups with other nonabelian point

groups. Examples of GAP codes for the purposes are presented in this chapter.

Few results regarding some of the homological functors of the groups are also

presented.

Lastly, the thesis is summarized in Chapter 8. Some suggestions for future

research on the nonabelian tensor square of the Bieberbach groups and other

homological functors of the groups are given in this chapter.
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